—— ТЕХНОЛОГИЯ —

УЛК 537.525

О ВЛИЯНИИ СОСТАВА СМЕСИ Cl₂ + O₂ + Ar НА КОНЦЕНТРАЦИИ АТОМОВ ХЛОРА И КИСЛОРОДА В ПЛАЗМЕ

© 2022 г. И. И. Амиров^{1, *}, М. О. Изюмов¹, А. М. Ефремов^{1, 2, **}

¹ ЯФ ФТИАН им. К.А. Валиева РАН, ул. Университетская, 21, Ярославль, Россия ²ФГБОУ ВО "Ивановский государственный химико-технологический

университет", Шереметевский просп., 7, Иваново, Россия

*E-mail: ildamirov@vandex.ru **E-mail: amefremov@vandex.ru Поступила в редакцию 17.05.2022 г. После доработки 12.07.2022 г. Принята к публикации 12.07.2022 г.

Исследовано влияние начального состава смеси Cl₂ + O₂ + Ar на электрофизические параметры плазмы и стационарные концентрации атомарных частиц в условиях индукционного ВЧ (13.56 МГц) разряда методом оптической эмиссионной спектроскопии. Показано, что варьирование соотношения O_2/Ar при постоянном содержании Cl_2 в плазмообразующем газе не приводит к существенным возмущениям параметров электронной компоненты плазмы, при этом слабое изменение концентрации атомов хлора предположительно определяется кинетикой гетерогенных и объемных атомно-молекулярных процессов. Напротив, замещение Cl₂ на Ar при постоянном содержании O₂ сопровождается ростом эффективности процессов при электронном ударе, который обуславливает заметный рост концентрации атомов кислорода. Таким образом, второй режим смешения газов обеспечивает более широкие диапазоны регулирования, как абсолютных концентраций атомов, так и отношения этих величин.

Ключевые слова: плазма, травление, оптическая эмиссионная спектроскопия, смесь, кислород, хлор, аргон, концентрация, атомно-молекулярные процессы DOI: 10.31857/S054412692270017X

1. ВВЕЛЕНИЕ

Плазма галогенсодержащих газов активно используется в технологии микро- и нано-электроники для размерного травления (структурирования) функциональных слоев различной природы [1, 2]. В частности, в процессах реактивно-ионного травления соединений кремния традиционно применяется плазма фторсодержащих газов, при этом широкая номенклатура прекурсоров вида С_кН_иF_z позволяет эффективно оптимизировать скорость травления, анизотропию и селективность по отношению к маскирующему покрытию [2-4]. В то же время, общей проблемой таких процессов является близкий к изотропному профиль травления самого кремния из-за его спонтанного взаимодействия с атомами фтора [1, 4]. Решением этой проблемы может служить использование плазмообразующих сред на основе хлорсодержащих газов, в частности – смесей на основе Cl₂. Анализ имеющихся работ по кинетике травления кремния в хлорсодержащей плазме [1, 3, 5-12] позволяет заключить, что:

- Гетерогенная реакция Si + xCl \rightarrow SiCl_x протекает по ионно-стимулированному механизму, при этом продуктами взаимодействия являются ненасыщенные (x = 1, 2) хлориды, обладающие низкой летучестью. Поэтому характерные значения скоростей травления кремния (~50 нм/мин) заметно ниже по сравнению с фторсодержащей плазмой (~200 нм/мин).

- Добавка кислорода к Cl₂ приводит к снижению скорости травления и вероятности взаимодействия, но сопровождается увеличением анизотропии процесса. Предполагается, что изменение вероятности взаимодействия обусловлено а) конкурентной адсорбцией атомов кислорода, приводящей, в том числе, к окислению атомов кремния; и б) образованием низколетучих соединений вида SiCl_xO_y [9–11]. Соответственно, последние обладают хорошей маскирующей способностью по отношению к боковым стенкам формируемого рельефа.

Еще одной важной областью применения плазмы смесей хлора с кислородом является травление металлов, образующих летучие или легко распыляемые оксихлоридные соединения. В частности, к таким металлам относятся хром и рутений [13, 14]. Первый нашел широкое применение в качестве согласующих слоев при формировании межэлементных соединений и материала масок для проекционной литографии [13], а второй является перспективным материалом затвора и дорожек металлизации [14].

Очевидно, что достижение оптимального результата травления во всех рассмотренных случаях требует целенаправленного контроля баланса травление/окисление через концентрации соответствующих активных частиц - атомов хлора и кислорода. Это обуславливает необходимость теоретических и экспериментальных исследований соответствующих плазменных систем для установления взаимосвязей межлу внешними (залаваемыми) параметрами плазмы и ее стационарным составом. Ранее в работах [15, 16] было показано, что варьирование начального состава трехкомпонентных смесей $CF_4 + O_2 + Ar$ и $C_4F_8 + O_2 + Ar$ в различных режимах смешения газов (переменное соотношение пары компонентов при постоянном содержании третьего) обеспечивает широкие диапазоны регулирования электрофизических параметров плазмы и концентраций активных частиц. К сожалению, исследования такого рода для смеси Cl₂ + O₂ + Ar крайне малочисленны. Так, например, в работе [17] показано, что варьирование соотношения Cl₂/O₂ при постоянном содержании аргона вызывает пропорциональное изменение концентраций соответствующих атомных компонентов, при этом хорошее согласие результатов эксперимента и моделирования плазмы имеет место лишь для атомов кислорода.

Целью данной работы являлось исследование влияния начального состава смеси $Cl_2 + O_2 + Ar$ на концентрации атомов хлора и кислорода. Выбранные режимы смешения газов предусматривали варьирование соотношения молекулярного и атомарного компонентов при постоянном содержании второго молекулярного компонента. По нашему мнению, данные режимы способствует выявлению фундаментальных взаимосвязей между кинетикой атомов, обусловленных их совместным участием в объемных и гетерогенных плазмохимических реакциях.

2. МЕТОДИЧЕСКАЯ ЧАСТЬ

2.1. Оборудование и условия эксперимента

Эксперименты проводились в двухкамерном плазмохимическом реакторе, конструкция которого подробно описана в работе [18]. Плазма индукционного ВЧ (13.56 МГц) разряда генерировалась в разрядной камере, расположенной над цилиндрической рабочей камерой диаметром 22 см и высотой 30 см. В нижней части рабочей камеры располагался плоский металлический электрод, допускающий подачу отрицательного смещения от независимого источника. В экспериментах по

травлению он выступает в качестве держателя образцов. В качестве постоянных внешних параметров плазмы выступали общий расход плазмообразующего газа (q = 55 станд. см³/мин), его рабочее давление (p = 4.5 мтор, или 0.6 Па) и вкладываемая мощность (W = 800 Bt), что соответствовало удельной мощности $W' \sim 0.08 \text{ Br/см}^3$. Варьируемым параметром являлся начальный состав смеси $Cl_2 + O_2 + Ar$, который задавался переменными соотношениями концентраций двух компонентов при постоянном содержании третьего. Первая серия экспериментов была выполнена в условиях постоянно расхода хлора $q_{\rm Cl_2} = 24$ станд. см³/мин, при этом расход аргона варьировали в диапазоне 2.8–19.3 станд. см³/мин за счет пропорционального снижения q_{0} . Соответственно, доля хлора в плазмообразующем газе $y_{Cl_2} = q_{Cl_2}/q$ всегда составляла 43.6%, а увеличение содержания аргона $y_{\rm Ar}$ в диапазоне 5–35% обеспечивалось за счет замещения кислорода в рамках $y_{O_2} + y_{Ar} = 56.4\%$. Во второй серии экспериментов на аналогичном постоянном уровне поддерживался расход (а, следовательно, и содержание) кислорода, при этом увеличение у_{Аг} в диапазоне 5-35% сопровождалось пропорциональным снижением y_{Cl_2} при $y_{Cl_2} + y_{Ar} = 56.4\%$. Таким образом, оба исследованных режима смешения газов предусматривали постоянное содержание одного из молекулярных компонентов при нарастающем замещении второго на инертный газ в условиях p, q = const.

2.2. Оптико-спектральная диагностика плазмы

Спектры излучения плазмы контролировали при помощи акустооптического спектрометра "Кварц-2000" в области 740-820 нм с разрешением 0.07 нм. Отбор излучения проводился из зоны, находящейся на расстоянии 1.5 см от поверхности нижнего электрода. Эксперименты показали, что в исследованном диапазоне длин волн спектр излучения плазмы смеси Cl₂ + O₂ + Ar характеризуется набором интенсивных атомарных линий (рис. 1), которые надежно идентифицируются по справочным данным [19]. Для получения информации по концентрациям атомов хлора и кислорода использовался метод внутренней (собственной) актинометрии [20]. Идея данного подхода заключается в том, что присутствие в смеси аргона с заведомо известной концентрацией позволяет отказаться от использования дополнительного газа-актинометра. В расчетах использовались интенсивности аналитических линий Ar I 750.4 нм, О I 777.2 нм и Cl I 754.7 нм (пороговые энергии возбуждения 13.5 эВ [19, 21], 10.7 эВ [19, 21] и 10.6 эВ [19, 22], соответственно), характеризующихся низкими временами жизни возбужденных состояний и пренебрежимо малым вкладом не излучатель-

Рис. 1. Спектр излучения плазмы смеси Cl₂ + O₂ + Ar в области 740–820 нм при 9.3% Ar и равных концентрациях молекулярных компонентов: 1 – Cl I 741.4 нм; 2 – Ar I 750.4 нм; 3 – Cl I 754.4 нм; 4 – Ar I 772.4 нм; 5 – Cl I 770.3 нм; 6 – Cl I 774.5 нм; 7 – O I 777.4 нм; 8 Cl I – 808.7 нм; 9 – Ar I 811.5 нм.

ных механизмов в суммарную скорость релаксации [20]. Обработка спектральных данных базировалась на следующих допущениях:

1) Функция распределения электронов по энергиям (ФРЭЭ) в условиях высоких степеней ионизации газа ($n_+/N > 10^{-4}$ при W' ~ 0.1 Вт/см³ [4, 17, 23], где n_+ — суммарная концентрация положительных ионов, а $N = p/k_B T_{gas}$ — общая концентрация частиц газа) формируется при существенном вкладе равновесных электрон-электронных соударений. Это обуславливает применимость максвелловской ФРЭЭ при расчете констант скоростей возбуждения (рис. 1*a*) по известным сечениям процессов [22, 24].

2) Варьирование начального состава смеси $Cl_2 + O_2 + Ar$ не оказывает принципиального влияния на среднюю энергию (температуру) электронов в плазме. Как следует из данных работ [17, 25–29], сочетание p < 1 Па и $W' \sim 0.1$ Вт/см³ в плазме $Cl_2 + Ar$ и $O_2 + Ar$ обеспечивает концентрации заряженных частиц $n_+ \approx n_e > 10^{10}$ см⁻³. Такие условия способствуют достижению высоких степеней диссоциации молекул Cl_2 и O_2 , что обуславливает доминирование атомарных компонентов в газовой фазе [26–28]. Поэтому логично предположить, что замещение одного атомарного компонента на другой (Cl на Ar в условиях $y_{O_2} =$ сопst или O на Ar в условиях $y_{Cl_2} =$ const) не сопровождается заметной деформацией ФРЭЭ.

3) Высокие степени диссоциации молекул Cl₂ и O₂ позволяют пренебречь вкладом процессов диссоциативного возбуждения атомов в интегральные интенсивности излучения, измеряемые в эксперименте. Ранее в работах [29–31] отмечалось, что диссоциативное возбуждение по механизму R1: Cl₂ + е \rightarrow Cl + Cl^{*} + е является основной проблемой при реализации актинометрической методики с использованием линий атомарного хлора в области 700–800 нм. Тем не менее, очевидно, что при $n_{\text{Cl}_2} \ll n_{\text{Cl}}$ (как это, например, следует из работ [25–27], выполненных при аналогичных или даже меньших уровнях удельной мощности, вкладываемой в плазму) основным каналом образования возбужденных атомов остается R2: Cl + е \rightarrow Cl^{*} + е. Подтверждением этому служит удовлетворительное согласие концентраций атомов хлора, измеренных методами актинометрии (с использованием аналитической пары Ar 750.4 нм/Cl 725.6 нм) и масс-спектроскопии [14].

Очевидно также, что при заведомо неизвестной температуре газа $T_{\rm gas}$ оперирование абсолютными концентрациями атомов не имеет смысла из-за их высокой неопределенности. Поэтому для расчетов было использовано соотношение вида

$$\frac{n_X}{N} = y_{\rm Ar} C_{\rm Ar}^X \frac{I_X}{I_{\rm Ar}}$$

в котором левая часть представляет относительную концентрацию (мольную долю) атомов хлора (x = Cl) или кислорода (x = O). Актинометрический коэффициент C_{Ar}^{X} находили как отношение констант возбуждения и вероятностей соответствующих оптических переходов, которые хорошо известны по литературным данным [20, 32]. При расчете констант скоростей использовали характерное значение температуры электронов $T_e = 3$ эВ [23, 24]. Из рис. 2*a*, *б* можно видеть, что параметры $k_{Ar}/k_O = f(T_e)$ и $k_{Ar}/k_Cl = f(T_e)$ не яв-

Рис. 2. Параметры, отражающие влияние начального состава смеси $Cl_2 + O_2 + Ar$ на условия возбуждения излучающих состояний атомов: (*a*) константы скоростей возбуждения Ar I 750.4 нм, O 777.4 нм и Cl I 750.4 нм; (*б*) отношения констант скоростей k_{Ar}/k_O и k_{Ar}/k_{Cl} , характеризующие зависимость актинометрического коэффициента C_{Ar}^X от температуры электронов; (*в*) интенсивность излучения линии Ar I 750.4 нм в условиях $y_{Cl_2} = \text{const}(I)$ и $y_{O_2} = \text{const}(2)$; (*c*) отношение I_{Ar}/y_{Ar} , характеризующее изменение функции возбуждения в условиях $y_{Cl_2} = \text{const}(I)$ и $y_{O_2} = \text{const}(2)$.

ляются постоянными величинами, при этом погрешность определения как C_{Ar}^{X} , так и относительных концентраций атомов n_X/N при неопределенности температуры электронов ±1 эВ может достигать 20%. Таким образом, основной предмет обсуждения могут составлять лишь тенденции получаемых зависимостей, а также отношение концентраций n_{Cl}/n_0 из-за одинаковой погрешности определения величин в числителе и знаменателе дроби.

3. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Известно, что основными каналами образования активных частиц в условиях неравновесной низкотемпературной плазмы являются процессы под действием электронного удара [4]. Поэтому необходимым этапом анализа кинетики плазмохимических процессов в многокомпонентных смесях является выявление эффектов начального состава смеси на параметры электронной компоненты плазмы.

По нашему мнению, в отсутствии данных зондовой диагностики плазмы, совокупный эффект изменения параметров ее электронной компоненты при варьировании начального состава смеси может быть оценен по характеру зависимости $I_{\rm Ar} = f(y_{\rm Ar})$. В частности, слабые изменения функции возбуждения в условиях постоянства температуры и концентрации электронов обеспечивают ситуацию, когда интенсивность излучения зависит только от концентрации излучающих частиц. Очевидно, что при этом должно выполняться условие $I_{\rm Ar}/y_{\rm Ar} \approx$ const. В противном случае, характер зависимости $I_{\rm Ar}/y_{\rm Ar} = f(y_{\rm Ar})$ однозначно указывает на непостоянство условий возбуждения и мо-

жет быть качественно ассоциирован с определенными изменениями электрофизических параметров плазмы. Эксперименты показали, что варьирование соотношения O_2/Ar при $y_{Cl_2} = const$ приводит к линейному росту интенсивности излучения линии Ar 750 нм (рис. 2*в*), при этом зависимость отношения $I_{\rm Ar}/y_{\rm Ar}$ от содержания аргона в смеси практически отсутствует (рис. 2г). Последний факт явно указывает на постоянство функции возбуждения, и, следовательно, на малые возмущения параметров электронной компоненты плазмы. Действительно, ранее в работах [17, 23, 29, 33] было показано, что абсолютные значения температуры электронов в плазме Ar и О2 достаточно близки, при этом различие соответствующих величин снижается с ростом отношения n_0/n_0 . Таким образом, можно с достаточной степенью уверенности полагать, что высокие степени диссоциации молекул кислорода способствуют выполнению условия $T_e \approx \text{const.}$ Аналогичный вывод может быть сделан и относительно концентрации электронов по причине малых изменений эффективной частоты ионизации при изменении типа доминирующих нейтральных частиц. Такой ситуации способствуют а) отсутствие принципиальных различий констант скоростей R3: O + e \rightarrow O⁺ + 2e ($k_3 \sim 2.1 \times 10^{-10}$ см³/с при $T_e =$ = 3 эВ) и R4: Ar + e \rightarrow Ar⁺ + 2e ($k_4 \sim 2.4 \times 10^{-10}$ см³/с при $T_e = 3 \text{ эВ}$) [17, 23]; и б) вклад со стороны метастабильных атомов кислорода по R5: $O(^{1}D) + e \rightarrow$ \rightarrow O⁺ + 2e ($k_5 \sim 4.1 \times 10^{-10} \, \mathrm{сm^3/c}$ при $T_e = 3 \, \mathrm{эB}$), что в результате обеспечивает $k_3 n_0 + k_5 n_{0(^1D)} \approx k_4 n_{Ar}$. Напротив, варьирование соотношения Cl₂/Ar при y_{O_2} = const сопровождается более быстрым ростом интенсивности излучения линии Ar 750 нм (рис. 2в), что приводит к увеличению отношения $I_{\rm Ar}/y_{\rm Ar}$ в ~ 1.5 раза при 5–35% Ar (рис. 2*г*). Фактически это означает, что изменение параметров электронной компоненты плазмы при варьировании начального состава смеси способствует увеличению эффективности всех процессов под действием электронного удара. В условиях высоких степеней диссоциации молекул Cl₂ [25-27, 30] можно полагать, что наблюдаемый эффект в основном обеспечивается изменением концентрации электронов. В частности, растущие зависимости $n_e = f(y_{Ar})$ регулярно наблюдались в работах по исследованию плазмы бинарных смесей Cl₂ + Ar [25, 27]. Причиной здесь является совместное действие двух факторов: а) увеличением суммарной частоты и скорости ионизации; и б) снижением эффективности объемной гибели электронов по R6: $Cl_2 + e \rightarrow Cl + Cl^-$ [27]. Таким образом, можно ожидать, что для обоих режимов смешения газов будет справедливо условие $C_{\rm Ar}^X \approx {\rm const.}$

МИКРОЭЛЕКТРОНИКА том 51 № 6 2022

Кинетика плазмохимических процессов в смесях и $Cl_2 + O_2$ и $Cl_2 + O_2 + Ar$ подробно рассматривалась в работах [12, 17, 23, 28, 29] при комбинировании методов экспериментального исследования и моделирования плазмы. По результатам этих работ а) сформированы кинетические схемы, обеспечивающие адекватное описание электрофизических параметров и состава газовой фазы; б) выявлены ключевые реакции, определяющие кинетику атомов хлора и кислорода; и в) проведен анализ влияния состава смесей и условий возбуждения разряда на поведение концентраций активных частиц с точки зрения баланса скоростей процессов их образования и гибели. Соответственно, именно эти результаты и будут взяты за основу при интерпретации наших экспериментальных данных.

На рис. 3 представлены данные по влиянию начального состава смеси на интенсивности излучения и относительные концентрации (мольные доли) атомов хлора и кислорода. Можно видеть, что варьирование отношения O_2/Ar в сторону увеличения y_{Ar} сопровождается более медленным снижением величины n_0/N (в ~1.8 раза при 5-35% Ar) и слабым ростом n_{Cl}/N (в ~1.1 раза при 5— 35% Ar) (рис. 36). Из рассмотренных выше данных ясно, что эти эффекты не связаны с кинетикой процессов под действием электронного удара, но могут являться следствием изменения баланса скоростей атомно-молекулярных газофазных процессов и/или гетерогенной рекомбинации атомов. Основываясь на данных работ [17, 23, 28], можно предположить, что замещение кислорода на аргон снижает эффективность реакции R7: $Cl_2 + O/O(^1D) \rightarrow ClO + Cl$ $(k_7 \sim 3.0 \times 10^{-13} / 3.6 \times 10^{-11} \text{ см}^3/\text{с})$, при этом возрастает вклад гетерогенного процесса R8: $O + O \rightarrow$ \rightarrow O₂ в общую скорость гибели атомов кислорода. Это приводит к тому, что величина n₀, в плазме снижается медленнее по сравнению с *у*_О, в плазмообразующем газе, при этом реакция $R9: O_2 + e \rightarrow 2O + e$ трансформирует данный эффект на концентрацию атомов кислорода. Очевидно также, что еще одним последствием снижения эффективности R7 может служить рост концентрации молекул хлора в условиях $y_{Cl_2} = \text{const.}$ Это приводит к росту скорости R10: Cl₂ + e \rightarrow 2Cl + + е и, как следствие, к увеличению концентрации атомов хлора. Относительно слабое изменение величины $n_{\rm Cl}/N$ ожидаемо следует из условия $n_{\rm Cl} > n_{\rm Cl_2}$ [25, 27] но, вероятно, также обусловлено снижением скоростей R11: ClO + $e \rightarrow Cl + O + e$ и R12: ClO + O \rightarrow Cl + O₂ ($k_{12} \sim 7.0 \times 10^{-11} \text{ cm}^3/\text{c}$).

Увеличение доли аргона в паре Cl_2/Ar сопровождается практически пропорциональным снижением концентрации атомов хлора (в ~2.1 раза

Рис. 3. Интенсивности излучения (*a*, *в*) и относительные концентрации (*б*, *г*) атомов хлора и кислорода в условиях $y_{Cl_2} = \text{const}(a, \delta)$ и $y_{O_2} = \text{const}(e, r)$.

при 5-35% Аг) и оказывает заметный эффект на концентрацию атомов кислорода (рис. 3г). Из анализа данных работ [17, 28] однозначно следует, что изменение величины $n_{\rm Cl}/N$ не может быть связано с кинетикой реакции R13: $O_2 + Cl \rightarrow ClO + O$, которая характеризуется крайне малым значением константы скорости при характерных температурах газа ($k_{13} < 10^{-30}$ см³/с при $T_{gas} = 600$ К [34]). Поэтому чуть более медленное изменение n_{Cl}/N по сравнению с уСІ, является, скорее всего, следствием роста эффективности R10 из-за увеличения концентрации электронов. Очевидно, что аналогичный механизм работает и для R8, при этом имеет место снижение частоты гибели атомов кислорода в реакции R7. Оба этих фактора и обуславливают увеличение n_0/N в условиях y_{O_2} = const. Характерной особенностью данного режима смешения газов является более существенное различие концентрацией атомов хлора и кислорода в крайней точке исследованного диапазоне состава смеси, при 35% Ar. Таким образом, замещение хлора на аргон обеспечивает более широкий диапазон регулирования как абсолютных концентраций атомов, так и отношения этих величин. Отметим, что представленные данные по относительным концентрациям атомов могут уверенно рассматриваться лишь в качественном аспекте из-за ряда допущений, использованных при реализации актинометрической методики (см. раздел. 2.2). В то же время, они обладают несомненной новизной по сравнению с результатами предшествующих исследований, а также допускают логичное объяснение с использованием известных особенностей кинетики плазмохимических процессов в смесях хлора с кислородом. Последнее является косвенным свидетельством того, что наблюдаемые изменения величин $n_{\rm X}/N$ адекватно отражают реальную ситуацию в исследуемой плазмохимической системе. Очевидно, что дальнейшие развитие исследований в этом плане предполагает изучение эффектов начального состава смеси на электрофизические параметры плазмы (для корректной "привязки"

констант скоростей возбуждения и актинометрического коэффициента к конкретным условиям процесса), а также модельный анализ кинетики атомов, обеспечивающий сравнение результатов расчета с экспериментом.

ЗАКЛЮЧЕНИЕ

Проведено исследование влияния начального состава смеси $Cl_2 + O_2 + Ar$ на электрофизические параметры плазмы и стационарные концентрации атомарных частиц. Выбранные режимы смешения газов предусматривали варьирование соотношений O_2/Ar и Cl_2/Ar при постоянном содержании второго молекулярного компонента. Показано, что замещение O₂ на Ar в плазмообразующем газе не приволит к существенным возмущениям параметров электронной компоненты плазмы, при этом слабый рост концентрации атомов хлора предположительно связан с кинетикой гетерогенных и объемных атомно-молекулярных процессов. По нашему мнению, основным механизмом здесь является рост эффективной скорости генерации атомов за счет перераспределения вкладов $Cl_2 + e \rightarrow 2Cl + e$ и $ClO + e \rightarrow Cl + O + e$. Напротив, замещение Cl₂ на Ar увеличивает эффективность процессов при электронном ударе (в основном, за счет изменения концентрации электронов) и сопровождается заметным ростом концентрации атомов кислорода за счет $O_2 + e \rightarrow 2O + e$. Установлено, что варьирование соотношения Cl₂/Ar обеспечивает более широкие диапазоны регулирования, как абсолютных концентраций атомов, так и отношения этих величин.

БЛАГОДАРНОСТИ

Работа выполнена в рамках Государственного задания ФТИАН им. К.А. Валиева РАН Министерства науки и высшего образования РФ по теме № FFNN-2022-0017.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Nojiri K*. Dry etching technology for semiconductors, Tokyo: Springer International Publishing, 2015. p. 116.
- 2. Roosmalen J., Baggerman J.A.G., Brader S.J. Dry etching for VLSI, New-York: Plenum Press, 1991.
- 3. *Rooth J.R.* Industrial plasma engineering. Volume 2: Applications to Nonthermal Plasma Processing, Bristol: IOP Publishing Ltd. 2001.
- 4. *Lieberman M.A., Lichtenberg A.J.* Principles of plasma discharges and materials processing. New York: John Wiley & Sons Inc., 1994. p. 757.

МИКРОЭЛЕКТРОНИКА том 51 № 6 2022

- Vitale S., Chae H., Sawin H.H. Silicon etching yields in F₂, Cl₂, Br₂, and HBr high density plasmas // J. Vac. Sci. Technol. A. 2001. V. 19(5). pp. 2197–2206.
- Lee C., Graves D.B., Lieberman M.A. Role of etch products in polysilicon etching in a high-density chlorine discharge. // Plasma Chem. Plasma Process. 1996. V. 16. pp. 99–118.
- Chuang M.C., Coburn J.W. Molecular-Beam Study of Gas-Surface Chemistry in the Ion-Assisted Etching of Silicon with Atomic and Molecular-Hydrogen and Chlorine // J. Vac. Sci. Technol. A. 1990. V. 8(3). pp. 1969–1976.
- Jin W., Vitale S.A., Sawin H.H., Plasma-surface kinetics and simulation of feature profile evolution in Cl₂ + HBr etching of polysilicon // J. Vac. Sci. Technol. A. 2002. V. 20. pp. 2106–2114.
- Tinck S., Boullart W., Bogaerts A. Modeling Cl₂/O₂/Ar inductively coupled plasmas used for silicon etching: effects of SiO₂ chamber wall coating // Plasma Sources Sci. Technol. 2011. V. 20. pp. 045012.
- Lee B.J., Efremov A., Kim J., Kim C., Kwon K.-H. Peculiarities of Si and SiO₂ Etching Kinetics in HBr + Cl₂ + O₂ Inductively Coupled Plasma, Plasma Chem. Plasma Process // 2019. V. 39(1). pp. 339–358.
- Lee B.J., Efremov A., Nam Y., and Kwon K.-H., On the Control of Plasma Chemistry and Silicon Etching Kinetics in Ternary HBr + Cl₂ + O₂ Gas System: Effects of HBr/O₂ and Cl₂/O₂ Mixing Ratios // Sci. Advanced Mater. 2020. V. 12. pp. 628–640.
- Lim N., Efremov A., Kwon K.-H. Comparative Study of Cl₂ + O₂ and HBr + O₂ Plasma Chemistries in Respect to Silicon Reactive-Ion Etching Process // Vacuum. 2021. V. 186. pp. 110043(1–10).
- Nakata H., Nishioka K., Abe H. Plasma etching characteristics of chromium film and its novel etching mode // J. Vac. Sci. Technol. 1980. V. 17, pp. 1351–1357.
- Hsu C.C., Coburn J.W., Graves D.B. Etching of ruthenium coatings in O₂- and Cl₂-containing plasmas // J. Vac. Sci. Technol. A. 2006. V. 24(1). pp. 1–8.
- Efremov A.M., Kwon K.-H. Kinetics of Reactive Ion Etching of Si, SiO₂, and Si₃N₄ in C₄F₈ + O₂ + Ar Plasma: Effect of the C₄F₈/O₂ Mixing Ratio // Russian Microelectronics. 2021. V. 50 (2). pp. 92–101.
- Efremov A.M., Murin D.B., Kwon K.-H. Special Aspects of the Kinetics of Reactive Ion Etching of SiO₂ in Fluorine-, Chlorine-, and Bromine-Containing Plasma // Russian Microelectronics. 2020. V. 49 (4). pp. 233–244.
- Hsu C.C., Nierode M.A., Coburn J.W., Graves D.B. Comparison of model and experiment for Ar, Ar/O₂ and Ar/O₂/Cl₂ inductively coupled plasmas // J. Phys. D: Appl. Phys. 2006. V. 39(15). pp. 3272–3284.
- 18. Амиров И.И., Алов Н.В. Осаждение фторуглеродной полимерной пленки в низкотемпературной C₄F₈ + SF₆ плазме ВЧИ разряда // Химия высоких энергий. 2006. Т. 36. № 4. с. 35–39.
- 19. NIST Atomic Spectra Database. https://www.nist.gov/ pml/atomic-spectra-database (15.04.2022).
- 20. *Lim N., Choi Y.S., Efremov A., Kwon K.-H.* Dry etching performance and gas-phase parameters of $C_6F_{12}O + Ar$ plasma in comparison with $CF_4 + Ar //$ Materials. 2021. V. 14. pp. 1595(1–15).

- Lopaev D.V., Volynets A.V., Zyryanov S.M., Zotovich A.I., Rakhimov A.T. Actinometry of O, N and F atoms // J. Phys. D: Appl. Phys. 2017. V. 50. pp. 075202 (1–17).
- Ефремов А.М., Куприяновская А.П., Светцов В.И. Спектр излучения тлеющего разряда в хлоре // Журнал прикладной спектроскопии. 1993. Т. 59. Вып. 3–4. с. 221–225.
- Lee C., Lieberman M.A. Global model of Ar, O₂, Cl₂, and Ar/O₂ high-density plasma discharges // J. Vac. Sci. Technol. A. 1995. V. 13. pp. 368–380.
- Ganas P.S. Electron impact excitation cross sections for chlorine // J. Appl. Phys. 1988. V. 63. pp. 277–279.
- Efremov A., Lee J., Kwon K.-H. A comparative study of CF₄, Cl₂ and HBr + Ar inductively coupled plasmas for dry etching applications // Thin Solid Films. 2017. V. 629. pp. 39–48.
- 26. Efremov A., Min N.K., Choi B.G., Baek K. H., Kwon K.-H. Model-Based Analysis of Plasma Parameters and Active Species Kinetics in Cl₂/X (X = Ar, He, N₂) Inductively Coupled Plasmas // J. Electrochem. Soc. 2008. V. 155(12). pp. D777–D782.
- Efremov A.M., Kim G.H., Kim J.G., Bogomolov A.V., Kim C.I. On the applicability of self-consistent global model for the characterization of Cl₂/Ar inductively

coupled plasma // Microelectr. Eng. 2007. V. 84(1). pp. 136–143.

- Efremov A.M., Kim D.-P., Kim C.-I. Inductively coupled Cl₂/O₂ plasma: experimental investigation and modeling // Vacuum, 2004, V. 75(3), pp. 237–246.
- Tinck S., Boullart W., Bogaerts A. Modeling Cl₂/O₂/Ar inductively coupled plasmas used for silicon etching: effects of SiO₂ chamber wall coating // Plasma Sources Sci. Technol. 2011. V. 20. pp. 045012.
- Hanish C.K., Grizzle J.W., Teny F.L. Estimating and controlling atomic chlorine concentration via actinometry. IEEE Trans. Semicond. Manufact. 1999. V. 12(3). pp. 323–331.
- Fuller N., Herman I., Donnelly V. Optical actinometry of Cl₂, Cl, Cl⁺, and Ar⁺ densities in inductively coupled Cl₂-Ar plasmas // J. Appl. Phys. 2001. V. 90. pp. 3182– 3191.
- 32. Handbook of chemistry and physics, Boca Raton: CRC press, 1998.
- Lee B.J., Lee B.J., Efremov A., Yang J.W., Kwon K.H. Etching Characteristics and Mechanisms of MoS₂ 2D Crystals in O₂/Ar Inductively Coupled Plasma // J. Nanosci. Nanotechnol. 2016. V. 16(11). pp. 11201–11209.
- NIST Chemical Kinetics Database. https://kinetics. nist.gov/kinetics/index.jsp (15.04.2022)