— МОДЕЛИРОВАНИЕ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ ———

УДК 621.382

МОДЕЛИРОВАНИЕ АДСОРБЦИИ ЗОЛОТА НА ПОВЕРХНОСТЬ ДЕФЕКТНОГО ГРАФЕНА

© 2022 г. М. М. Асадов^{1, 2, *}, С. О. Маммадова³, С. С. Гусейнова³, С. Н. Мустафаева³, В. Ф. Лукичев^{4, **}

¹Институт катализа и неорганической химии им. М.Ф. Нагиева Национальной академии наук Азербайджана, пр. Г. Джавида, 113, Баку, AZ-1143 Азербайджан ²Научно-исследовательский институт геотехнологических проблем нефти, газа и химии АГУНП, пр. Азадлыг, 20, Баку, AZ-1010 Азербайджан ³Институт физики Национальной академии наук Азербайджана, пр. Г. Джавида, 131, Баку, AZ-1143 Азербайджан ⁴Физико-технологический институт им. К.А. Валиева Российской

академии наук, Нахимовский просп., 36, корп. 1, Москва, 117218 Россия

E-mail: mirasadov@gmail.com* *E-mail: lukichev@ftian.ru* Поступила в редакцию 31.05.2022 г. После доработки 09.07.2022 г. Принята к публикации 09.07.2022 г.

Представлены результаты теоретического исследования локальных структурных изменений и адсорбционных характеристик поверхности графена (GP) в присутствии комплекса "вакансия + адатом Au_{ads}". На основе теории функционала плотности (DFT) рассчитаны адсорбционные свойства Au_{ads} на поверхности графеновых суперъячеек, содержащих 50 атомов углерода с вакансиями (GP $\langle Au_{ads} \rangle$, GP_V $\langle Au_{ads} \rangle$). Определена стабильная конфигурация суперъячеек GP_V $\langle Au_{ads} \rangle$ с комплексом "вакансия + адатом Au_{ads}". Рассчитано влияние адатома Au_{ads} на зонную структуру и локальный магнитный момент в GP_V $\langle Au_{ads} \rangle$. Анализ электронной структуры проводился на основе равновесной атомной конфигурации GP_V $\langle Au_{ads} \rangle$, локальной плотности электронных состояний и с учетом спиновой поляризации. Расчеты проводились с использованием обменно-корреляционного функционала в приближении локальной электронной спиновой плотности (LSDA).

Ключевые слова: графен, вакансия, адсорбция атома золота, DFT LSDA, магнитный момент **DOI:** 10.31857/S054412692270003X

1. ВВЕДЕНИЕ

Графен (GP) исследуется как перспективный материал, например, для формирования двумерной подложки, в наноэлектронике и спинтронике. Известны экспериментальные [1–3] и теоретические [4–10] данные об исследовании адсорбции различных металлов, в том числе и золота, на поверхности графена.

Адсорбция атомов (адатом) металлов на поверхность графена является эффективным способом поляризации носителей заряда [2]. Изучение магнетизма в графене показало, что формирование локального магнитного момента в GP зависит как от концентрации, так и от геометрии дефектов на поверхности [3].

Ab initio расчеты адсорбции металлов, в частности, золота (Au_{ads}) на поверхность графена

 $GP\langle Au_{ads} \rangle$ [4–10] показывают, что вычисленные характеристики (энергия адсорбции [4–8], магнитный момент [6]) зависят от различных факторов: от метода расчета [5, 9], структуры адатома [7], места адсорбции (сверху, мостовое и полое положения) [4, 5], расстояния связи (*d*) между адатомом и поверхностью [5, 8], характера взаимодействия между адатомом и графеном [6–9], электронной структуры подложки GP [9, 10].

В известных работах по адсорбции Au_{ads} на поверхность GP в основном изучали бездефектный GP с использованием разных обменно-корреляционных функционалов (Exchange-correlation Functionals – E_{XC}). Однако, как известно, поверхностные дефекты, заметно влияют на электронные, магнитные, механические свойства поверхности. С учетом этого актуальным является исследование адсорбционных и электронных свойств поверхности в присутствии комплекса "вакансия + адатом Au_{ads} " структуры $GP_V \langle Au_{ads} \rangle$.

Цель работы — Ab-initio расчет энергии адсорбции Au_{ads} на поверхности графеновых суперъячеек $GP\langle Au_{ads} \rangle$ и $GP_V \langle Au_{ads} \rangle$ с точечными дефектами (V – вакансия).

2. МОДЕЛЬ И МЕТОДИКА РАСЧЕТОВ

Расчеты зонной структуры дефектного графена проводили на основе теории функционала плотности (DFT). Исследовали суперъячейки Au-адсорбированного графена GP $\langle Au_{ads} \rangle$ и GP_V $\langle Au_{ads} \rangle$, содержащего вакансию. Расчеты проводили с помощью программного пакета Atomistix ToolKit при температуре T = 0 K [11, 12]. Использовали суперъячейки GP, содержащие 50 атомов углерода.

Электронная конфигурация свободного атома важна для правильного описания химической связи в системе. Использовались следующие электронные конфигурации для атомов: Au –[Xe]4 $f^{14}4d^{10}4s^1$, C – [He]2 s^22p^2 . Состояния [Xe]и [He] относятся к остовным. Основное состояние как атома золота (4 $f^{14}4d^{10}4s^1$), так и углерода ($2s^22p^2$) являются состоянием с открытой оболочкой. Для таких состояний учитывали эффекты спиновой поляризации.

Обменно-корреляционный функционал $E_{\rm XC}$ рассчитывали в приближении локальной электронной спиновой плотности (LSDA) в параметризации Пердью—Цунгера [13]. В расчетах использовали постоянную решетки графена, равную ее оптимизированному значению. Для интегрирования в обратном пространстве использовалась схема Монхорста—Пака [14] с сеткой из 5 × 5 × 5 к-точек в зоне Бриллюэна.

Расчет электронной структуры суперъячеек размером 5 × 5 G $P_V \langle Au_{ads} \rangle$ проводили с учетом основных состояний атомов Au и углерода в k-точках выборки суперъячейки графена в зоне Бриллюэна по линиям М-Г-К-М. Это позволяет проследить за дисперсией точек Дирака на краях зоны Бриллюэна.

DFT-расчеты проводили для трех разных центров адсорбции Au_{ads} (111) на графене [4]: мостиковое положение B-сайт (Au_{ads} расположен в мостиковом участке между C–C связи на GP), углубления в центре H-сайт (Au_{ads} расположен в центре шестичленного кольца C–C связи на GP) и расположение адатома сверху T-сайт (Au_{ads} расположен в тетраэдрической конфигурация C–C связи на GP) (рис. 1).

Расчеты энергии адсорбции адатомов Au_{ads} и магнитных свойств на поверхности графеновых структур проводили в оптимизированных суперъячейках GP. Кинетическая энергия отсечки при обменной корреляции составляла 500 эВ, которая обеспечивала сходимость по полной энергии 10^{-5} эВ/ячейка. Каждую исследуемую суперъячейку предварительно релаксировали с допусками максимальной силы 0.01 эВ/Å, напряжения 0.01 эВ/Å³ и максимальным смещением 0.001 Å соответственно.

Энергию адсорбции адатома Au_{ads} рассчитывали по формуле [12]

$$E_{ads}^{atom} = \frac{1}{m+n} E_{total} (graphene + Au_{ads}) - - \left[m E_{iso}^{C} (graphene) + n E_{iso}^{Au} (Au_{ads}) \right],$$
(1)

где E_{ads}^{atom} — энергия связи адатома Au_{ads} с поверхностью графена, E_{total} (graphene + Au_{ads}) — полная энергия комплекса (graphene + Au_{ads}), т.е. энергия кристаллического графена с адсорбированным атомом, mE_{iso}^{C} (graphene) — полная энергия изолированного графена, E_{iso}^{Au} (Au_{ads}) — полная энергия изолированного адатома Au_{ads} , *m* и *n* — количество атомов углерода и адатома в графене соответственно. Энергию изолированного атома рассчитывали в вакуумном "ящике", размеры которого совпадали с размерами суперъячейки кристаллической пластины графена.

Деформацию монослоя графена при адсорбции Au_{ads} (111) рассчитывали по формуле: $\frac{d_{C-C}^{free} - d_{C-C}^{ads}}{d_{C-C}^{free}} \times 100$, где d_{C-C}^{free} и d_{C-C}^{ads} – длины связи С–С в свободном и адсорбированном монослоях графена.

Полные и парциальные магнитные моменты оценены по известной методике. Обменные интегралы в гамильтониане учтены в следующем виде: $H = -\sum_{i \neq j} J_{ij} S_i S_j$, где J_{ij} – параметры магнитного обменного взаимодействия между атомами *i* и *j*, S_i – полный спин атома *i*. Магнитный момент атома *i* связан со спином S_i следующим соотношением: $M_i = g\mu_B S_i$, где g – фактор Ланде (гиромагнитный множитель), μ_B – магнетон Бора (элементарный магнитный момент).

3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В графене, как известно, каждый атом углерода связан с тремя другими атомами углерода. В соответствии с *sp*²-гибридизацией атома углерода, ко-

Рис. 1. Адсорбционные центры 5 × 5 суперъячейки монослоя графена. В-сайт (мостиковое расположение; расположение в центре связи C–C); Т-сайт (тетраэдрический сайт; расположение сверху); Н-сайт (гексагональный сайт; расположение в центре шестичленного кольца). *a* – бездефектный графен, *б* – графен с одной вакансией, *в* – графен с одной вакансией и адатомами.

торый имеет два 2s- и два 2p-электрона в валентном состоянии, длина связи С—С в графене меняется.

Согласно DFT-расчетам с использованием $E_{\rm XC}$ LDA (аппроксимация локальной плотности) длина связи C–C в чистом графене (1.41 Å), была меньше, чем длина связи C–Au в изученных нами структурах GP $\langle Au_{\rm ads} \rangle$ и GP_V $\langle Au_{\rm ads} \rangle$.

3.1. Адсорбция

Энергия связи $E_{\rm ads}^{\rm atom}$ адатома с поверхностью зависит, в частности, от длины связи (d) между

МИКРОЭЛЕКТРОНИКА том 51 № 6 2022

адатомом и поверхностью. Очевидно, что если среднее расстояние d большое, то E_{ads}^{atom} должна быть малой. В случае большого расстояния связи между адатомом и поверхностью проявляется физическая адсорбция. Если расстояние связи ко-

роткое, то $E_{\rm ads}^{\rm atom}$ должна увеличиться за счет химической адсорбции.

Адсорбция Au на GP зависит от времени пребывания (t) адатома и его пройденного расстояния (λ) до подложки перед десорбцией. Эти величины свя-

Рис. 1. Окончание.

заны с энергиями атомов для адсорбции E_{ads}^{atom} и поверхностной диффузии E_d^{atom} соотношением

$$\tau = v_{\rm ads}^{-1} \exp\left(\frac{E_{\rm ads}^{\rm atom}}{k_{\rm B}T}\right),\tag{2}$$

где v_{ads} — частота попыток десорбции, $k_{\rm B}$ — постоянная Больцмана, T — температура. Тогда для λ можем написать

$$\lambda = \frac{a}{2} \sqrt{\frac{v_{\rm d}}{v_{\rm ads}}} \exp\left(\frac{E_{\rm ads}^{\rm atom} - E_{\rm d}^{\rm atom}}{2k_{\rm B}T}\right),\tag{3}$$

где *a* — расстояние одного прыжка атома, v_d — частота попыток диффузии. С учетом экспериментальных данных по кинетике осаждения из паровой фазы и роста частиц Au на тонкие подложки графита [15, 16] расстояние λ для Au, в частности, при комнатной температуре составляет ~400 нм. С учетом этого из (3) экспериментальным путем

для адсорбции золота на графите получено значение $E_{\rm ads}^{\rm atom} = -0.64$ эВ.

Атомные структуры GP $\langle Au_{ads} \rangle$ и GP $_V \langle Au_{ads} \rangle$ предварительно релаксировали методом DFT LDA. Первоначально атом Au помещался на расстоянии 2.5 Å от поверхности графена. А монослой графена был "заморожен". В конце релаксации сумма всех сил, действующих в системе, составляла $\leq 0.001 \ \Im B/Å$. Атомные структуры GP $\langle Au_{ads} \rangle$ и GP $_V \langle Au_{ads} \rangle$ для трех различных конфигураций (B-сайт, H-сайт и T-сайт) расположения Au_{ads} после релаксации сравнивали.

Деформация монослоя графена при адсорбции Au_{ads} незначительная. Установленные нами равновесные параметры решеток, позиции атомов углерода в графене и адатома Au_{ads} согласуются с данными [4–7]. Определены длины связей между атомами углерода в графене, дистанции

МИКРОЭЛЕКТРОНИКА том 51 № 6 2022

между парами атомов Au–C для систем GP $\langle Au_{ads} \rangle$ и GP_V $\langle Au_{ads} \rangle$ после релаксации. В системе GP $\langle Au_{ads} \rangle$ среднее расстояние между атомами углерода и золота, составило $d_{eq}^{T} = 2.56$ Å для места связывания атомов Au–C сверху (T-сайт). Это согласуется с данными $d_{eq}^{T} = 2.61$ Å [7].

На рис. 2 показана схема оптимизированных нами 5 × 5 суперъячеек GP $\langle Au_{ads} \rangle$ и GP_V $\langle Au_{ads} \rangle$. В этом случае энергия связи E_{ads}^{atom} характеризует разность энергий релаксированной структуры GP по отношению к той же структуре GP, в которой атом Au находится в вакууме.

Начальное расположение адатома Au_{ads} (111) на поверхности GP после релаксации системы $GP_V \langle Au_{ads} \rangle$ незначительно изменяется. Это связано с тем, что адсорбированный атом Au_{ads} (111) создает область локального сжатия поверхности с вакансией GP_V .

Сравнивали энергии адсорбции E_{ads}^{atom} для Au_{ads}, адсорбированного по трем позициям: сверху (Т-сайт), мостовой (В-сайт) и полой (Н-сайт). Для систем GP (Au_{ads}) и GP_V (Au_{ads}) более стабильными оказались конфигурации связывания атомов Au_{ads}–С адатом сверху (Т-сайт).

Расчеты $E_{\rm ads}^{\rm atom}$ адатомов Au_{ads} на поверхности графена с использованием функционала LDA показывают чуть завышенные значения $E_{\rm ads}^{\rm atom}$ по сравнению с LSDA данными. Учет спиновой поляризации в LSDA расчетах позволяет корректировать LDA расчетную величину $E_{\rm ads}^{\rm atom}$.

Учитывая спиновое расщепление атома золота, корректировали также энергию обменного взаимодействия в GP $\langle Au_{ads} \rangle$ и GP_V $\langle Au_{ads} \rangle$. В этом случае LSDA-расчетная величина E_{ads}^{atom} уменьшается, что находится в согласии с расчетами [4, 5].

В табл. 1 приведены результаты наших DFT-LSDA расчетов для 5 × 5 суперъячеек GP \langle Au_{ads} \rangle и GP_v \langle Au_{ads} \rangle на основе графена в сопоставлении с известными данными.

Результаты расчета E_{ads}^{atom} для суперъячейки на основе бездефектного графена GP $\langle Au_{ads} \rangle$ аналогичны результатам работ [4, 5]. E_{ads}^{atom} адатома Au_{ads} в мостовой (В-сайт) и полой (Н-сайт) положениях вырождены, т.е. Au_{ads} может легко диффундировать сверху на поверхность GP в системе GP $\langle Au_{ads} \rangle$.

МИКРОЭЛЕКТРОНИКА том 51 № 6 2022

Таблица 1. DFT LSDA рассчитанные энергии адсорбции адатома Au_{ads} (эB/атом) на 5 × 5 суперъячейках GP $\langle Au_{ads} \rangle$ и GP_V $\langle Au_{ads} \rangle$ и равновесное среднее расстояние (d_{eq}^{T}) между атомами Au–C. Данные LSDA показаны для места связывания атомов Au–C, где адатом Au_{ads} расположен сверху (T-сайт) поверхности

Структура, <i>Е</i> _{ХС} функционал	$E_{\rm ads}^{\rm T}$, эВ/атом	$d_{\rm eq}^{\rm T}$, Å
$GP\langle Au_{ads} \rangle$		
LDA [4]	-0.77	>2
LDA [5]	-0.732	2.22
GGA [6]	-0.107	2.82
GGA [7]	-0.310	2.61
PBE [8]	-0.51	2.33
LSDA	-0.41	2.56
$GP_V \langle Au_{ads} \rangle$		
LSDA	-3.36	2.21

Рассчитанное равновесное расстояние $d_{eq}^{T}(Å)$ между адатомом Au_{ads} и ближайшим атомом C на плоскости графена составляет 2.56 Å, что согласуется с данными [4–8]. Вычисленное расстояние $d_{eq}^{T}(Å)$ мало зависит от функционала, используемого в DFT-расчете. Значение $d_{eq}^{T}(Å)$ меньше для системы с моновакансией графена GP_V (Au_{ads}), чем для бездефектного графена GP(Au_{ads}).

Как видно из табл. 1, энергия адсорбции Au_{ads} на графене с одиночной вакансией $GP_V \langle Au_{ads} \rangle$ почти на порядок меньше, чем на "чистом" графене $GP \langle Au_{ads} \rangle$. Этот эффект стабилизации структуры обусловлен гибридизацией *d*-орбиталей Au: [Xe] $4f^{14}4d^{10}4s^1$ с оборванными связями sp^2 , присутствующими в соседних атомах углерода GP, с одиночной вакансией.

3.2. Энергия образования дефекта

В реальных условиях любой кристалл не является идеальным, а содержит различные дефекты. А свойства, в частности, механические, электрофизические, оптические и физические свойства твердофазных материалов, зависят от концентрации и энергии образования различного типа дефектов.

Если на поверхности рядом с адсорбируемым атомом находится вакансия, то возможно перемещение атомов (как адсорбированных, так и собственных атомов) по вакансионному механизму. Вероятность нахождения вакансии "рядом"

Рис. 2. Геометрическая модель расположения адатома Au_{ads} на монослое 5 × 5 суперъячейки графена, содержащей 50 атомов углерода: (*a*) суперъячейка графена $GP\langle Au_{ads} \rangle$ с Au_{ads} расположенным в мостиковом участке (B-сайт) между C–C связью, (*б*) суперъячейка дефектного графена $GP_V \langle Au_{ads} \rangle$ с одной вакансией, где Au_{ads} расположен в мостиковом участке (B-сайт) между C–C связью, (*b*) суперъячейка дефектного графена $GP_V \langle Au_{ads} \rangle$ с одной вакансией, где Au_{ads} расположен в мостиковом участке (B-сайт) между C–C связью, (*b*) суперъячейка дефектного графена $GP_V \langle Au_{ads} \rangle$ с одной вакансией, где Au_{ads} расположен в мостиковом участке (B-сайт) между C–C связью, (*b*) суперъячейка дефектного графена $GP_V \langle Au_{ads} \rangle$ с одной вакансией, где Au_{ads} расположен сверху (T-сайт) над атомом углерода.

Рис. 3. Гексагональная зона Бриллюэна графена. К, К' – точки Дирака.

тем больше, чем больше концентрация вакансий в кристалле. Поскольку энергия связи примесных и собственных атомов с атомами решетки различна, то и скорости гетеродиффузии и самодиффузии будут отличаться друг от друга. Скорость диффузии по вакансионному механизму в основном определяется концентрацией и энергией точечных дефектов.

В случае графена с одной вакансией (SV) вычислили энергию образования вакансии [11]

$$E_f^{SV} = E(SV - graphene) - \frac{(m-1)}{m}E(graphene), (4)$$

где E(graphene) — энергия суперъячейки исходного графена, содержащей *m* атомов углерода, E(SV - graphene) — энергия такой же суперъячейки дефектного графена, в которой один атом углерода удален из ячейки.

Энергии образования одиночной вакансии на графене, вычисленные с функционалами LDA и LSDA ($E_f^{SV} = 7.46 \ \Im B$), совпадают, и они лишь немного выше, чем энергия, полученная с функционалом PBE ($E_f^{SV} = 7.3 \ \Im B$ [11]; 7.7 $\Im B$ [3]).

3.3. Зонная структура $GP_V \langle Au_{ads} \rangle$

Вершина валентного состояния и нижняя часть состояния проводимости чистого графена, как известно, вырождены в точках Дирака (рис. 3) зоны Бриллюэна. Вычисленная нами зонная струк-

МИКРОЭЛЕКТРОНИКА том 51 № 6 2022

тура 5 × 5 суперъячеек вдоль направлений высокой симметрии М- Γ -К-М на основе монослоя графена с адатомом Au_{ads} представлена на рис. 4.

Валентная зона чистого графена соприкасается с соседними энергетическими зонами с нулевой запрещенной зоной $E_{\rm g} = E_{\rm c} - E_{\rm v} \approx 0$ эВ ($E_{\rm c}$ – зона проводимости, $E_{\rm v}$ – валентная зона). В отсутствии примесных атомов, а также дефектов решетки, движение электронов внутри $E_{\rm g}$ запрещено. Однако, расположение энергетических зон в графене похоже на расположение зон в полупроводниках и поэтому проводимость полуметалла графена хуже, чем у металлов.

На рис. 4*a* показана электронная зонная структура чистого графена вдоль линии высокой симметрии зоны Бриллюэна. Монослой графена имеет полупроводниковую зонную структуру с нулевой запрещенной зоной. Как видно из рис. 4*a* валентная зона и зона проводимости графена соединяются в точке Дирака (в точке К-симметрии) с нулевой плотностью состояний.

Энергетические полосы валентного состояния и состояния проводимости чистого графена GP характеризуются линейной дисперсией вблизи энергии Ферми в точке Г зоны Бриллюэна. Такая зонная структура графена (рис. 4*a*) приводит к нулевой эффективной массе электронов и дырок, и высокой подвижности носителей заряда в точке Дирака. Зонная структура графеновой плоскости представляет прямозонный полупроводник.

Рис. 4. Рассчитанная электронная зонная структура 5 × 5 суперъячейки на основе графена с адатомом Au_{ads} GP $\langle Au_{ads} \rangle$ вдоль основных направлений М-Г-К-М гексагональной зоны Бриллюэна. a – чистый графен, δ – GP $\langle Au_{ads} \rangle$, δ – GP $\langle Au_{ads} \rangle$. Уровень Ферми (E_F) равен нулю. Адатом адсорбирован на T-сайте графена.

Рис. 4. Окончание.

Зонная структура графена, содержащего адатом GP $\langle Au_{ads} \rangle$, характеризуется дырочной природой проводимости (рис. 46). Это связано с тем, что одновалентный адатом Au_{ads} является акцептором для четырехвалентного углерода. В результате ковалентной связи Au–C один электрон отсутствует в одной из четырех ковалентных связей, являющихся частью решетки графена.

Аналогичное происходит также в структуре $GP_V \langle Au_{ads} \rangle$ с участием вакансии (рис. 4*e*). Адатом Au_{ads} устанавливает ковалентную связь с одним из четырех соседних атомов углерода. Для установки связи с тремя другими атомами углерода у атома золота нет валентного электрона. В этом случае он захватывает валентные электроны из ковалентной связи между соседними атомами углерода. Поэтому в структуре $GP_V \langle Au_{ads} \rangle$ адатом Au_{ads} становится отрицательно заряженным ионом и графен имеет дырочную проводимость.

Как видно из рис. 46 и в, минимум энергии валентной зоны и максимум энергии зоны проводимости графеновых структур находятся в разных точках зоны Бриллюэна. Т.е. эти структуры аналогичны непрямозонным полупроводникам. В структуре $GP\langle Au_{ads} \rangle$ формируется запрещенная зона шириной ~0.1 эВ. Другими словами, внедре-

ние вакансии в структуру $GP\langle Au_{ads} \rangle$ приводит к расширению запрещенной зоны $GP_V \langle Au_{ads} \rangle$.

3.4. Плотность состояний (DOS)

На рис. 5 представлены полная и парциальные спин-поляризованные плотности состояний (PDOS) атомов золота 5 × 5 суперъячеек GP \langle Au_{ads} \rangle и GP_V \langle Au_{ads} \rangle с моновакансией. Показаны плотности состояний электронов со спином соответственно вверх и вниз.

Анализ полных и парциальных спин-поляризованных плотностей электронных состояний 5 \times 5 суперъячеек графена показывает, что комплекс "вакансия + адатом Au_{ads}" на поверхности приводит к изменению DOS вблизи уровня Ферми. Заметный вклад в DOS вблизи уровня Ферми вносят *d*-электроны золота.

Таким образом, расположение энергетических уровней и, следовательно, плотности состояний зависят от свойств графена (например, размера и концентрации вакансии) и вклада от природы донорного атома, поставляющего свободный электрон.

Рис. 5. Рассчитанные полная и парциальные плотности состояний (PDOS) 5×5 суперъячеек графена для *s*-, *p*-, *d*-электронов Au_{ads}: (*a*) DOS суперъячейки графена, 1 -"чистый" графен; 2 - графен с моновакансией, (*б*) PDOS суперъячейки GP \langle Au_{ads} \rangle , (*в*) PDOS суперъячейки GP \langle Au_{ads} \rangle с моновакансией.

3.5. Магнитный момент

Экспериментальные данные для магнитных свойств GP $\langle Au_{ads} \rangle$ и GP_V $\langle Au_{ads} \rangle$ отсутствуют. Для суперъячейки графена без дефектов магнитный момент (m_{cell} (μ_B)) должен быть равен нулю.

Магнетизм изучали методом DFT с одной вакансией углерода в суперъячейке $GP_V \langle Au_{ads} \rangle$. В этом случае принимали, что вакансия изолируется и исключается взаимодействие между возможными точечными дефектами в кристалле.

Увеличение количества вакансий в GP привело бы к взаимодействию между дефектами, что усилило бы делокализацию волновой функции электронов в области недостатка углерода. Т.е. для расчета рассматривали предельный случай, где из суперъячейки $GP_V \langle Au_{ads} \rangle$ удаляли один атом углерода, связанный с другими атомами углерода.

Таблица 2. DFT LSDA рассчитанные положение адатома Au_{ads} на поверхности графена (h_a), среднее расстояние от "закрепленного" атома углерода С (d_{eq}) до Au_{ads} и общая намагниченность (m_{cell}) адатома Au_{ads} , адсорбированного на 5 × 5 суперъячейках GP (Au_{ads}) и GP_V (Au_{ads}). Данные показаны для места связывания атомов Au–C, где адатом Au_{ads} расположен сверху (T-сайт) поверхности (GP)

Структура	$h_{\rm a}({\rm \AA})$	$d_{\mathrm{eq}}^{\mathrm{T}}\left(\mathrm{\AA}\right)$	$m_{\rm cell}(\mu_{\rm B})$
$GP\langle Au_{ads} \rangle$	2.59	2.48	0.91 [6]
$\mathrm{GP}\langle\mathrm{Au}_{\mathrm{ads}} angle$	3.10	2.56	0.80
$\mathrm{GP}_{\mathrm{V}}\left<\mathrm{Au}_{\mathrm{ads}}\right>$	2.75	2.21	1.01

Присутствие вакансии в структуре и GP_v $\langle Au_{ads} \rangle$ приводит к возникновению магнитного упорядочения. DFT расчеты указывают на то, что в суперъячейке GP_v $\langle Au_{ads} \rangle$ имеет место локальное ферромагнитное спиновое упорядочение. Другими словами, система GP_v $\langle Au_{ads} \rangle$ на основе графена с точечным дефектом (вансия), как и аналогичные дефектные графеновые системы [11, 12], имеет локальный магнитный момент.

В табл. 2 представлены рассчитанные нами магнитные моменты для структур $GP\langle Au_{ads} \rangle$ и $GP_V \langle Au_{ads} \rangle$.

МИКРОЭЛЕКТРОНИКА том 51 № 6 2022

Таким образом, ферромагнетизм в суперъячейке $GP_V \langle Au_{ads} \rangle$ возникает за счет вакансии углерода и взаимодействия адатома Au_{ads} ($4f^{14}4d^{10}4s^1$) с атомами углерода. Атом золота с незаполненным уровнем вносит вклад в общую намагниченность $GP_V \langle Au_{ads} \rangle$.

Для суперъячейки графена с моновакансией углерода вычисленный магнитный момент больше 1 μ_B (табл. 2). Значение μ_B для $GP_V \langle Au_{ads} \rangle$ отличается от значений для аналогичных структур, например, $GP_V \langle Ge_{ads} \rangle$ 1.77 μ_B [12]. Высокая плотность состояний вблизи поверхности Ферми дает полный магнитный момент, что подтверждает форми-

Рис. 5. Окончание.

рование ферромагнетизма в дефектном графене $GP_V \left< Au_{ads} \right>$ за счет вакансий углерода.

Установлено, что в зависимости от расстояния вакансии углерода до комплекса Au_{ads}-C на поверхности графена, локальный магнитный момент может как увеличиваться (в случае вакансии углерода C50), так и уменьшаться (в случае вакансии C25).

выводы

DFT-LSDA расчеты 5 × 5 суперъячеек GP $\langle Au_{ads} \rangle$ и GP_V $\langle Au_{ads} \rangle$ показали следующие.

Расположение адсорбированных атомов золота сверху (тетраэдрическая конфигурация; Т-сайт) атома углерода в поверхностном монослое графена энергетически более предпочтительно, чем в мостиковых участках между С–С связями (В-сайт) и в углублениях в центре шестичленного кольца С–С связи (Н-сайт) ячейки графена.

Рассчитаны энергия образования вакансии углерода на графене ($E_f^{SV} = 7.46$ эВ), зонная структура и плотность состояний в адсорбционных комплексах GP (Au_{ads}) и GP_V (Au_{ads}). Такие структуры важны для электронотранспортных свойств графеновых материалов, где носители заряда лока-

440

лизованы и их движение включает диффузионный процесс.

LDA-расчетные энергии адсорбции (E_{ads}^{T}) атома золота (Au_{ads}) на суперячейках графена имеют относительно низкие значения, которые характерны, например, для металлов подгруппы железа. Учет спиновой поляризации позволяет корректировать значения энергии адсорбции Au_{ads} указанных графеновых структур. LSDA рассчитанное значение энергий связи с учетом спиновой поправки

выше в среднем на 0.34 эВ чем LDA-расчетная $E_{\text{ads}}^{\text{T}}$.

Показано, что энергия адсорбции Au_{ads} структуры $GP_V \langle Au_{ads} \rangle$ ниже, чем у бездефектного $GP \langle Au_{ads} \rangle$. Энергия адсорбции в $GP \langle Au_{ads} \rangle$ и $GP_V \langle Au_{ads} \rangle$ зависит от дефектности поверхности и уменьшается с уменьшением степени дефектности.

Как и энергия адсорбции рассчитанные LSDA магнитные моменты ($\mu_{\rm B}$) для суперъячеек 5 × 5 графена с моновакансией (GPv) и бездефектной ячейки с адсорбированным атомом Au_{ads} отличаются друг от друга. С учетом спин-орбитального взаимодействия и расщепления f-атомных состояний Au рассчитанный общий магнитный момент суперъячейки GP $\langle Au_{ads} \rangle$ составляет 0.8 μ_B . В суперъячейке $\mathrm{GP}_{\mathrm{V}}\left\langle \mathrm{Au}_{\mathrm{ads}} \right\rangle$ с моновакансией вклад в локальный магнитный момент вносит также атом Аи. В этом случае значение общего магнитного момента $\mathrm{GP}_{\mathrm{V}}\left<\mathrm{Au}_{\mathrm{ads}}\right>$ увеличивается и составляет 1.01 µ_в. Магнитный момент около вакансии зависит от места расположения вакансии на поверхности. В 5 \times 5 суперъячейке GP $\langle Au_{ads} \rangle$ для вакансии углерода, например, С50 и С25 значение парциального магнитного момента составляет 0.83 и 0.65µ_в соответственно.

ФИНАНСИРОВАНИЕ

Настоящая работа выполнена при частичной поддержке Фонда развития науки при Президенте Азербайджанской Республики (проект EİF-BGM-4-RFTFl/2017-21/05/l-М-07) и Российского фонда фундаментальных исследований (проект 18-57-06001 № Аz а 2018).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

1. Zanella I., Fagan B.S., Mota R., Fazzio A. Electronic and Magnetic Properties of Ti and Fe on Graphene // The Journal of Physical Chemistry C. 2008. V. 112. № 25. P. 9163–9167. https://doi.org/10.1021/jp711691r

МИКРОЭЛЕКТРОНИКА том 51 № 6 2022

- 2. *Ding J., Qiao Z., Feng W., Yao Y., Niu Q.* Engineering quantum anomalous/valley Hall states in graphene via metal-atom adsorption: An ab-initio study // Physical Review B. 2011. V. 84. № 19. 195444–9. https://doi.org/10.1103/PhysRevB.84.195444
- 3. *Singh R., Kroll P.* Magnetism in graphene due to singleatom defects: dependence on the concentration and packing geometry of defects // Journal of Physics: Condensed Matter. V. 21. № 19. P. 196002–7. https://doi.org/10.1088/0953-8984/21/19/196002
- Nakada K., Ishii A. Migration of adatom adsorption on graphene using DFT calculation // Solid State Communications. 2011. V. 151. № 1. P. 13–16. https://doi.org/10.1016/j.ssc.2010.10.036
- Amft M., Lebègue S., Eriksson O., Skorodumova N.V. Adsorption of Cu, Ag, and Au atoms on graphene including van der Waals interactions // Journal of Physics: Condensed Matter. 2011. V. 23. № 39. P. 395001-10. https://doi.org/10.1088/0953-8984/23/39/395001
- Srivastava M.K., Wang Y., Kemper A.F., Cheng H.-P. Density functional study of gold and iron clusters on perfect and defected graphene // Physical Review B. 2012. V. 85. № 16. P. 165444-13. https://doi.org/10.1103/PhysRevB.85.165444
- 7. *Castillo R.M.D., Sansores L.E.* Study of the electronic structure of Ag, Au, Pt and Pd clusters adsorption on graphene and their effect on conductivity // The European Physical Journal B. 2015. V. 88. № 248. P. 1–13. https://doi.org/10.1140/epjb/e2015-60001-2
- Trentino A., Mizohata K., Zagler G., Längle M., Mustonen K., Susi T., Kotakoski J., Åhlgren E.H. Two-step implantation of gold into graphene // 2D Materials. 2022. V. 9. № 025011. https://doi.org/10.1088/2053-1583/ac4e9c
- Engel J., Francis S., Roldan A. The influence of support materials on the structural and electronic properties of gold nanoparticles – a DFT study // Physical Chemistry Chemical Physics. 2019. rsc.li/PCCP. https://doi.org/10.1039/c9cp03066b
- Plant S.R., Cao L., Yin F., Wang Z.W., Palmer R.E. Sizedependent propagation of Au nanoclusters through fewlayer graphene // Nanoscale. 2014. V. 6. P. 1258–1268. https://doi.org/10.1039/c3nr04770a
- 11. Асадов М.М., Мустафаева С.Н., Гусейнова С.С., Лукичев В.Ф., Тагиев Д.Б. Аb initio моделирование влияния расположения и свойств упорядоченных вакансий на магнитное состояние монослоя графена // Физика твердого тела. 2021. Т. 63. № 5. С. 680–689. [Asadov M.M., Mustafaeva S.N., Guseinova S.S., Lukichev V.F., Tagiev D.B. Ab initio modeling of the location and properties of ordered vacancies on the magnetic state of a graphene monolayer // Physics of the Solid State. 2021. V. 63. № 5. P. 680–689.] https://doi.org/10.1134/S1063783421050036
- Асадов М.М., Мустафаева С.Н., Гусейнова С.С., Лукичев В.Ф. DFT моделирование электронной структуры и адсорбция германия в упорядоченном графене с вакансией // Микроэлектроника. 2022. Т. 51. № 2. С. 125–139. [Asadov M.M., Mustafaeva S.N., Guseinova S.S., Lukichev V.F. DFT Electronic Struc-

ture Simulation and Adsorption of Germanium in Ordered Graphene with a Vacancy. Russian Microelectronics. 2022. V. 51. № 2. P. 83–96.] https://doi.org/10.1134/S1063739722010024

 Perdew J.P., Zunger A. Self-interaction correction to density-functional approximations for many-electron systems. Physical Review B. 1981. V. 23. № 10. P. 5048–5079.

https://doi.org/10.1103/physrevb.23.5048

14. Monkhorst H.J., Pack J.D. Special points for Brillouinzone integrations. Physical Review B. 1976. V. 13. № 12. P. 5188-5192.

https://doi.org/10.1103/physrevb.13.5188

- Arthur J.R., Cho A. Y. Adsorption and desorption kinetics of Cu and Au on (0001) graphite. Surface Science. 1973. V. 36. № 2. P. 641–660. https://doi.org/10.1016/0039-6028(73)90409-3
- 16. *Anton R., Kreutzer P.* In situ TEM evaluation of the growth kinetics of Au particles on highly oriented pyrolithic graphite at elevated temperatures. Physical Review B. 2000. V. 61. № 23. P. 16077–16083. https://doi.org/10.1103/PhysRevB.61.16077