— МОЛЕКУЛЯРНАЯ БИОЛОГИЯ КЛЕТКИ —

УДК 577.21

БЕЛКОВЫЙ ТРАНС-СПЛАЙСИНГ РЕКОМБИНАНТНОГО СТРЕПТАВИДИНА НА МАГНЕТОСОМАХ, ОПОСРЕДОВАННЫЙ ИНТЕИНОМ¹

© 2021 r. S. B. Duan^{*a*, *b*, ²}, S. S. Wei^{*a*, *b*, ²}, H. M. Wang^{*a*, *b*}, S. H. Ding^{*a*, *b*}, Y. Z. Chen^{*a*, *b*}, J. J. Tian^{*a*, *b*}, Y. J. Wang^{*a*}, W. Chen^{*c*}, J. Chen^{*c*}, *, Q. L. Meng^{*a*}, **

^aSuzhou Institute of Biomedical Engineering and Technology, Suzhou, 215163 China ^bJihua Laboratory, Foshan, 315200 China ^cSuzhou Blood Center, Suzhou, 215006 China *e-mail: 108065767@qq.com **e-mail: 69161018@qq.com Поступила в редакцию 18.11.2020 г. После доработки 22.02.2021 г. Принята к публикации 12.03.2021 г.

Большую проблему при экспрессии рекомбинатного стрептавидина на магнетосомах (называемых бактериальными магнитными наночастицами, или ВМР) представляет присутствие эндогенного биотина. Мы соединили мономерный фрагмент стрептавидина (SA₁₋₁₁₆) с N-концом интеина и получили предшественник SA₁₋₁₁₆-IN, который экспрессировали в клетках *Escherichia coli* (BL21). Параллельно фрагмент SA₁₁₇₋₁₆₀ сшивали с С-концом интеина, после чего полученный химерный полипептид экспрессировали на магнетосомах за счет соединения с мембранным белком магнето-сом MamF. Далее в системе *in vitro* белкового сплайсинга смешивали очищенные сконструированные магнетосомы (BMP-SA₁₁₇₋₁₆₀-IC) и предшественник SA₁₋₁₁₆-IN. Наконец, для получения функциональных магнитных частиц BMP-SA индуцировали опосредованный интеином транссплайсинг. Наши результаты указывают на возможность использования транс-сплайсинга, опосредованного интеином, для эффективного получения рекомбинантного стрептавидина на магнетосомах, а также показывают возможности этого метода для получения других функциональных магнитных наночастиц.

Ключевые слова: магнетосомы, функциональные магнитные наночастицы, стрептавидин, белковый сплайсинг, интеин

DOI: 10.31857/S0026898421060057

введение

Магнетосомы (называемые также бактериальными магнитными наночастицами, или ВМР) это окруженные мембраной однодоменные магнитные нанокристаллы, синтезируемые магнитотактическими бактериями. ВМР обладают высокой чувствительностью к магнитному полю, имеют небольшие размеры и видоспецифичную морфологию кристаллов [1, 2]. В состав мембраны ВМР входят специальные трансмембранные белки. Показано, что на мембранах ВМР наиболее представлены два белка — MamC и MamF [3]. Таким образом, генетическая инженерия MamC или MamF может использоваться для экспрессии чужеродных функциональных белков на поверхности ВМР [4]. Сделаны попытки получить различные функционализированные ВМР, например, за счет дисплея на ВМР функциональных компонентов, таких как ферменты, антитела, функциональные пептиды, рецепторные белки, частицы золота или олигонуклеотиды [5-8]. Значительное внимание в последнее время уделяется технологиям магнитной сепарации и иммуномагнитного анализа с использованием ВМР [9, 10]. ВМР сходны с коммерческими микро- и нано-иммуномагнитными частицами с двухфазной (ядрооболочка) структурой, однако обладают, как правило, большим магнетизмом, поскольку их ядра состоят из однодоменных магнитных кристаллов и содержат больше магнетита. Над ВМР легко производить манипуляции, так как они обладают сильным магнетизмом и небольшими размерами [11-13].

Стрептавидин (SA) — гомотетрамерный белок из *Streptomyces avidinii*, проявляет крайне высокую

¹ Статья представлена на английском языке.

² Эти авторы внесли равный вклад.

специфичность к молекулам биотина. За счет сильного, стабильного, нековалентного связывания стрептавидина и биотина иммунохимические методы анализа с использованием этой системы характеризуются наибольшей чувствительностью и позволяют обнаружить даже незначительные количества анализируемого вещества в биологических образцах [14]. Например, магнитные частицы, связанные со стрептавидином, часто используют в качестве твердой фазы в иммунохимии и в производстве диагностических препаратов [15]. Ранее мы получили рекомбинантный штамм магнитотактических бактерий для продукции ВМР, связанных с мономерным стрептавидином. Однако присутствие эндогенного биотина в магнитотактических бактериях может приводить к образованию комплексов стрептавидин-биотин, что затрудняет получение чистых функциональных BMP-SA.

Белковый сплайсинг – это посттрансляционное ремоделирование белков, катализируемое интеином. Разделенный интеин обладает способностью вырезать свои части из белков-прелшественников и сшивать фланкирующие полипептиды (экстеины) для получения зрелого белка и стабильного интеина. В настоящем исследовании для сшивания фрагментов SA1-116 и SA117-160 использовали разделенный интеин, состоящий из N-концевого фрагмента (IN) и С-концевого фрагмента (IC). SA₁₁₇₋₁₆₀-IC далее экспрессировали на ВМР за счет объелинения с белком MamF в рекомбинантном штамме магнитотактических бактерий. Наконец, очищенные предшественники BMP-SA117-160-IC и SA1-116-IN используют в in vitro белковом транссплайсинге, опосредованном интеином, для получения функциональных BMP-SA.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Бактериальные штаммы и плазмиды. Штаммы бактерий, мутанты, плазмиды и праймеры, использованные в работе, перечислены в табл. 1. Культуры *Escherichia coli* растили при 37°С в среде Luria–Bertani (LB). Культуры *Magnetospirillum gryphiswaldense* (MSR-1) растили при 30°С в среде LAY, как описано ранее [16].

Конструирование рекомбинантных плазмид. Кодирующая последовательность SA₁₋₁₁₆-IN получена путем сшивания последовательностей SA₁₋₁₁₆ и IN₁₋₁₀₄ из Ssp DnaX с последующим клонированием в вектор экспрессии pET28a-SA₁₋₁₁₆-IN. Конструкция SA₁₁₇₋₁₆₀-IC-MamF получена путем объединения последовательностей SA₁₁₇₋₁₆₀, IC₁₀₅₋₁₆₃ и гена *тат* с последующим клонированием в вектор pBBR для получения плазмиды pBBR-mamF-SA₁₁₇₋₁₆₀-IC. Экспрессионную плазмиду pET28а-SA1-116-IN использовали для трансформации компетентных клеток E. coli BL21 с целью получения штамма BL21-SA₁₋₁₁₆-IN. Рекомбинантной плазмидой pBBR-mamF-SA₁₁₇₋₁₆₀-IC трансформировали клетки E. coli S17-1, а затем переносили ее в штамм MSR-1/ΔF посредством конъюгации. Мутантные штаммы MSR-1/ΔF-SA₁₁₇₋₁₆₀-IC отбирали согласно [16].

Экспрессия и очистка SA₁₋₁₁₆-IN. Колонию штамма BL21-SA₁₋₁₁₆-IN выращивали в жидкой среде LB в присутствии 25 мкг/мл канамицина при 37°С. При достижении оптической плотности (*OD*₆₀₀), равной 0.4-0.6, добавляли 1 мМ ИПТГ и культивировали клетки при 37°С в течение 3-6 ч для индукции синтеза рекомбинантного белка. Культуру центрифугировали при 5000 g в течение 20 мин, затем помещали в лизирующий буфер (50 мМ Трис-HCl, 1 ммоль/л EDTA, 100 ммоль/л NaCl и 1 мг/мл лизоцима, pH 8.0) и обрабатывали ультразвуком. Далее после центрифугирования (12000 g, 30 мин, 4°С) раствор фильтровали через 0.45 мкм фильтр и наносили на колонку с Ni-NTA. Белок SA₁₋₁₁₆-IN элюировали 100 мМ имидазолом и анализировали элек-

Название	Описание	Источник
Штаммы		
MSR-1/ Δ F	<i>M. gryphiswaldense</i> MSR-1 с удаленным <i>mamF</i>	[10]
MSR-1/ Δ F-SA ₁₁₇₋₁₆₀ -IC	MSR-1 с удаленным <i>mamF</i> , содержащий pBBR- <i>mamF</i> -SA117-160-	Данная работа
	IC; Km ^r , Gm ^r	
<i>E. coli</i> S17-1	Pro thi hsdR recA, хромосомная интеграция RP4-2-Tc::Mu-Km::Tn7,	[10]
	Sm ^r Tra ⁺	
BL21-SA ₁₋₁₁₆ -IN	<i>E. coli</i> BL21, содержащий рЕТ28а-SA1-116-IN	Данная работа
Плазмиды		
pET28a-SA ₁₋₁₁₆ -IN	pET28a вектор с фрагментом SA1-116-IN; Km ^r	Данная работа
pBBR-mamF-SA ₁₁₇₋₁₆₀ -IC	pBBR1MCS-2 вектор с фрагментом mamF-SA117-160-IC; Km ^r	Данная работа

Таблица 1. Штаммы и плазмиды

МОЛЕКУЛЯРНАЯ БИОЛОГИЯ том 55 № 6 2021

Рис. 1. *а* – Схематичное изображение белкового транс-сплайсинга, опосредованного интеином. δ – Анализ с помощью SDS-PAGE белков SA₁₋₁₁₆-IN (*1*), MamF-SA₁₁₇₋₁₆₀-IC (*2*) и сплайсированных белков (*3*, MamF-SA соответствует размеру 31.5 кДа). *в* – Анализ взаимодействия между BMP-SA и биотинилированной ДНК с помощью электрофореза в агарозном геле. На первой дорожке в качестве контроля к смеси биотинилированной (600 п.н.) и небиотинилированной (1200 п.н.) ДНК не добавляли BMP-SA. На дорожках 2–5 титровали концентрацию BMP-SA в смеси ДНК и обнаруживали связывание с биотинилированной ДНК (600 п.н.).

трофорезом в 12%-ном полиакриламидном геле (SDS-PAGE).

Экспрессия и очистка BMP-SA₁₁₇₋₁₆₀-IC. Клетки штамма MSR- $1/\Delta$ F-SA₁₁₇₋₁₆₀-IC пересевали 3 раза, а затем нарабатывали в ферментере объемом 10 л. Условия культивирования и среду подбирали ра-

нее [17, 18]. Клетки MSR-1/ΔF-SA₁₁₇₋₁₆₀-IC собирали, помещали в PBS (10 мМ, pH 7.4; 20 мл/г осадка бактерий) и обрабатывали ультразвуком. Частицы BMP-SA₁₁₇₋₁₆₀-IC выделяли с помощью магнитного штатива, ресуспендировали в PBS и снова озвучивали в течение нескольких подходов.

Очищенные BMP-SA₁₁₇₋₁₆₀-IC помещали в стерильный 25%-ный раствор глицерина и хранили при 4°C.

Белковый транс-сплайсинг, опосредованный интеином. Для проведения *in vitro* транс-сплайсинга 20 мкМ SA₁₋₁₁₆-IN смешивали с 0.5 мг BMP-SA₁₁₇₋₁₆₀-IC в буфере для сплайсинга (20 мМ Трис-HCl, 0.15 M NaCl, pH 7.9). Далее добавляли DTT в концентрации 1 мМ и инкубировали при комнатной температуре в течение ночи на шейкере. Реакцию останавливали, выделяя BMP с помощью магнита. Продукты сплайсинга анализировали с помощью SDS-PAGE и визуализировали, окрашивая Соотаssie Brilliant Blue R-250. Активность BMP-SA проверяли по взаимодействию с биотинилированной ДНК с последующим электрофорезом в агарозном геле.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Продукт гена Ssp DnaX – это интеин, обнаруженный в предшественнике ДНК-хеликазы Synechocystis sp. штамм PCC6803 [19, 20]. Мини-интеин получен путем сшивания N- и C-концевых последовательностей интеина Ssp DnaX. На рис. 1a показано, что интеин фланкирован предшественником SA₁₋₁₁₆ в качестве N-экстеина и SA₁₁₇₋₁₆₀ в качестве С-экстеина. В данном исследовании последовательность SA₁₋₁₁₆-IN получена путем сшивания SA₁₋₁₁₆ и IN₁₋₁₀₄ из Ssp DnaX. Клетки *E. coli* BL21 трансформировали плазмидой pET28a-SA₁₋₁₁₆-IN для получения белка SA₁₋₁₁₆-IN после индукции синтеза с помощью ИПТГ. Очищенный белок анализировали с помощью электрофореза (рис. 1б). Конструкция SA₁₁₇₋₁₆₀-IC-MamF получена путем объединения последовательностей SA₁₁₇₋₁₆₀ IC₁₀₅₋₁₆₃ из Ssp DnaX и гена mamF. Далее SA₁₁₇₋₁₆₀-IC-mamF клонировали в вектор pBBR для получения pBBR-mamF-SA₁₁₇₋₁₆₀-IC. Этой плазмидой трансфицировали MSR-1/ Δ F с помощью конъюгации, а затем отбирали клоны MSR-1/ ΔF-SA₁₁₇₋₁₆₀-IC. Частицы BMP-SA117-160-IC выделяли и очищали из культуры клеток MSR-1/ΔF-SA₁₁₇₋₁₆₀-IC. Мембранный белок MamF-SA₁₁₇₋₁₆₀-IC анализировали с помощью электрофореза (рис. 1б). Очищенные SA₁₋₁₁₆-IN и BMP-SA₁₁₇₋₁₆₀-IC смешивали в буфере для сплайсинга и индуцировали перенос экстеина SA₁₋₁₁₆ (N-экстеин) на N-конец SA₁₁₇₋₁₆₀ (С-экстеин), получая таким образом BMP-SA. Продукты сплайсинга, включая белок MamF-SA, анализировали с помошью электрофореза. Эффективность реакции составляла примерно 20% (рис. 1б). Активность ВМР-SA оценивали, добавляя разное количество этих частиц к биотинилированной ДНК (1 мкг). По данным электрофореза в агарозном геле (рис. 1в) 10 мкг частиц ВМР-SA связывали как минимум 1 мкг биотинилированной ДНК (600 п.н.). Не обнаружили связывания небиотинилированной ДНК (1 мкг, 1200 п.н.), использованной в качестве контроля, с частицами ВМР-SA (рис. 1*в*).

Уникальной особенностью ВМР является возможность экспрессировать на их поверхности функциональные белки с помощью генетической инженерии. В ряде исследований получены частицы с функциональными белками, такими как белок А, наноантитела, ферменты. Благодаря большому количеству активных молекул на поверхности функционализированных ВМР, комплексы ВМР-белок удобны для магнитной сепарации и иммуномагнитного анализа. При этом сложность экспрессии белков в магнитотактических бактериях делает невозможной экспрессию некоторых активных факторов на поверхности ВМР. Так, присутствие эндогенного биотина в магнитотактических бактериях может повлиять на активность BMP-SA за счет блокирования активных сайтов стрептавидина. Таким образом, нами описана новая стратегия встраивания определенных пептидов в мембранный белок ВМР с помощью белкового сплайсинга, опосредованного интеином. ВМР представляют собой биогенные магнитные экологичные наноматериалы. Интеиновый транс-сплайсинг используется для сплайсинга и лигирования белков в различных областях, включая сшивку, мечение, очистку и перевод в растворимую форму. Нами показано, что предложенный подход удобен для получения функционализированных частиц ВМР.

Работа поддержана Фондом естественных наук провинции Цзянсу (грант № ВК20180224), Программой науки и образования Департамента Здравоохранения Сучжоу (КЈХW2017056), Исследовательским фондом лаборатории Джихуа (грант № Х190171TD190) и Проектом развития научного оборудования Китайской академии наук (грант № УЈКҮҮQ20200037).

Настоящая статья не содержит каких-либо исследований с участием людей или животных в качестве объектов исследований.

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Uebe R., Schuler D. (2016) Magnetosome biogenesis in magnetotactic bacteria. *Nat. Rev. Microbiol.* **14**, 621–637.
- Bazylinski D.A., Frankel R.B. (2004) Magnetosome formation in prokaryotes. *Nat. Rev. Microbiol.* 2, 217–230.
- Grunberg K., Muller E.C., Otto A., Reszka R., Linder D., Kube M., Reinhardt R., Schuler D. (2004) Biochemical and proteomic analysis of the magnetosome membrane in Magnetospirillum gryphiswaldense. *Appl. Environ. Microbiol.* 70, 1040–1050.
- Greene S.E., Komeili A. (2012) Biogenesis and subcellular organization of the magnetosome organelles of magnetotactic bacteria. *Curr. Opin. Cell Biol.* 24, 490– 495.

- Yan L., Da H., Zhang S., Lopez V.M., Wang W. (2017) Bacterial magnetosome and its potential application. *Microbiol Res.* 203, 19–28.
- Xu J., Liu L., He J., Ma S., Li S., Wang Z., Xu T., Jiang W., Wen Y., Li Y., Tian J., Li F. (2019) Engineered magnetosomes fused to functional molecule (protein A) provide a highly effective alternative to commercial immunomagnetic beads. J. Nanobiotechnology. 17, 37.
- Pollithy A., Romer T., Lang C., Muller F.D., Helma J., Leonhardt H., Rothbauer U., Schuler D. (2011) Magnetosome expression of functional camelid antibody fragments (nanobodies) in Magnetospirillum gryphiswaldense. *Appl. Environ. Microbiol.* 77, 6165–6171.
- 8. Wu W., Wu Z., Yu T., Jiang C., Kim W.S. (2015) Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. *Sci. Technol. Adv. Mater.* **16**, 023501.
- Li A., Zhang H., Zhang X., Wang Q., Tian J., Li Y., Li J. (2010) Rapid separation and immunoassay for low levels of *Salmonella* in foods using magnetosome-antibody complex and real-time fluorescence quantitative PCR. *J. Sep. Sci.* 33, 3437–3443.
- Xu J., Hu J., Liu L., Li L., Wang X., Zhang H., Jiang W., Tian J., Li Y., Li J. (2014) Surface expression of protein A on magnetosomes and capture of pathogenic bacteria by magnetosome/antibody complexes. *Front. Microbiol.* 5, 136.
- Ali I., Peng C., Khan Z.M., Naz I. (2017) Yield cultivation of magnetotactic bacteria and magnetosomes: a review. J. Basic Microbiol. 57, 643–652.
- Tanaka T., Matsunaga T. (2000) Fully automated chemiluminescence immunoassay of insulin using antibody-protein A-bacterial magnetic particle complexes. *Anal. Chem.* 72, 3518–3522.

- Jacob J.J., Suthindhiran K. (2016) Magnetotactic bacteria and magnetosomes – Scope and challenges. *Mater. Sci. Eng. C Mater. Biol. Appl.* 68, 919–928.
- Lim K.H., Huang H., Pralle A., Park S. (2013) Stable, high-affinity streptavidin monomer for protein labeling and monovalent biotin detection. *Biotechnol. Bioeng.* 110, 57–67.
- Dundas C.M., Demonte D., Park S. (2013) Streptavidin-biotin technology: improvements and innovations in chemical and biological applications. *Appl. Microbiol. Biotechnol.* 97, 9343–9353.
- Liu J., Ding Y., Jiang W., Tian J., Li Y., Li J. (2008) A mutation upstream of an ATPase gene significantly increases magnetosome production in *Magnetospirillum* gryphiswaldense. Appl. Microbiol. Biotechnol. 81, 551– 558.
- Zhang Y., Zhang X., Jiang W., Li Y., Li J. (2011) Semicontinuous culture of *Magnetospirillum gryphiswaldense* MSR-1 cells in an autofermentor by nutrient-balanced and isosmotic feeding strategies. *Appl. Environ. Microbiol.* 77, 5851–5856.
- Yang C., Takeyama H., Matsunaga T. (2001) Iron feeding optimization and plasmid stability in production of recombinant bacterial magnetic particles by *Magnetospirillum magneticum* AMB-1 in fed-batch culture. *J. Biosci. Bioeng.* **91**, 213–216.
- Liu X.Q., Hu Z. (1997) Identification and characterization of a cyanobacterial DnaX intein. *FEBS Lett.* 408, 311–314.
- Zhang X., Liu X.Q., Meng Q. (2019) Engineered *Ssp* DnaX inteins for protein splicing with flanking proline residues. *Saudi J. Biol. Sci.* 26, 854–859.

INTEIN-MEDIATED PROTEIN TRANS-SPLICING OF THE RECOMBINANT STREPTAVIDIN ON MAGNETOSOMES

S. B. Duan^{1, 2}, S. S. Wei^{1, 2}, H. M. Wang^{1, 2}, S. H. Ding^{1, 2}, Y. Z. Chen^{1, 2}, J. J. Tian^{1, 2}, Y. J. Wang¹, W. Chen³, J. Chen^{3, *}, and Q. L. Meng^{1, **}

¹ Suzhou Institute of Biomedical Engineering and Technology, Suzhou, 215163 China

² Jihua Laboratory, Foshan, 315200 China

³ Suzhou Blood Center, Suzhou, 215006 China

*e-mail: 108065767@qq.com

**e-mail: 69161018@qq.com

When expressing streptavidin recombinant polypeptide on magnetosomes (called bacterial magnetic nanoparticles, or BMPs), the presence of endogenous bacterial biotin might be detrimental. In the study, the streptavidin monomer fragment (SA₁₋₁₁₆) was fused with the intein N-terminal (termed precursor SA₁₋₁₁₆-IN), and SA₁₋₁₁₆-IN was expressed in *E. coli* (BL21). Meanwhile, the SA₁₁₇₋₁₆₀ fragment was fused with the C-terminal intein, and then this chimeric polypeptide was expressed on magnetosomes by fusion with magnetosome membrance protein MamF. In the *in vitro* protein splicing system, the purified engineered magnetosomes (BMP-SA₁₁₇₋₁₆₀-IC) and the SA₁₋₁₁₆-IN precursor were mixed. Intein-mediated trans-splicing reaction was induced to produce the functional magnetic beads BMP-SA. Our results indicate that intein-mediated protein trans-splicing may lead to efficient synthesis of the recombinant streptavidin on the magnetosomes, showing its promising potential to produce other functional magnetic nanoparticles.

Keywords: magnetosomes, functional magnetic nanoparticles, streptavidin, intein-mediated protein splicing