———— ДИАГНОСТИКА ———

УДК 537.525

# СПЕКТРАЛЬНЫЙ КОНТРОЛЬ ПРОЦЕССА ТРАВЛЕНИЯ МЕДИ В ВЫСОКОЧАСТОТНОЙ ПЛАЗМЕ ДИФТОРДИХЛОРМЕТАНА

© 2022 г. Д. Б. Мурин<sup>1,</sup> \*, С. А. Пивоваренок<sup>1</sup>, А. В. Дунаев<sup>2</sup>, И. А. Чесноков<sup>1</sup>, И. А. Гогулев<sup>1</sup>

<sup>1</sup>ФГБОУ ВО "Ивановский государственный химико-технологический университет", кафедра технологии приборов и материалов электронной техники, Шереметевский проспект, 7, Иваново, Россия <sup>2</sup>ФГБОУ ВО "Ивановская государственная сельскохозяйственная академия им. акад. Д.К. Беляева", кафедра естественнонаучных дисциплин, ул. Советская, 45, Иваново, Россия

> \**E-mail: dim86@mail.ru* Поступила в редакцию 05.07.2022 г. После доработки 14.07.2022 г. Принята к публикации 14.07.2022 г.

Получены и проанализированы спектры излучения плазмы ВЧ разряда дифтордихлорметана при травлении меди. Показано, что излучение плазмы ВЧ разряда представлено атомарными и молекулярными компонентами, предположено, что зависимости интенсивностей линий и полос от внешних условий разряда определяются возбуждением излучающих состояний при прямых электронных ударах. При этом их поведение хорошо согласуется с характером зависимостей скорости травления при тех же условиях.

*Ключевые слова:* плазма, фреоны, диагностика, активные частицы, травление, спектральный контроль, интенсивности излучения, дифтордихлорметан, медь **DOI:** 10.31857/S0544126922700077

1. ВВЕДЕНИЕ

Плазмохимические процессы находят широкое применение в технологии микроэлектроники при проведении плазмохимического и реактивно-ионного травления проводников и полупроводников [1]. Одним из перспективных плазмообразующим газов, который может использоваться для проведения этих процессов, является дифтордихлорметан или фреон R-12 (CF<sub>2</sub>Cl<sub>2</sub>), который в условиях плазмы диссоциирует с образованием химически активных частиц хлора и фтора [2-5]. Однако широкое применение плазмообразующих сред на основе дифтордихлорметана в технологических целях, в частности для травления таких металлов, как медь, ограниченно из-за недостатка исследований, включающих в себя совокупность методов контроля и диагностики как самого технологического процесса травления, так и поверхности обработанных пластин.

В данной работе для контроля и диагностики параметров плазмы дифтордихлорметана был использован метод оптической эмиссионной спектроскопии, основанный на регистрации излучения плазмы в ультрафиолетовой, видимой и ближней инфракрасной областях спектра. Привлекательность и широкая распространенность этого метода обусловлена двумя основными факторами: 1) эти методы являются невозмущающими, то есть не требуют введения в плазму зондирующих устройств, организации систем отбора газа из реакционной зоны и т.п. Это, с одной стороны, снимает ограничения контактных методов, возникающие при исследовании химически активной плазмы (коррозия диагностического оборудования, изменение состояния поверхности зондов и т.д.) и, с другой стороны, позволяет получать информацию, отражающую истинные параметры плазмы или процесса;

2) оптико-спектральные методы отличаются относительной простотой аппаратной реализации и хорошо развитой теорией обработки результатов измерений. Последнее предоставляет возможность контроля не только за относительными изменениями концентраций частиц и скоростей процессов, но и за их абсолютными величинами, что в ряде случаев представляет значительный интерес.

Основной сложностью при интерпретации результатов спектральных измерений является неоднозначная взаимосвязь измеряемых интенсивностей излучения и концентраций соответствующих частиц в основном состоянии. Целью данной работы являлось: 1) исследование спектров излучения ВЧ плазмы дифтордихлорметана при травлении меди, 2) точная идентификация излучательных состояний, 3) установление взаимосвязей между интенсивностями излучения и концентрациями соответствующих частиц.

## 2. МЕТОДИЧЕСКАЯ ЧАСТЬ

Эксперименты по исследованию спектров изучения плазмы дифтордихлорметана при травлении меди проводились на ICP установке планарного типа Платран 100ХТ. Данная установка предназначена для высокоскоростного плазмохимического и реактивно-ионного травления материалов, продукты реакций которых с плазмообразующими газами на основе хлора, брома и фтора образуют летучие соединения. Установка Платран 100ХТ имеет модульно-блоковую конструкцию и состоит из:

1) плазменного источника с индуктивным возбуждением плазмы "ИПМЗ-1000" и магнитной системой для повышения плотности и однородности плазмы "МАТСНРКОСРМХ-2500" (безэлектродный разряд с ВЧ индуктивным возбуждением плазмы, рабочая частота — 13.56 МГц, подводимая мощность 0—1250 Вт);

2) нагреваемого держателя пластин с механическим прижимом и возможностью подачи газообразного гелия под пластину для выравнивания радиального распределения температуры по пластине и улучшения теплового контакта последней с держателем (встроенный управляемый нагреватель (до 300°С), с развязанным контуром охлаждения);

3) вакуумной системы: турбомолекулярный (TMP-803LMTC SHIMADZU, производительность 800 л/с), форвакуумный (Leybold 25 BCS, производительность 30 м<sup>3</sup>/ч) насосы (предельного давления остаточных газов порядка ~ $10^{-6}$  Top), масляная ловушка, клапаны для форвакуумной откачки и контроля за рабочим давлением (баратрон с верхним пределом измерения 0.1 Top);

4) системы газо-напуска (4 независимых канала газо-напуска);

5) ВЧ генератора ENY ASG-3В с устройством согласования для подачи смещения на держатель пластины;

6) системы управления (автоматизированное управление основным технологическим процессом и вспомогательными операциями) "Блок контроллеров БК-50";

7) поршневого воздушного компрессора, (FUBAG), (сжатый воздух 4–6 атм, для работы пневмосистемы установки).

В качестве плазмообразующего газа в данной работе использовался дифтордихлорметан. Дифтордихлорметан брали из баллонов с маркой "чистый" (МРТУ 51–77–66), содержание основного газа не менее 99.985%. В качестве внешних (задаваемых) параметров плазмы выступали вкладываемая мощность (200–1250 Вт), потенциал смещения (0...–107 В), давление газа (1–10 мТор) и температура образца (20–300°С). В качестве обрабатываемого материала была выбрана медь. Образцы данного металла вырезались из медного листа марки М1М (12 × 600 × 1500). На выходе получались пластинки квадратной формы со стороной ~1 см (площадь образца ~1 см<sup>2</sup>). До помещения в реактор перед первым взвешиванием поверхность образцов очищалась от масленых, пылевых и жировых загрязнений в толуоле и ацетоне.

Эмиссионные измерения были реализованы непосредственно с использованием плазмохимического реактора с помощью спектрометров AvaSpec-2048-2 и AvaSpec-3648 с фотоэлектрической системой регистрации сигнала и накоплением данных на ЭВМ. Рабочий диапазон длин волн составлял 200-1000 нм. однако наибольшее внимание было уделено участку 200-500 нм, причиной такого выбора послужило наилучшее проявление излучающих компонентов плазмы в данном диапазоне. К торцевой части реактора, содержащей кварцевое стекло (пропускная способность до 200 нм), подволился световол. Он был закреплен на платформе, которая снабжена двумя микровинтами, позволяющими осуществлять вертикальную и горизонтальную наводку световода на ось разряда. Регистрация излучения осуществлялась обратно освещенным детектором с CCD матрицей (2048 элементов) с высокой чувствительностью в ультрафиолетовом (UV) лиапазоне ллин волн. Далее свет с детектора через оптоволоконный SMA коннектор поступал на спектрометр, а после на ПК. При расшифровке спектров излучения использовались справочники [6, 7].

## 3. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Исследования спектров излучения (рис. 1) ВЧ плазмы дифтордихлорметана при травлении меди показало, что плазма CF<sub>2</sub>Cl<sub>2</sub> является сложной многокомпонентной системой, стационарный состав которой определяется не только процессами диссоциации исходных молекул, но и реакциями атомно- и радикально-молекулярного взаимодействия продуктов диссоциации. Как видно из спектров при травлении меди в ВЧ разряде дифтордихлорметана в исследованных диапазонах условий происходит полное разложение исходной молекулы до атомарного углерода. Об этом свидетельствует не только излучение C, но и CCl. Так как доминирующим механизмом диссоциации молекулы CF<sub>2</sub>Cl<sub>2</sub> при электронном ударе являются процессы с отрывом атомов хлора, то образование радикалов CCI может быть обусловлено только реакциями вида  $C + Cl \rightarrow CCl$ , протекающими как в объеме плазмы, так и на поверхности разрядной камеры. Вышесказанное хорошо согласуется с литературными данными по плазмохимическому травле-



**Рис. 1.** Спектр излучения плазмы дифтордихлорметана при травлении меди от вкладываемой мощности (p = 1.4 мТор,  $\tau_{\text{трав}} = 180$  с,  $W_{\text{B}\text{H}} = 950$  Вт,  $U_{\text{CM}} = 107$  В) к статье.

нию в CF<sub>2</sub>Cl<sub>2</sub> [4, 5, 8, 9]. Наиболее интенсивными и стабильно проявляющимися во всем исследованном диапазоне параметров ВЧ разряда являются линии Cu (325.2, 327.7, 333.83, 353.08 нм), Cl (452.67 нм), C (247.9, 296.14 нм) и полоса CCl (277.78 нм). Продукты травления CuCl (433.32, 435.39 нм) нами были так же определены, однако их не удалось проанализировать вследствие слабой интенсивности. Полный список обнаруженных компонентов представлен в табл. 1.

Для дальнейшего анализа влияния времени и внешних параметров разряда на концентрации нейтральных частиц плазмы и кинетику процессов их образования и гибели для каждого сорта частиц необходимо выбрать аналитические линии, отвечающие следующим основным требованиям:

 высокая интенсивность и отсутствие перекрывания с соседними максимумами во всем исследованном диапазоне параметров разряда.

2) преимущественное возбуждение соответствующего излучающего состояния электронным ударом из основного состояния атома или молекулы и преимущественная спонтанная излучательная дезактивация возбужденного состояния. Первое условие обычно обеспечивается высокими пороговыми энергиями возбуждения, а второе малым временем жизни возбужденного состояния, исключающем передачу энергии от него другим частицам в ходе соударений.

Основываясь на результатах наших экспериментов [10, 11] можно сделать заключение, что обоим требованиям удовлетворяют атомарные линии Си (333.83, 353.08 нм), Cl (452.67 нм) и полоса CCl (277.78 нм). Фактически это означает, что для всех этих излучательных состояний заселенность возбужденного состояния и интенсивность излучения (I) пропорциональны скорости возбуждения  $R_{ex} = k_{ex}n_eN$ , где  $k_{ex}$  — константа скорости возбуждения,  $n_e$  — концентрация электронов, N — концентрация частиц в основном состоянии. Следовательно, изменение интенсивности излучения несет информацию об изменении концентрации невозбужденных частиц, представляющих основной интерес при анализе и оптимизации плазмохимических процессов с использованием газовых смесей на основе CF<sub>2</sub>Cl<sub>2</sub>.

На рис. 2 представлены экспериментальные данные по зависимостям интенсивностей излучения линий Cu (333.83, 353.08 нм), Cl (452.67 нм) и полосы CCl (277.78 нм) от времени травления меди. Можно заметить, что представленные интенсивности излучения практически не изменяются во всем исследованном диапазоне, что хорошо согласуется с характером зависимости скорости травления от времени процесса [10–12].

Из рис. За следует, что при напряжениях смещения -61 и -107 В интенсивности излучения линий меди возрастают с увеличением вкладываемой мощности. Это связано с тем, что с увеличением мощности, вкладываемой в разряд, растет концентрация электронов и, следовательно, скорость процессов диссоциации молекул дифтордихлорметана под действием электронного удара.

## МУРИН и др.

Таблица 1. Атомарные и молекулярные компоненты, обнаруженные в ВЧ плазме дифтордихлорметана

| Элемент | λ (нм) | $E_{\rm th}$ ( <b>9B</b> ) | Элемент | λ (нм) | $E_{\rm th}$ (9B) |
|---------|--------|----------------------------|---------|--------|-------------------|
| CuCl    | 433.32 | _                          | -       | 280.56 | 9.66              |
|         | 435.39 | _                          |         | 282.47 | 5.77              |
|         | 247.90 | 7.68                       |         | 282.94 | 9.35              |
|         | 258.16 | _                          |         | 284.06 | 10.08             |
|         | 290.47 | 13.11                      |         | 286.35 | 9.82              |
|         | 296.14 | 4.18                       |         | 287.54 | 9.46              |
|         | 296.69 | 4.18                       |         | 288.41 | 9.8               |
| С       | 462.15 | 2.68                       |         | 289.83 | 9.35              |
|         | 473.39 | 10.56                      |         | 290.15 | 9.76              |
|         | 474.06 | 10.56                      |         | 290.47 | 9.66              |
|         | 476.39 | 10.08                      |         | 291.10 | 9.65              |
|         | 476.93 | 10.08                      |         | 291.65 | 9.33              |
|         | 477.92 | 10.08                      |         | 292.04 | 9.66              |
|         | 204.66 | 7.44                       | Cu      | 292.36 | 9.66              |
|         | 205.9  | 7.66                       |         | 292.68 | 9.31              |
|         | 206.89 | 9.8                        |         | 293.23 | 9.3               |
|         | 207.88 | 7.34                       |         | 294.25 | 9.36              |
|         | 208.3  | 7.58                       |         | 301.09 | 5.5               |
|         | 209.62 | 7.55                       |         | 301.8  | 9.72              |
|         | 212.26 | 9.65                       |         | 302.11 | 9.17              |
|         | 217.89 | 5.68                       |         | 306.81 | 5.68              |
|         | 219.5  | 7.03                       |         | 309.93 | 8.83              |
|         | 224.10 | 5.52                       |         | 311.41 | 8.81              |
|         | 226.40 | 7.11                       |         | 313.79 | 9.52              |
|         | 229.51 | 6.79                       |         | 313.9  | 9.36              |
|         | 230.24 | 7.02                       |         | 324.21 | 8.92              |
|         | 234.82 | 9.06                       |         | 324.9  | 3.81              |
| Cu      | 239.70 | 6.82                       |         | 327.45 | 3.78              |
|         | 241.41 | 8.91                       |         | 327.99 | 5.42              |
|         | 241.65 | 8.94                       |         | 333.83 | 5.1               |
|         | 244.09 | 5.07                       |         | 334.9  | 8.94              |
|         | 249.76 | 4.97                       |         | 335.28 | 8.93              |
|         | 254.69 | 9.7                        |         | 336.53 | 8.78              |
|         | 255.26 | 9.95                       |         | 339.79 | 8.82              |
|         | 257.46 | 9.88                       |         | 344.06 | 5.24              |
|         | 260.41 | 9.73                       |         | 346.26 | 7.39              |
|         | 260.73 | 9.82                       |         | 346.72 | 9.35              |
|         | 261.78 | 6.12                       |         | 347.02 | 9.07              |
|         | 267.16 | 9.79                       |         | 353.08 | 5.15              |
|         | 268.84 | 9.71                       |         | 359.41 | 4.83              |
|         | 271.88 | 10.08                      |         | 360.31 | 8.83              |
|         | 274.67 | 9.66                       |         | 360.91 | 5.07              |

406

МИКРОЭЛЕКТРОНИКА том 51 № 6 2022

## Таблица 1. Окончание

| Элемент         | λ (IIM) | $E_{\rm c}$ (2B)  | Элемент | $\lambda$ (IIM) | $E_{\rm c}$ (aB)     |
|-----------------|---------|-------------------|---------|-----------------|----------------------|
| JUMEHT          | λ (HM)  | $L_{\rm th}$ (5D) | Элемент | λ (HM)          | $L_{\rm th}(\rm 3D)$ |
|                 | 361.89  | 8.9               | -       | 225.09          | 20.36                |
|                 | 363.16  | 8.9               |         | 243.28          | 21.05                |
|                 | 364.14  | 8.8               | Cl      | 250.49          | 20.91                |
|                 | 365.18  | 8.8               |         | 254.29          | 21.21                |
|                 | 367.05  | 9.05              |         | 265.87          | 19                   |
|                 | 367.65  | 8.93              |         | 299.52          | 19.85                |
|                 | 368.25  | 9.09              |         | 331.6           | 18.59                |
|                 | 370.56  | 8.91              |         | 332.83          | 20.06                |
|                 | 371.3   | 9.06              |         | 383.44          | 21.48                |
|                 | 372.04  | 4.97              |         | 414.73          | 11.98                |
|                 | 374.57  | 8.81              |         | 426.46          | 11.83                |
|                 | 375.94  | 8.8               |         | 432.33          | 11.85                |
|                 | 376.5   | 8.81              |         | 436.33          | 11.83                |
|                 | 377.09  | 9.06              |         | 437.90          | 11.82                |
|                 | 378     | 8.78              |         | 438.97          | 11.74                |
|                 | 378.35  | 8.42              |         | 439.04          | 11.85                |
|                 | 379.83  | 8.83              |         | 440.3           | 11.74                |
|                 | 380.05  | 8.83              |         | 443.84          | 11.71                |
|                 | 380.34  | 8.93              |         | 447.53          | 11.76                |
|                 | 381.52  | 8.82              |         | 452.62          | 11.94                |
| G               | 382.11  | 8.81              |         | 460.1           | 11.98                |
| Cu              | 397.92  | 8.8               |         | 462.39          | 11.96                |
|                 | 402.34  | 6.86              |         | 465.4           | 11.87                |
|                 | 406.32  | 6.87              |         | 466.12          | 11.94                |
|                 | 407.47  | 8.81              |         | 725.67          | 10.63                |
|                 | 408.04  | 8.81              |         | 741.41          | 10.59                |
|                 | 409.77  | 8.8               |         | 754.71          | 10.63                |
|                 | 412.07  | 8.78              |         | 771.76          | 10.59                |
|                 | 417.5   | 7.8               |         | 792.46          | 10.59                |
|                 | 424.88  | 7.99              |         | 808.67          | 11.96                |
|                 | 425.16  | 8.01              |         | 819.44          | 10.50                |
|                 | 427.49  | 7.74              |         | 821.2           | 10.43                |
|                 | 450.89  | 7.99              |         | 833.33          | 10.47                |
|                 | 453.08  | 6.55              |         | 837.59          | 10.40                |
|                 | 453.91  | 7.88              |         | 842.82          | 10.50                |
|                 | 458 55  | 7.88              |         | 857.52          | 10.47                |
|                 | 465.06  | 7 73              |         | 912.12          | 10.28                |
|                 | 467.42  | 7.8               |         | 919.12          | 10.34                |
|                 | 467.76  | 8.42              |         | 928.89          | 10.54                |
|                 | 469 71  | 7.88              |         | 939.39          | 10.31                |
|                 | 409.71  | 8 32              |         | 948.7           | 10.31                |
|                 | 470.11  | 7 73              |         | 040 7           | 10.34                |
|                 | 256 /   | 8 2               | - F     | 272.1           | 10.34                |
|                 | 230.4   |                   |         | 685.56          | 14.50                |
|                 | 2/1.4   | _                 |         | 690.25          | 14 53                |
| Cl <sub>2</sub> | 201.9   |                   |         | 703 74          | 14.75                |
|                 | 200.41  |                   |         | 277             | 14./3                |
|                 | 273.1   | —                 | CCl     | 277             |                      |
|                 | 300.42  | —                 |         | 2/8             | I —                  |



**Рис. 2.** Зависимости интенсивности излучения (*a*) линий Cu 333.83 нм (*1*, *3*, *5*) и Cu 353.08 нм (*2*, *4*, *6*) и (*б*) линии Cl 452.67 нм (*2*, *4*, *6*) и полосы CCl 277.78 нм (*1*, *3*, *5*) в плазме дифтордихлорметана при травлении меди от времени травления (p = 1.4 мТор,  $W_{Bq} = 950$  Вт).

Это приводит к росту концентрации активных частиц, в нашем случае преимущественно Cl (рис. 36), что в свою очередь способствует повышению скорости травления и соответственно росту концентрации частиц меди в плазме. При напряжении смещения 0 В интенсивности излучения линий меди практически не изменяются, что хорошо согласуется с данными работ [10, 11] и связано с недостатком энергии ионов (плавающий потенциал) для достижения эффективной скорости ионностимулированной десорбции продуктов взаимодействия и деструкции пассивирующей пленки. Во всем исследованном диапазоне значений смещения интенсивности излучения линии Cl и полосы CCl практически линейно возрастают с увеличением вкладываемой мощности (рис. 36).

Из рис. 4*а* видно, что при напряжениях смещения -61 и -107 В интенсивности излучения ли-



**Рис. 3.** Зависимости интенсивностей излучения (*a*) линий Cu 333.83 нм (*1*, *3*, *5*) и Cu 353.08 нм (*2*, *4*, *6*) и (*b*) линии Cl 452.67 нм (*2*, *4*, *6*) и полосы CCl 277.78 нм (*1*, *3*, *5*) в плазме дифтордихлорметана при травлении меди от мощности разряда (p = 1.4 MTop,  $\tau_{\text{грав}} = 180 \text{ c}$ ).

ний Cu 333.83 нм сначала возрастают с увеличением давление газа до 2.8 мТор. Такое поведение зависимостей в исследуемом диапазоне можно объяснить увеличением концентрации активных частиц в плазме и, следовательно, увеличением скорости травления. Однако при дальнейшем увеличении давления газа и концентрации активных частиц (Cl) повышается вероятность рекомбинации последних, в частности через образование молекул CCl (и предположительно CuCl), интенсивность излучения которых возрастает во всем диапазоне давлений. При этом зависимости интенсивности излучения как линий Cl, так и линий Cu 333.83 нм стремятся к насыщению, что хорошо согласуется с характером зависимостей скорости травления в наших работах [10, 11]. В отличие от линий Cu 333.83 нм, интенсивности излучения Cu 353.08 нм при данных напряжениях смещения

МИКРОЭЛЕКТРОНИКА том 51 № 6 2022



**Рис. 4.** Зависимости интенсивности излучения (*a*) линий Си 333.83 нм (*1*, *3*, *5*) и Си 353.08 нм (*2*, *4*, *6*) и (*б*) линии Cl 452.67 нм (*2*, *4*, *6*) и полосы CCl 277.78 нм (*1*, *3*, *5*) в плазме дифтордихлорметана при травлении меди от давления газа ( $W_{\rm rf}$  = 950 Вт,  $\tau_{\rm трав}$  = 180 с). Д.Б. Мурин, С.А. Пивоваренок, А.В. Дунаев, И.А. Чесноков, И.А. Гогулев.

возрастают незначительно. При отсутствии смещения на подложкодержателе с ростом давления газа интенсивности излучения линий меди быстро снижаются, что подтверждает ранее высказанное предположение о доминировании процессов ионно-стимулированной десорбции продуктов травления и/или разрушения пассивирующей пленки при данном режиме травления. Поведение зависимостей интенсивности линии Cl и полосы CCl при этом аналогично ситуациям при напряжениях смещения -61 и -107 В (рис. 46).

### ЗАКЛЮЧЕНИЕ

С помощью метода оптической эмиссионной спектроскопии получены и проанализированы

спектры излучения плазмы высокочастотного разряда дифтордихлорметана при травлении меди. Установлено, что при травлении меди в ВЧ разряде дифтордихлорметана в исследованных диапазонах условий происходит полное разложение исходной молекулы до атомарного углерода. Показано, что излучение плазмы ВЧ разряда представлено атомарными и молекулярными компонентами, предположено, что зависимости интенсивностей линий и полос от внешних условий разряда определяются возбуждением излучающих состояний при прямых электронных ударах. При этом их поведение хорошо согласуется с характером зависимостей скорости травления при тех же условиях.

Работа выполнена в рамках государственного задания на выполнение НИР. Тема № FZZW-2020-0009.

Исследование проведено с использованием ресурсов Центра коллективного пользования научным оборудованием ИГХТУ (при поддержке Минобрнауки России, соглашение № 075-15-2021-671).

## СПИСОК ЛИТЕРАТУРЫ

- 1. Галперин В.А., Данилкин Е.В., Мочалов А.И. Процессы плазменного травления в микро- и нанотехнологиях / Под ред. Тимошенкова С.П. М.: БИНОМ, 2018. 283 с.
- 2. Данилин Б.С., Киреев В.Ю. Применение низкотемпературной плазмы для травления и очистки материалов / Под ред. Данилин Б.С. М.: Энергоатомиздат, 1987. 264 с.

- 3. *Glauco F. Bauerfeldt, Graciela Arbilla //* J. Braz. Chem. Soc. 2000. V. 11. № 2. P. 121.
- 4. *Пивоваренок С.А., Дунаев А.В., Мурин Д.Б.* Кинетика взаимодействия высокочастотного разряда CCl<sub>2</sub>F<sub>2</sub> с арсенидом галлия // Микроэлектроника. 2016. Т. 45. № 5. С. 374–378.
- 5. *Пивоваренок С.А., Бакшина П.И*. Влияние состава смеси на электрофизические параметры и спектры излучения плазмы дифтордихлорметана с кислородом и гелием // Химия высоких энергий. 2021. Т. 55. № 3. С. 231–236.
- 6. *Пирс Р., Гейдон А.* Отождествление молекулярных спектров. М.: Изд. иностр. лит, 1949. 540 с.
- 7. Свентицкий А.Р., Стриганов Н.С. Таблицы спектральных линий нейтральных и ионизованных атомов. М.: Атомиздат, 1966. 900 с.
- Yotsombat B., Davydov S., Poolcharuansin P., Vilaithong T. Optical emission spectra of a copper plasma produced by a metal vapour vacuum arc plasma source // Phys. D: Appl. Phys. 2001. V. 34. P. 1928.
- 9. *Пивоваренок С.А.* Влияние добавок Ar и He на кинетику травления GaAs в плазме CF<sub>2</sub>Cl<sub>2</sub> // Микроэлектроника. 2017. Т. 46. № 3. С. 231–235.
- 10. *Мурин Д.Б., Дунаев А.В.* Структурирование меди в плазменной среде ВЧ-разряда // Микроэлектроника. 2018. Т. 47. № 4. С. 16–20.
- Мурин Д.Б., Дунаев А.В. Кинетика травления меди в ВЧ-разряде фреона R-12 // Микроэлектроника. 2017. Т. 46. № 4. С. 284–289.
- 12. *Пивоваренок С.А., Мурин Д.Б.* Кинетика травления кремния в плазме трифторметана // Химия высоких энергий. 2022. Т. 56. № 3. С. 223–226.