УДК 615.012:004.94

СРАВНИТЕЛЬНОЕ КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ СВЯЗЫВАНИЯ АГОНИСТОВ С ЛЕЙКОТРИЕНОВЫМИ РЕЦЕПТОРАМИ BLT₁ И BLT₂¹

© 2020 г. Г. Ф. Куракин^{а, *}, Н. П. Лопина^а, Г. Е. Бордина^а

^а Тверской государственный медицинский университет Министерства здравоохранения России, Тверь, 170000 Россия

**e-mail: Phyzyk@mail.ru* Поступила в редакцию 25.02.2019 г. После доработки 16.09.2019 г. Принята к публикации 17.09.2019 г.

Рецепторы лейкотриена $B_4 - BLT_1$ и $BLT_2 - считаются перспективными мишенями в разработке новых лекарственных средств, эффективных при аллергических и воспалительных заболеваниях. Однако отсутствуют рабочие модели связывания лигандов с этими рецепторами. Исходя из предположения, что гомологичные рецепторы связывают лиганд сходным образом, проведено компьютерное моделирование связывания агонистов с <math>BLT_1$ и BLT_2 с применением полностью гибкого докинга в веб-сервисе Galaxy 7TM. В моделях обоих рецепторов карбоксильная группа лиганда образует солевой мостик с остатком аргинина, а гидроксигруппа у его "хвоста" образует группу водородных связей с тремя аминокислотными остатками. Различная специфичность лигандов к BLT_1 и BLT_2 обусловлена заменой остатка гистидина на тирозин. В BLT_1 остаток гистидина связывается с 5-OH-группой лиганда, тогда как в BLT_2 остаток тирозина отталкивает ее. Полученные модели лучше согласуются с экспериментальными данными, нежели предложенные ранее, и могут быть использованы в разработке новых лекарственных средств, действующих на BLT_1 и BLT_2 .

Ключевые слова: лейкотриен B₄, рецепторы, BLT₁, BLT₂, компьютерное моделирование, механизм связывания

DOI: 10.31857/S002689842002010X

введение

Лейкотриен B₄ (LTB₄) — сильный провоспалительный медиатор, синтезируемый из арахидоновой кислоты [1], участвующий в осуществлении таких важных звеньев воспалительной реакции, как адгезия гранулоцитов, их дегрануляция, трансмиграция и респираторный взрыв [2].

Действие LTB₄ опосредовано двумя типами рецепторов: BLT₁ и BLT₂. Оба они принадлежат к семейству рецепторов, сопряженных с G-белком (GPCR), гомологичны друг другу (делят 45% идентичности, рис. 1), а их гены находятся в геноме в непосредственной близости [2, 3].

Рецепторы BLT₁ и BLT₂ различаются профилем экспрессии и фармакологическими свойствами (рис. 2). BLT₁ экспрессируется преимущественно на лейкоцитах, а BLT₂ во всех тканях [2]. Естественным агонистом BLT₁ является LTB₄, с меньшей аффинностью с ним связываются гидроксиэйкозатетраеновые кислоты (HETE) [5–7].

ВLT₂, наоборот, имеет низкую аффинность к LTB₄ [2, 3] и более сильно связывает 12(S)-гидроксигептадекатриеновую кислоту (12(S)-HHT), 12(S)-HETE и 15(S)-HETE [8, 9], а его основным естественным лигандом является 12-HHT [8].

Агонисты BLT_1 и BLT_2 имеют две структурные особенности: содержат карбоксильную группу и гидроксигруппу у "хвоста" молекулы (в положении 12–15). Эти два элемента представлены во всех лигандах BLT, депонированных в базу данных GuideToPharmacology [5–7], тогда как 5-OH-группа у ряда лигандов отсутствует и считается факультативной. Биологическая важность "хвостовой" гидроксигруппы подтверждается тем, что замена 12-OH-группы LTB₄ на метильную устраняет его хемоаттрактантное действие по отношению к нейтрофилам [10]. Эти данные могут оказаться полезными при дальнейшем моделировании.

В последнее время BLT₁ и BLT₂ рассматривают в качестве мишеней для новых лекарственных пре-

¹ К статье имеются дополнительные материалы, доступные для авторизированных пользователей по doi: 10.31857/S002689842002010Х. Сокращения: LTB₄ – лейкотриен B₄, HETE – гидроксиэйкозатетраеновая кислота, HHT – гидроксигептадекатриеновая кислота, GPCR – рецепторы, сопряженные с G-белком, BLT₁ и BLT₂ – рецепторы 1 и 2 лейкотриена B₄ соответственно.

BLT_1	LGVEFISLLAIILLSV	27
BLT ₂	MAPSHRASQVGFCPTPERPLWRLPPTCRPRRMSVCYRPPGNETLLSWKTSRATGTAFLLL	60
	. : . **. *. : . :*:	
BLT_1	ALAVGLPGNSFVVUSILKRMQKRSVTALMVLNLALADLAVLLTAPFFLHFLAQGTUSF	85
BLT_2	AALLGLPGNGFVVUSLAGWRPARGRPLAATLVLHLALADGAVLLLTPLFVAFLTRQAWPL	120
	* :***** :***** :*** :*** :*** :***	
BLT_1	GLAGCRLCHYVCGVSMYASVLLITAMSLDRSLAVARPFVSQKLRTKAMARRVLAGIWVLS	145
BLT ₂	GQAGCKAV M YVCALSM M ASVLLTGLLSLQRCLAVTRPFLAPRLRSPALARRLLLAVWLAA	180
	* ***: :***:****** :**:****: :**: ***:* :**:	
ыт	ELLATEN ANDTHEORY CEREMON CECHEART INTAL ARTACLES AND AND	205
BLI ₁	ILLAUDAAUVDU UDD DUCOLCUDSDUUAAAU SLETTIAEU DECLWICCUSUTI	205
BLI ₂	LELAVPARVIENLWRDRUCQLCHPSPUHARANLSLEILIAFULFFGLNLGCISUIL	230
BLT.	RRLOARRERRSRRTGRLVVI.III.TEAAEMI.PMHVVNI.AEAGRALAGOAAGI.GI.VGKR	262
BLT ₂	ARLRGARWGSGRHGARVGRLVSAIVLAFGLLWAPYHAVNLLOAVAALAPPEGALAKLGGA	296
2212	**:. *: . *.*** *:*:* *** :* *** :* ****.	_, ,
BLT_1	LSLARNVLIALAFLSSSVNPVLYACAGGGLLRSAGVGFVAKLLEGTGSEASSTRRG-GSL	321
BLT_2	${\tt GQAARAGTTALAFFSSSVNPVLYVFTAGDLLPRAGPRFLTRLFEGSGEARGGGRSREGTM}$	356
-	** ************************************	
BLT_1	GQTARSGPAALEPGPSESLTASSPLKLNELN 352	
BLT_2	ELRTTPQLKVVGQGRGNGDPGGGMEKDGPEWDL 389	
	: * . : ** *	

Рис. 1. Выравнивание последовательностей BLT₁ и BLT₂ человека с помощью программы UniProt Align [4]. Видна гомология последовательностей (* – совпадающие остатки, : – остатки со значительным физико-химическим сходством, . – остатки с незначительными физико-химическим сходством). Цветом выделены аминокислотные остатки, предположительно необходимые для связывания (табл. 1).

паратов, что связано с важной ролью лейкотриеновой сигнализации в развитии воспалительных заболеваний. Повышенная продукция LTB_4 способствует развитию псориаза, бронхиальной астмы, ревматоидного артрита, воспалительных заболеваний кишечника и ишемического повреждения почек [2]. Предполагается, что блокирование BLT_1 может стать новым направлением терапии бронхиальной астмы и ревматоидного артрита. Свою эффективность оно показало на мышиных моделях атопического дерматита и псориаза [1]. Блокирование BLT_1 и BLT_2 может предотвращать развитие хронического бронхита и острой дыхательной недостаточности [11].

Кроме того, оба рецептора играют роль в ноцицепции: активация BLT_1 обеспечивает болевую сенситизацию, а активация BLT_2 – антиноцицептивный эффект. Это открывает возможности для разработки новых обезболивающих средств на основе агонистов BLT₂ и антагонистов BLT₁ [12].

Актуальной остается проблема разработки лекарственных средств, действующих на лейкотриеновые рецепторы, так как специфические антагонисты BLT_2 до сих пор не найдены [1]. Для успешного поиска лекарственных средств, влияющих на рецепторы LTB_4 , необходима компьютерная модель связывания этих рецепторов с их лигандами.

Попытки моделирования BLT₁ были предприняты тремя группами исследователей. Sabirsh A. и соавт. [13] провели компьютерное моделирование с валидацией сайт-специфичным мутагенезом. Они предложили модель, в которой LTB₄ располагается вдоль оси рецептора, Arg178 и Glu185 образуют с лигандом водородные связи, а Val105 и Ile108 обрамляют связывающий участок.

Basu S. и соавт. [14] также провели компьютерное моделирование с валидацией мутагенезом. Они

Рис. 2. Структура лигандов, использованных при моделировании.

показали, что описанная Sabirsh A. и соавт. [13] идентификация Arg178 как связывающего остатка, обусловлена ошибкой, допущенной при проведении сайт-специфичного мутагенеза.

Взамен Ваѕи и соавт. [14] предложили свою модель, в которой карбоксильная группа лейкотриена связывается с Arg156, наиболее важным для связывания лиганда. Оказалось, что мутация Arg156 полностью устраняла связывание. Glu185, Tyr102, His94 в данной модели образовывали водородную связь с 5-гидроксигруппой, Asn241 — с 12-гидроксигруппой. Значимость перечисленных аминокислотных остатков для связывания подтверждена сайт-специфичным мутагенезом.

Ishino Y. и Harada T. [15] разработали новый метод моделирования GPCR в комплексе с лигандами. В качестве апробации метода они провели моделирование BLT₁. В полученной модели карбоксильная группа агониста (использовали 12-кето-LTB₄) образует водородную связь с Asn241, а карбонильная — с главной цепью (-N(H)- группой пептидной связи) остатка Glv246. Косвенная валидация модели проведена по величинам оценивающей функции докинга набора лигандов. Таким образом, в двух публикациях [13, 14] предложены практически диаметрально противоположные модели: в одной Asn241 связывается с "хвостом" агониста, в другой – с "головой" (карбоксильной группой), т.е. отсутствует консенсусная модель BLT₁ в комплексе с LTB₄.

Сведения о компьютерных моделях связывания BLT₂ с лигандами до недавнего времени отсутствовали. Первая попытка сравнительного моделирования связывания агонистов и антагонистов с

 BLT_1 и BLT_2 предпринята Ibrahim M.A. и соавт. [16]. Показано, что лиганды связываются с сайтом, описанным ранее [14, 15], а величины расчетной энергии связывания антагонистов хорошо согласуются с экспериментально определенными аффинностями. Однако не приведены детальные данные о связывании лигандов с BLT и визуализации связей. Отмечено образование агонистами водородных связей с Asn241 и Arg267 в BLT₁. При этом отсутствуют данные минимизации энергии агонистов и сравнения экспериментальной и расчетной аффинности в отличие от антагонистов. Кроме того, не описаны связи лигандов с BLT₂, не рассмотрен механизм различий в аффинности лигандов к BLT₁ и BLT₂, что затрудняет использование этой модели для дальнейших исследований и ее сравнение с другими моделями.

Учитывая все это, целью нашего исследования стало построение молекулярных моделей связывания агонистов как с BLT_1 , так и с BLT_2 , а также сравнение лиганд-рецепторных взаимодействий в данных моделях. Ожидалось, что такое моделирование предоставит дополнительную информацию о способе связывания агонистов с BLT.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Структуры лигандов (рис. 2) получены из баз данных PubChem (https://pubchem.ncbi.nlm.nih.gov/) [17] и ZINC (http://zinc.docking.org/) [18], первичные структуры рецепторов — из базы данных UniProt (https://www.uniprot.org/) [19].

В качестве основной методики моделирования мы использовали онлайн-сервисы, предназначенные специально для моделирования GPCR и

Рис. 3. Результат докинга LTB₄ в структуру BLT₁, полученную из GPCR-HGMod. Пунктирные линии с числами – водородные связи и их длины, дуги со спицами – гидрофобные контакты. Обращает на себя внимание участие Arg178 в связывании карбоксильной группы, что противоречит данным сайт-специфичного мутагенеза [14].

включающие в себя элементы молекулярной динамики. В частности, модели по гомологии загружали из базы данных GPCR-HGMod v.3 (https://zhanglab. ccmb.med.umich.edu/GPCR-HGmod/). Эта база содержит структуры, смоделированные с помощью сервера GPCR-I-TASSER, представляющего собой версию I-TASSER, адаптированную для моделирования GPCR [20].

Докинг проводили с использованием сервера Galaxy7TM (http://galaxy.seoklab.org/cgi-bin/sub-

mit.cgi?type=7TM) [21], предназначенного для полностью гибкого докинга лигандов в GPCR. Проводили прямой докинг, сайт связывания задавали номерами аминокислотных остатков: His94, Tyr102, Glu185, Asn241 в BLT₁ (в [14–16] отмечены как связывающие) и Tyr129, Tyr137, Glu216, Asn275 (гомологи перечисленных остатков) в BLT₂.

В тех случаях, когда необходимо было исключить гибкость рецептора и фиксировать его координаты при вычислениях, мы использовали сервер Swiss-Model (https://swissmodel.expasy.org/) [22, 23] для моделирования по гомологии и программу AutoDock Vina [24] для докинга с подготовкой и анализом в AutoDock Tools [25].

Для первичного анализа лиганд-рецепторных взаимодействий использовали программу LIG-PLOT [26], интегрированную в Galaxy7TM [21]. Углубленный анализ взаимодействий выполняли с помощью веб-сервиса PLIP (http://plip.biotec.tudresden.de/plip-web/plip/index) [27], доступной онлайн среды ezCADD (http://dxulab.pharmacy.isu.edu/ curry/ezCADD/main.html) и приложения ezLigPlot в ее составе [28].

Для генерирования и анализа изображений использовали программы LigPlot+ [29], UCSF Chimera [30] и ezLigPlot [28].

Аминокислотные последовательности сравнивали с использованием сервиса Align (https:// www.uniprot.org/align/) в составе портала UniProt [4], поиск консервативных аминокислотных остатков проводили с помощью сервера ConSurf (http://consurf.tau.ac.il/2016/) [31].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Модель рецептора BLT_1 загружена из базы данных CPCR-HGMod (UniProt ID Q15722, HG ID HG0452). В результате докинга LTB_4 в эту структуру получены 10 решений докинга. В большинстве из них связь с карбоксильной группой лиганда образовывал Arg178 вместе с Arg267, Arg156 или Tyr172 (рис. 3). Большинство водородных связей в этих моделях концентрировались у карбоксильной группы лиганда, при этом в большинстве вариантов 12-OH-группа не образовывал 12-OH-и 5-OH-группу (рис. 3), или 12-OH-группу и карбоксильную группу.

Эта особенность выглядит биологически неправдоподобной. Участие остатка Arg178 в связывании карбоксильной группы не согласуется с тем фактом, что его замена не влияет на связывание лиганда [14]. Возможно, эти модели в чем-то повторяют ошибки моделирования Sabirsh и соавт. [13]. В некоторых решениях докинга водородные связи Arg178 с лигандом отсутствовали, но при этом 12-OH-группа не образовывала водородной связи с рецептором. Такие модели тоже кажутся сомнительными, учитывая биологическую значимость 12-ОН-группы.

Перечисленные попытки прямого моделирования BLT₁ не привели к построению модели, согласующейся с экспериментальными данными [5–7, 10, 14]. Мы рассмотрели гомологию между BLT₁ и BLT₂ и предприняли попытку построить модель BLT₁ косвенно, используя модель BLT₂.

Все аминокислотные остатки BLT₁, упомянутые как образующие водородную связь с лигандом [14–16] или идентифицированные в этом качестве в предыдущих моделях BLT₁, оказались высококонсервативными. В большинстве своем они сохранены и в BLT₂. Однако в BLT₂ два из них подвергнуты замене His <=> Туг (табл. 1).

Гомология BLT_1 и BLT_2 и совпадение аминокислотных остатков, предположительно вовлеченных в связывание лиганда, свидетельствуют о том, что связывание лиганда в BLT_2 и BLT_1 должно быть сходным.

Модель BLT_2 также загружена из базы данных GPCR-HGMod (HG ID HG0781, UniProt ID Q9NPC1). Так как LTB₄ обладает низкой аффинностью к BLT_2 , для начального моделирования мы выбрали лиганды с большей аффинностью — 15(S)-HETE и 12-HHT.

В результате докинга 15(S)-НЕТЕ в данную модель мы также получили 10 решений. Среди них по оценивающей функции Galaxy7TM лидировало решение, изображенное на рис. 4 (*Приложение S1, файл в формате *.pdb*). При таком расположении карбоксильная группа лиганда образует солевой мостик с остатком Arg191 — гомологом Arg156 BLT₁, а 15-OH-группа — водородные связи с Asn275 (гомологом Asn241 BLT₁ и Tyr271 (рис. 4). Помимо этого, согласно анализу взаимодействий Galaxy7TM/LIGPLOT, карбоксильная группа образует также водородную связь с остатком Cys199, консервативным в BLT₂ по данным ConSurf.

Такой способ связывания практически гомологичен способу, описанному Basu S. и соавт. [14] для BLT₁. Повторный анализ лиганд-рецепторных взаимодействий в среде ezCADD позволил уточнить, что 15-OH-группа образует водородную связь не только с Asn275 и Tyr271, но и с Glu216 (гомологом Glu185 BLT₁, рис. 5).

Гидрофобные взаимодействия лиганда с рецептором обеспечивались Phe109, Phe112, Trp118, Val128, Tyr129, Leu201, Leu213.

Модель с аналогичными взаимодействиями и конформацией лиганда получена с помощью Galаху7ТМ для связывания 12-ННТ (основного естественного лиганда) с BLT₂ (*Приложение S2, файл в формате *.pdb*). Среди результатов докинга эта модель занимала четвертое место из десяти. При про-

Рис. 4. Результат докинга 15(S)-НЕТЕ в модель BLT₂. Пунктирная линия с числом — водородная связь и ее длина, дуга со спицами — гидрофобный контакт.

странственном наложении последние две структуры почти полностью соответствуют друг другу, вплоть до положения боковых цепей аминокислот связывающего участка (рис. 6).

Далее мы провели гибкий докинг LTB₄ в ту же самую структуру BLT₂. Второе место из 10 результатов занимало решение докинга, аналогичное двум предыдущим моделям (*Приложение S3, файл в формате *.pdb*). Аминокислотные остатки рецептора, карбоксильная группа и "хвостовая" часть LTB₄ занимали такое же положение, как в случае с 15(S)-HETE и 12-HHT. Однако конформация лиганда в данном случае отличалась от предыдущих моделей резким изгибом в области

Таблица 1. Гомологичные консервативные остатки BLT₁ и BLT₂, предположительно необходимые для связывания лиганда

BLT ₁	BLT ₂
His94	Tyr129
Tyr102	Tyr137
Arg156	Arg191
Tyr172	His203
His181	His212
Glu185	Glu216
Tyr237	Tyr271
Asn241	Asn275

Примечание. Эти же остатки отмечены цветом на рис. 1.

Рис. 5. Результат докинга 15(S)-НЕТЕ в модель BLT₂ (тот же комплекс, что и на рис. 4).

5-OH-группы. В таком положении 5-OH-группа была максимально отдалена от остатка Туг129 (рис. 7).

Для выяснения причины этих конформационных различий необходимо получить модель комплекса LTB_4-BLT_2 , в которой LTB_4 занимал такое же положение, как 15(S)-НЕТЕ и 12-ННТ. С этой целью мы провели повторный докинг LTB_4 в структуру BLT_2 из комплекса 15(S)-НЕТЕ- BLT_2 , используя не гибкий докинг в Galaxy7TM, а полугибкий в AutoDock Vina. При этом ожидалось, что жесткий рецептор обеспечит пространственные ограничения для лиганда, заставляя его принять конформацию, аналогичную конформации 15(S)-НЕТЕ.

Такое решение было получено (рис. 8; Приложение S4, файл в формате *.pdb), оно занимало второе место в списке из 9 результатов, имея расчетную энергию связывания -5.7 ккал/моль (энергия связывания в лучшем решении -6.0 ккал/моль). Полученная конформация LTB₄ более точно совмещалась с 15(S)-HETE, а 5-OH-группа обращена в сторону Туr129. Взаимодействия LTB_4 в такой конформации с BLT_2 показаны на рис. 9. и аналогичны взаимодействиям, полученным ранее для 15(S)-НЕТЕ.

Далее мы использовали эту структуру как отправную точку для косвенного моделирования комплекса LTB_4-BLT_1 . Мы предположили, что конформация, принимаемая лигандом в комплексах 12-HHT-BLT₂, 15(S)-HETE-BLT₂ и LTB_4-BLT_2 после повторного докинга, является нативной как в BLT_1 , так и в BLT_2 .

Чтобы получить комплекс LTB_4-BLT_1 с такой конформацией лиганда, мы заменили BLT_2 на BLT_1 с сохранением координат аминокислотных остатков. Мы воспользовались онлайн-программой моделирования по гомологии Swiss-Model. Координаты и конформация лиганда полностью заимствованы из комплекса LTB_4-BLT_2 после повторного докинга. Далее мы сравнили лиганд-рецепторные взаимодействия в полученной структуре (*Приложение S5, файл в формате *.pdb*) и в комплексе LTB_4-BLT_2 после повторного докинга.

МОЛЕКУЛЯРНАЯ БИОЛОГИЯ том 54 № 2 2020

Рис. 6. Наложение результата гибкого докинга 12-ННТ в модель BLT_2 (синий и голубой цвет) на результат гибкого докинга 15(S)-НЕТЕ в модель BLT_2 (серый и бежевый цвет). Лиганды (шаростержневые модели) занимают сходную позицию, положение остова (лента) и боковых цепей рецептора (стержневые модели) почти одинаково.

Большей частью связывание LTB_4 с BLT_1 было гомологичным связыванию с BLT_2 : Arg156 (гомолог Arg191 BLT_2) образовывал солевой мостик с карбоксильной группой лиганда, Asn241 (гомолог Asn275 в BLT_2), Glu185 (гомолог Glu216 в BLT_2) и Туг237 (гомолог Tyr271 в BLT_2) образовывали водородные связи с 12-OH-группой LTB_4 . Однако к указанным взаимодействиям прибавилась водородная связь между His94 и 5-OH-группой LTB_4 . Гидрофобные контакты обеспечивались остатками Phe77, Pro170, Tyr172, Arg178, Leu182 (рис. 10).

При сохранении тех же координат и остальных водородных связей комплекс LTB_4-BLT_1 отличался от комплекса LTB_4-BLT_2 лишь наличием образуемой 5-OH-группой водородной связи с рецептором. Наложение указанных структур (рис. 11) позволяет понять причину этого и объяснить различную специфичность лигандов к BLT_1 и BLT_2 .

Аминокислотные остатки, образующие водородные связи с карбоксильной и 12-ОН-группой LTB₄, в обоих рецепторах расположены идентично. Различия касаются только His94 BLT₁/Tyr129 BLT₂.

Гидроксильная группа тирозина расположена слишком далеко от 5-OH-группы LTB_4 , поэтому этот остаток не образует с ней водородных связей. Наоборот, в связывающем участке BLT_2 полярная 5-OH-группа упирается в массивное гидрофобное кольцо тирозина, что приводит к отталкиванию. Вероятно, это отталкивание обнаружено Galaxy7TM, вследствие чего LTB_4 занял изогнутую позицию в модели комплекса BLT_2 -LTB₄. Этим же объясняется низкая аффинность LTB_4 к реальному рецептору BLT_1 .

15(S)-НЕТЕ и 12-ННТ из-за отсутствия гидроксигруппы в аналогичной позиции не подвергаются отталкиванию. Наоборот, их алифатические цепи образуют гидрофобные контакты с Туг129, что увеличивает аффинность к BLT₂. В результате 15(S)-НЕТЕ и 12-ННТ в модели располагаются более прямо, а их аффинность к BLT₂ выше, чем у LTB₄.

Рис. 7. Наложение результата гибкого докинга LTB₄ в модель BLT_2 (синий и голубой цвет) на результат гибкого докинга 15(S)-НЕТЕ в модель BLT_2 (серый и бежевый цвет). LTB₄ делает резкий изгиб в области 5-OH-группы, что отличает его конформацию от поз 12-ННТ и 15(S)-НЕТЕ.

Рис. 8. Наложение LTB₄ (голубая шаростержневая модель) после повторного докинга в AutoDock Vina на 15(S)-НЕТЕ (бежевая шаростержневая модель) в связывающем участке BLT_2 (серая ленточно-стержневая модель). LTB₄ занимает такую же позицию, как 15(S)-НЕТЕ.

Рис. 9. Взаимодействия LTB_4 с BLT_2 после повторного докинга в AutoDock Vina.

При расположении LTB₄ в аналогичной позиции в BLT₁ 5-OH-группа лиганда направлена к дельта-атому азота His94, с которым образует дополнительную водородную связь, за счет чего аффинность LTB₄ к BLT₁ повышается. НЕТЕ не могут образовать такую связь с His94 BLT₁, поэтому их аффинность к BLT₁ ниже, чем у LTB₄.

Весьма вероятно, что единственная замена His <=> Туг в ходе эволюции привела к изменению специфичности одного из подтипов BLT к лиганду. Результаты моделирования связывания лиганда с BLT₂ [14] указывают на влияние замены His94—Туг129 на специфичность связывания. Наши результаты подтверждают это предположение.

Первое отличие нашей модели от модели [14] — концентрация основной массы водородных связей у 12-OH-группы лиганда (в случае LTB₄), тогда как в модели Ваѕи и соавт. [14] большую часть водородных связей образует 5-OH-группа. Наша модель может прояснить причину большей важности "хвостовой" гидроксигруппы лиганда для активации рецептора (ее потеря потенциально мо-

жет привести к потере трех водородных связей), чем гидроксигруппы в положении C-5, потеря которой приведет к выпадению лишь одной водородной связи. Эта связь, согласно нашей модели, необходима для обеспечения различной специфичности лигандов к BLT₁ и BLT₂. Второе отличие заключается в расположении лиганда. В модели Ваѕи и соавт. [14] оно вертикальное (вдоль оси рецептора), а в нашей модели — горизонтальное (поперек оси).

При этом набор связывающих остатков в нашей модели и в [14] в основном совпадает. Наша модель согласуется с результатами сайт-специфичного мутагенеза [14]. Так, в нашей модели Glu185 BLT₁ (Glu216 в BLT₂) образует водородную связь не с 5-OH-группой LTB₄, а с его 12-OH-группой, однако остается важным для связывания, что соответствует результатам, полученным методом сайт-специфичного мутагенеза [14].

Полученная нами модель распространяется на оба типа BLT и объясняет, почему LTB_4 имеет максимальную аффинность к BLT₁, большую, чем у

Рис. 10. Взаимодействия LTB₄ со связывающим участком BLT₁, смоделированные косвенным образом на основе гомологии между BLT₁ и BLT₂.

НЕТЕ [5–7], и низкую к BLT₂, уступая лигандам, не содержащим 5-OH-группы [2, 3, 8, 9]. Она объясняет также биологическую значимость гидроксигруппы у "хвоста" лиганда и ее присутствие во всех агонистах [5–7, 10]. Таким образом, наша модель охватывает практически всю имеющуюся на сегодняшний день экспериментальную информацию о связывании агонистов с BLT₁ и BLT₂, т.е. лучше согласуется с эмпирическими данными, нежели предшествующие модели.

Нами не получены результаты, соответствующие модели [15]. Модель, полученная косвенным методом, более соответствует модели [14], но с некоторыми уточнениями. Сравнить наши модели с моделями [16] затруднительно из-за отсутствия детальных описаний связей.

Интересно, что попытки прямого докинга $LTB_4 B BLT_1$ как в Galaxy7TM, так и в AutoDock Vina (в модель BLT_1 на основе комплекса $BLT_2-15(S)$ -НЕТЕ) приводят к противоречивым результатам, не согласующимся с экспериментальными данными. Чтобы частично прояснить механизм дан-

Рис. 11. Пространственное наложение остатков BLT₁ (бежевые) и BLT₂ (голубые), образующих водородные связи с лигандом, в комплексе с LTB₄ (фиолетовый).

Старая нумерация	Новая нумерация
Tyr129	Tyr98
Arg191	Arg160
Glu216	Glu185
Asn275	Asn244
Tyr271	Tyr240
Phe109	Phe78
Phe112	Phe81

Таблица 2. Соответствия номеров ключевых аминокислотных остатков в старой и новой нумерации BLT₂

ного эффекта, мы с помощью UCSF Chimera заменили Туr129 на гистидин в модели BLT_2 , полученной из GPCR-HGMod, и провели докинг в эту модель в Galaxy7TM. Одновременно мы заменили Туr129 на гистидин в модели BLT_2 из комплекса 15(S)-HETE- BLT_2 и провели повторный докинг LTB₄ в эту модель в AutoDock Vina.

В обоих случаях в результатах докинга не представлены описанные выше конформации, где карбоксильная группа LTB_4 образует солевой мостик с Arg191, а 12-OH-группа — водородную связь с Glu216, Туг271, Asn275. Лиганд-рецепторные взаимодействия в решениях докинга аналогичны полученным при гибком докинге LTB_4 в BLT_1 . Мы предположили, что такой эффект наблюдается вследствие большого числа вращаемых связей в лиганде, который вдобавок представляет собой почти линейную молекулу.

В случае с BLT₂ стабильность системы лигандрецептор при гибком докинге выше в силу существования только двух точек фиксации лиганда к рецептору водородными связями — в области связывания карбоксильной группы (первая точка) и гидроксигруппы у "хвоста" молекулы (вторая точка). В случае с BLT₁ присутствует дополнительная точка образования водородной связи – связь His94 с 5-OH-группой лиганда, что увеличивает число возможных вариантов связывания. Положение лиганда с большим количеством вращаемых связей в таком связывающем участке будет ожидаемо нестабильным, что может приводить к отсутствию в результатах докинга "лиганд-BLT₁" постулируемого нами способа связывания. Это предположение косвенно подтверждают результаты компьютерного эксперимента с заменой Tyr129 на гистилин.

Противоречивость данных моделирования BLT₁, по-видимому, можно объяснить неустойчивостью системы "лиганд–BLT₁" в компьютерной модели.

ЗАКЛЮЧЕНИЕ И ВЫВОДЫ

На основе гомологии и модели рецептора BLT_2 косвенным образом удалось построить модели, описывающие различия в строении связывающего участка в BLT_1 и BLT_2 . В этих моделях карбоксильная группа LTB_4 образует солевой мостик с остатком Arg156 BLT_1 (Arg191 BLT_2), а Glu185, Tyr237, Asn241 BLT_1 (соответственно Glu216, Tyr271, Asn275 BLT_2) образуют водородные связи с гидроксигруппой у "хвоста" лиганда (12-OHгруппа LTB_4 , 15-OH-группа 15(S)-HETE).

Согласно полученным моделям, различия в специфичности лигандов к BLT_1 и BLT_2 обусловлены заменой одного из аминокислотных остатков. His94 BLT_1 образует водородную связь с 5-OH-группой LTB₄, обеспечивая тем самым высокую аффинность к LTB₄. В соответствующей позиции BLT_2 находится остаток Туг129, который не образует водородную связь с 5-OH-группой LTB₄ и отталкивает эту группу за счет гидрофобного взаимодействия. Это объясняет низкую аффинность BLT_2 к LTB₄ и высокую – к HHT и HETE, не содержащим 5-OH-группы.

Полученные нами модели лучше согласуются с опубликованными экспериментальными данными, чем предыдущие модели. Это позволяет нам предположить, что они будут полезны для разработки новых лекарственных препаратов, влияющих на BLT₁ и BLT₂.

ПРИМЕЧАНИЯ (CORRIGENDUM)

В феврале 2019 года была обновлена аминокислотная последовательность BLT_2 , представленная в UniProt (Q9NPC1), укороченная на 31 N-концевой остаток.

Модели BLT₂, доступные в GPCR-HGMod и использованные нами, основаны на старой версии. Это же касается обновленных моделей, доступных в GPCR-HGMod v. 4 и GPCR-db. Учитывая это, мы использовали в работе старую нумерацию.

Номер аминокислотного остатка в новой версии последовательности можно получить, уменьшив "старый номер" на 31.

Мы приводим перечень основных соответствий (табл. 2):

Авторам хотелось бы поблагодарить Хайруллину Веронику Радиевну (кафедра физической химии и химической экологии Башкирского государственного университета, Уфа) за консультации в процессе исследования и работы над статьей.

Написание настоящей статьи не потребовало специального финансирования.

Работа не содержит каких-либо исследований с участием людей или животных в качестве объектов исследований.

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Yokomizo T. (2014) Two distinct leukotriene B₄ receptors, BLT₁ and BLT₂. *J. Biochemistry*. **157**(2), 65–71.
- Yokomizo T., Kato K., Terawaki K., Izumi T., Shimizu T. (2000) A second leukotriene B₄ receptor, Blt₂. *J. Exp. Med.* **192**(3), 421–432.
- 3. Tager A.M., Luster A.D. (2003) BLT₁ and BLT₂: the leukotriene B₄ receptors. *Prostaglandins Leukot. Essent. Fatty Acids.* **69**(2–3), 123–134.
- Pundir S., Martin M.J., O'Donovan C., The UniProt Consortium (2016) UniProt tools. *Curr. Protoc. Bioinformatics*. 53(1), 1.29.1–1.29.15.
- Alexander S.P., Christopoulos A., Davenport A.P., Kelly E., Marrion N.V., Peters J.A., Faccenda E., Harding S.D., Pawson A.J., Sharman J.L., Southan C., Davies J.A.; CGTP Collaborators. (2017) The concise guide to pharmacology 2017/18: G protein-coupled receptors. *Br. J. Pharmacol.* 174, S17–S129.
- Bäck M., Brink C., Chiang N., Dahlén S.E., Dent G., Drazen J., Evans J.F., Hay D.W.P., Nakamura M., Powell W., Rokach J., Rovati G.E., Serhan C.N., Shimizu T., Yokomizo T. (2019) Leukotriene receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. *IUPHAR/BPS Guide to Pharmacology CITE*. 2019(4). Available from: https://doi.org/ https://doi.org/10.2218/gtopdb/F35/2019.4
- Yokomizo T., Izumi T., Chang K., Takuwa Y., Shimizu T. (1997) A G-protein-coupled receptor for leukotriene B₄ that mediates chemotaxis. *Nature*. 387(6633), 620–624.
- Okuno T., Iizuka Y., Okazaki H., Yokomizo T., Taguchi R., Shimizu T. (2008) 12(S)-hydroxyheptadeca-5Z, 8E, 10E–trienoic acid is a natural ligand for leukotriene B₄ receptor 2. *J. Exp. Med.* 205(4), 759–766.
- Yokomizo T., Kato K., Hagiya H., Izumi T., Shimizu T. (2001) Hydroxyeicosanoids bind to and activate the low affinity leukotriene B₄ receptor, BLT₂. *J. Biol. Chem.* 276(15), 12454–12459.
- Djuric S.W., Miyashiro J.M., Penning T.D., Keith R.H., Villani-Price D., Tsai B.-S. (1991) Enantioselective total synthesis and pharmacologic profile of 12-deoxy-12(S)-methyl leukotriene B₄. *Bioorg. Med. Chem. Lett.* 1(3), 179–182.
- Хайруллина В.Р., Таипов И.А., Герчиков А.Я., Васильев М.Н., Зарудий Ф.С., Бегель Х. (2014) Структурный анализ антагонистов рецепторов лейкотриенов ЛТВ₄ – BLT₁и BLT₂. Химико-фарм. журн. 48(5), 18–22.
- Zinn S., Sisignano M., Kern K., Pierre S., Tunaru S., Jordan H., Suo J., Treutlein E.M., Angioni C., Ferreiros N., Leffler A., DeBruin N., Offermanns S., Geisslinger G., Scholich, K. (2017) The leukotriene B₄ receptors BLT₁ and BLT₂ form an antagonistic sensitizing system in peripheral sensory neurons. *J. Biol. Chem.* 292(15), 6123–6134.

МОЛЕКУЛЯРНАЯ БИОЛОГИЯ том 54 № 2 2020

- Sabirsh A., Bywater R.P., Bristulf J., Owman C., Haeggström J.Z. (2006) Residues from transmembrane helices 3 and 5 participate in leukotriene B₄ binding to BLT₁⁺. *Biochemistry.* 45(18), 5733–5744.
- Basu S., Jala V.R., Mathis S., Rajagopal S.T., Del Prete A., Maturu P., Trent J.O., Haribabu B. (2007) Critical role for polar residues in coupling leukotriene B₄ binding to signal transduction in BLT1. *J. Biol. Chem.* 282(13), 10005–10017.
- 15. Ishino Y., Harada T. (2012) Novel computational methodologies for structural modeling of spacious ligand binding sites of G-protein-coupled receptors: development and application to human leukotriene B₄ receptor. *Sci. World J.* **2012**, 1–11.
- Ibrahim M.A., Hassan A.M. (2018) Comparative modeling and evaluation of leukotriene B4 receptors for selective drug discovery towards the treatment of inflammatory diseases. *Protein J.* 37(6), 518–530.
- Kim S., Thiessen P.A., Bolton E.E., Chen J., Fu G., Gindulyte A., Han L., He J., He S., Shoemaker B.A., Wang J., Yu B., Zhang J., Bryant S.H. (2015) PubChem Substance and Compound databases. *Nucl. Acids Res.* 44(D1), D1202–D1213.
- Irwin J.J., Sterling T., Mysinger M.M., Bolstad E.S., Coleman R.G. (2012) ZINC: a free tool to discover chemistry for biology. *J. Chem. Inf. Modeling.* 52(7), 1757–1768.
- UniProt Consortium (2017) UniProt: the universal protein knowledge base. *Nucl. Acids Res.* 45(D1), D158–D169.
- Zhang J., Yang J., Jang R., Zhang Y. (2015) GPCR-I-TASSER: a hybrid approach to G protein-coupled receptor structure modeling and the application to the human genome. *Structure*. 23(8), 1538–1549.
- 21. Lee G.R., Seok C. (2016) Galaxy7TM: flexible GPCR-ligand docking by structure refinement. *Nucl. Acids Res.* 44(W1), W502-W506.
- Waterhouse A., Bertoni M., Bienert S., Studer G., Tauriello G., Gumienny R., Heer F.T., de Beer T.A.P., Rempfer C., Bordoli L., Lepore R., Schwede T. (2018) SWISS-MODEL: homology modelling of protein structures and complexes. *Nucl. Acids Res.* 46(W1), W296–W303.
- Guex N., Peitsch M.C., Schwede T. (2009) Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective. *Electrophoresis.* **30**(S1), S162–S173.
- Trott O., Olson A.J. (2009) AutoDockVina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. *J. Comput. Chem.* 31(2), 455–461.
- 25. Sanner M.F. (1999) Python: a programming language for software integration and development. J. Mol. Graph. Model. 17(1), 57–61.
- Wallace A.C., Laskowski R.A., Thornton J.M. (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. *Protein Eng. Design Select.* 8(2), 127–134.
- Salentin S., Schreiber S., Haupt V.J., Adasme M.F., Schroeder M. (2015) PLIP: fully automated protein-ligand interaction profiler. *Nucl. Acids Res.* 43(W1), W443-W447.

- Tao A., Huang Y., Shinohara Y., Caylor M.L., Pashikanti S., Xu D. (2018) ezCADD: A rapid 2D/3D visualization-enabled Web modeling environment for democratizing computer-aided drug design. *J. Chem. Inf. Modeling.* 59(1), 18–24.
- Laskowski R.A., Swindells M.B. (2011) LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Modeling. 51(10), 2778–2786.
- Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. (2004) UCSF Chimera: A visualization system for exploratory research and analysis. J. Comput. Chem. 25(13), 1605–1612.
- Ashkenazy H., Abadi S., Martz E., Chay O., Mayrose I., Pupko T., Ben-Tal N. (2016) ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. *Nucl. Acids Res.* 44(W1), W344–W350.

COMPARATIVE COMPUTATIONAL MODELLING OF AGONIST BINDING TO LEUKOTRIENE RECEPTORS BLT₁ AND BLT₂

G. F. Kurakin^{1, *}, N. P. Lopina¹, and G. E. Bordina¹

¹Tver State Medical University, Ministry of Healthcare of the Russian Federation, Tver, 170000 Russia *e-mail: Phyzyk@mail.ru

Leukotriene B_4 receptors BLT_1 and BLT_2 are promising targets for treatment of allergic and inflammatory diseases. However, no working model of ligand binding to either of these receptors has been developed so far. Under assumption that homologous receptors bind ligand in a similar way, we have performed computational modelling of the binding of agonists to BLT_1 and BLT_2 by fully flexible docking in Galaxy7TM. For both receptors, ligand carboxyl forms a salt bridge with arginine residue, while their "tail" hydroxyl groups form hydrogen bonds with three amino acid residues. Differential specificity of ligands to BLT_1 and BLT_2 is explained by the change of histidine to tyrosine. In BLT_1 , histidine binds ligand 5-OH-group in BLT_1 , while in BLT_2 tyrosine repels it. Presented models are in agreement with experimental data and may be useful for developing new BLT_1 - and BLT_2 -targeted drugs.

Keywords: leukotriene B₄, receptors, BLT₁, BLT₂, computational modelling, homology, binding mechanism