НАНОМАТЕРИАЛЫ ФУНКЦИОНАЛЬНОГО И КОНСТРУКЦИОННОГО НАЗНАЧЕНИЯ

УДК 541.15:541:183:539.104

ИК-ФУРЬЕ-СПЕКТРОСКОПИЧЕСКОЕ ИССЛЕДОВАНИЕ РАДИАЦИОННО-ТЕРМИЧЕСКОГО РАЗЛОЖЕНИЯ ВОДЫ В СИСТЕМЕ НАНО-ZrO₂ + НАНО-SiO₂ + H₂O

© 2020 г. Т. Н. Агаев¹, С. З. Меликова^{1,*}, Н. Н. Гаджиева¹, М. М. Тагиев^{2,3}

¹ Институт радиационных проблем НАН Азербайджана, Баку, Азербайджан ² Азербайджанский государственный экономический университет, Баку, Азербайджан ³ Институт физики НАН Азербайджана, Баку, Азербайджан *E-mail: sevinc.m@rambler.ru Поступила в редакцию 17.09.2019 г.

После доработки 06.11.2019 г. Принята к публикации 18.12.2019 г.

Методом ИК-фурье-спектроскопии изучено радиационно-термическое разложение воды в системе нано- ZrO_2 + нано- SiO_2 + H_2O в диапазоне температур T = 373-673 К под воздействием γ -квантов. Показано, что адсорбция воды в нанооксидах циркония и кремния происходит по молекулярному и диссоциативному механизмам. Зарегистрированы промежуточно-активные продукты радиационно-гетерогенного разложения воды – гидриды циркония и кремния, гидроксильные группы. Определены значения скоростей и радиационно-химических выходов молекулярного водорода при радиолизе воды в присутствии смесей нано- ZrO_2 + нано- SiO_2 . Выявлено, что значения скоростей и радиационно-химическом разложении воды в диапазоне температур T = 373-673 К.

DOI: 10.1134/S199272232002003X

введение

На основе исследований радиолиза воды с участием ряда дисперсных оксидов металлов под воздействием ү-излучения установлено, что применение нанопорошковых оксидов (ZrO₂, SiO₂, TiO_2 , Al_2O_3 и др.) в качестве катализаторов значительно увеличивает скорость накопления молекулярного водорода [1-4]. При этом резко возрастает радиационно-химический выход H₂ по сравнению с выходами как гомогенного, так и гетерогенного процесса разложения H₂O, в котором в качестве катализаторов используются микроразмерные оксиды [5]. Среди этих нанооксидов наиболее перспективными представляются диоксиды циркония (ZrO_2) и кремния (SiO₂), так как они являются селективными катализаторами для радиационно-гетерогенных процессов [4, 6, 7]. Для выявления механизма радиационно-каталитического действия оксидных катализаторов в процессах радиолиза воды применялись различные методы, в том числе спектроскопические [7–9]. В частности, методом ИК-фурье-спектроскопии изучено радиационно-термическое разложение воды в нано- ZrO_2 в интервале температур T == 300-673 К. Зарегистрированы промежуточные

продукты радиационно-гетерогенного разложения воды: ион-радикалы молекулярного кислорода, перекиси водорода, гидрид циркония и гидроксильные группы. Также методом ИК-спектроскопии изучены гидроксильный покров и электронно-акцепторные свойства самого нано- ZrO_2 [6]. В [10] рассмотрены влияние γ -радиации в SiO₂ и изменение полос поглощения OH-групп и молекул воды при комнатной температуре и дозе облучения 25–200 кГр. Однако в литературе отсутствуют спектроскопические данные по радиационному разложению воды в смеси нано- ZrO_2 + нано-SiO₂ + H₂O.

В настоящей работе представлены результаты ИК-фурье-спектроскопических исследований радиационного разложения воды в гетерогенной системе нано- ZrO_2 + нано- SiO_2 + H₂O при различных температурах T = 373-673 К под воздействием γ -квантов с целью установления роли промежуточно-активных частиц (ион-радикальных групп) в этих процессах. Соотношение нанопорошков нано- ZrO_2 + нано- SiO_2 варьировалось: 0.015 г + 0.015 г (1 : 1), 0.005 г + 0.025 г (1 : 5) и 0.025 г + 0.005 г (5 : 1).

Сведения о влиянии второго компонента на поверхностные физико-химические и радиационно-каталитические свойства бинарной системы нано- ZrO_2 + нано- SiO_2 ограниченны. Поэтому при помощи ИК-фурье-спектроскопии исследованы взаимодействия между компонентами нано- ZrO_2 и нано- SiO_2 , механизмы адсорбции воды и радиационно-термический радиолиз воды в присутствии смеси нано- ZrO_2 + нано- SiO_2 . Изучена также кинетика процессов получения водорода при радиационно-термическом гетерогенном радиолизе воды в зависимости от соотношения компонентов в системе нано- ZrO_2 + нано-SiO₂ при температурах T = 373-673 K.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Использованы нанопорошки ZrO₂ и SiO₂ чистотой 99.9% (Sky Spring Nanomaterials, USA) с частицами размерами d = 20-30 и 20-60 нм. С помощью рентгенофазового метода установлено, что образец ZrO₂ обладает моноклинной центрально-симметричной кристаллической структурой [2]. Перед адсорбцией образцы диоксидов циркония и кремния подвергали термовакуумной обработке при T = 673 К и давлении 10^{-3} Па в течение 8 ч для очистки от органических загрязнений И легидроксилирования поверхности. Адсорбция паров воды изучена по методике [6]. Контроль за чистотой поверхности осуществляли по интенсивности полос, обусловленных водой и углеводородными загрязнениями.

ИК-фурье-спектры поглощения зарегистрированы на спектрометре Varian 640FT-IR в диапазоне 4000–400 см⁻¹ при комнатной температуре. Для этого из нанопорошков ZrO_2 и SiO₂ прессовали таблетки толщиной 0.6–1.2 мкм. ИК-спектры образцов измерены в специальной кварцевой кювете с окнами из KBr, позволяющей получать спектры адсорбированной воды, разлагаемой под действием γ -излучения [3]. При перекрывании полос, относящихся к различным формам адсорбированной воды, проведено разложение суммарного контура на индивидуальные компоненты по методике [7].

Радиационное разложение воды в системе нано-ZrO₂ + нано-SiO₂ + H₂O проведено при различных температурах. Образцы облучали на изотопном источнике ⁶⁰Co мощностью дозы $dD_{\gamma}/dt =$ = 0.11 Гр/с. Дозиметрия источника проведена ферросульфатным и метановым дозиметрами [11]. Поглощенная доза облучения в исследуемых системах определена сравнением электронных плотностей. Время облучения $\tau = 25 \text{ ч}$ ($D_{\gamma} = 10 \text{ кГр}$).

^{ИЗ ВОДЫ} + нано-SiO₂ + $H_2O(1:1)$. ИК-спектры отдельных

компонентов нано-ZrO₂ и нано-SiO₂ (кривые *1*, *2*), смеси нано-ZrO₂ + нано-SiO₂ после адсорбции воды (нано-ZrO₂ + нано-SiO₂ + H₂O) (кривая *3*) приведены на рис. 1. Затем проводили γ -облучение системы нано-ZrO₂ + нано-SiO₂ + H₂O при дозе $D_{\gamma} = 10 \text{ кГр}$ и при температурах T = 373, 473 и 673 К (кривые 4–6). Как видно из рис. 1 (кривые *1* и *2*), поверхности нано-ZrO₂ и нано-SiO₂, прошедшие термовакуумную обработку, – чистые, так как в них отсутствуют полосы поглощения (ПП), обусловленные наличием воды и углеводородных загрязнений [12].

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

компонентами нано- ZrO_2 и нано- SiO_2 , а также

механизмов адсорбции и радиационно-гетеро-

генного процесса разложения воды проведены

ИК-спектроскопические исследования отдель-

ных компонентов, смесей и систем нано- ZrO_2 +

С целью выявления взаимодействия между

В спектрах в области решеточных колебаний нано-ZrO₂ ($v = 800-400 \text{ см}^{-1}$) обнаруживаются ПП с максимумом при 745 см⁻¹ и дублеты при 490, 410 см⁻¹ (кривая *I*). Полосы при 745, 490 см⁻¹ относятся к асимметричным валентным колебаниям Zr–O–Zr и Zr–O соответственно [9]. В спектрах в области решеточных колебаний нано-SiO₂ (v == 1400–400 см⁻¹) наблюдаются ПП с максимумами при 472, 798 и 1095 см⁻¹ (кривая *2*). Наблюдаемые полосы относятся к симметричным и асимметричным валентным колебаниям Si–O и Si–O–Si [13]. Изменение весовых соотношений нанопорошков ZrO₂ и SiO₂ сопровождается перераспределением интенсивностей ПП колебаний Zr–O и Si–O.

В необлученной гетеросистеме после адсорбции воды на поверхности нанодиоксидов циркония и кремния в области валентных колебаний ион-радикальных гидроксильных ОН-групп появляются ПП, что указывает на протекание адсорбции молекулярной формы (интенсивные широкие полосы с максимумами при 3240 и 3280 см⁻¹) и диссоциативной хемосорбции (сравнительно узкие полосы с максимумами при 3450, 3475, 3520, 3580 см⁻¹) (кривая 3). Протекание адсорбции двух видов подтверждается также присутствием ПП в области деформационных колебаний OH с максимумами при 1610, 1630, 1640 и 1680 см⁻¹.

Облучение гетеросистемы нано- ZrO_2 + нано-SiO₂ + H₂O γ -квантами при температуре T = 373 К приводит к радиационному разложению воды и образованию промежуточно-активных продуктов разложения (кривая 4). Среди них наиболее интересны поверхностные гидриды циркония и кремния. В спектре в области частот 2000–1700 см⁻¹ появляются ПП с максимумами при 2100, 2000,

Puc. 1. ИК-фурье-спектры нано- ZrO_2 (1), нано- SiO_2 (2) и системы 0.1 г нано- ZrO_2 + 0.1 г нано- SiO_2 + H₂O до (3) и после воздействия γ-радиации при температурах 373 (4), 473 (5) и 673 K (6).

1995 и 1880 см⁻¹, относящиеся к валентным колебаниям Zr–H (1995, 1880 см⁻¹) и Si–H (2100, 2000 см⁻¹) и указывающие на образование поверхностных гидридов циркония и кремния типов ZrH, ZrH₂, SiH, SiH₂ [13], среди которых наиболее стабильными формами являются ZrH₂ и SiH₂. К сожалению, не удалось зарегистрировать ПП кислородсодержащих промежуточных поверхностных частиц разложения воды, так как они перекрываются с ПП валентных колебаний Si–O (1200–900 см⁻¹). Изменения в области валентных колебаний OH-групп, связанные с радиационно-термическим разложением воды при температуре T = 373 K в гетерогенной системе нано-ZrO₂ + нано-SiO₂ + + H₂O, представлены на рис. 1 (кривая 4). В ИКспектрах образцов нано-ZrO₂ + нано-SiO₂ + H₂O в области валентных колебаний OH-групп (v = = 4000-3000 см⁻¹) наблюдаются ПП водородносвязанных групп с максимумами при 3580, 3520, 3475 и 3450 см⁻¹, а также новые ПП при 3690 и 3630 см⁻¹. Последние относятся к изолированным OH-группам.

Nº 2

2020

Система	<i>Т</i> , К	<i>D</i> , Гр/с	<i>W_T</i> (H ₂), молекул/г с	<i>W_{RT}</i> (H ₂), молекул/г с	<i>G</i> (H ₂), молекул/ 100 эВ
<i>n</i> -ZrO ₂			1×10^{13}	5×10^{13}	4.5
<i>n</i> -SiO ₂			0.12×10^{13}	0.86×10^{13}	1.07
$n-{\rm ZrO}_2 + n-{\rm SiO}_2(1:5)$	373	0.11	0.18×10^{13}	0.76×10^{13}	0.85
$n-ZrO_2 + n-SiO_2(1:1)$			0.53×10^{13}	2.47×10^{13}	2.8
$n-{\rm ZrO}_2 + n-{\rm SiO}_2(5:1)$			0.61×10^{13}	2.94×10^{13}	3.7
<i>n</i> -ZrO ₂			5.56×10^{13}	2.08×10^{14}	8.35
<i>n</i> -SiO ₂			0.99×10^{13}	0.27×10^{13}	1.98
$n-ZrO_2 + n-SiO_2(1:5)$	473	0.11	0.9×10^{13}	1.94×10^{13}	1.6
$n-ZrO_2 + n-SiO_2(1:1)$			1.81×10^{13}	4.55×10^{13}	4.0
$n-ZrO_2 + n-SiO_2(5:1)$			2.27×10^{13}	6.42×10^{13}	6.1
<i>n</i> -ZrO ₂			2.78×10^{14}	6.94×10^{14}	25.7
<i>n</i> -SiO ₂			0.24×10^{13}	5.23×10^{13}	4.15
$n-ZrO_2 + n-SiO_2(1:5)$	673	0.11	$0.18 imes 10^{14}$	0.41×10^{14}	3.2
$n-ZrO_2 + n-SiO_2(1:1)$			0.47×10^{14}	1.04×10^{14}	8.0
$n-ZrO_2 + n-SiO_2(5:1)$			1.08×10^{14}	2.33×10^{14}	18.4

Таблица 1. Радиационно-химические выходы молекулярного водорода в системе нано-ZrO₂ + нано-SiO₂ + H₂O при различных температурах

Увеличение температуры радиационно-термического разложения воды в гетеросистеме нано-ZrO₂ + нано-SiO₂ до 473 К приводит к уменьшению интенсивностей ПП водородно-связанных и появлению новых изолированных ОН-групп с максимумами при 3770 и 3852 см⁻¹ (кривая 5). При температуре разложения воды T = 673 К полностью разлагаются H-связанные ОН-группы и гидриды нанооксидов, что сопровождается исчезновением в спектре ПП этих групп (кривая 6).

Изменение весового содержания нанопорошков ZrO_2 и SiO_2 приводит к перераспределению интенсивностей ПП, что связано с изменением приповерхностных состояний порошков и их дефектностей.

Исследована кинетика накопления молекулярного водорода при радиационно-термическом разложении адсорбированными молекулами воды на поверхности смеси нано- ZrO_2 + нано- SiO_2 с различными соотношениями компонентов при различных температурах T = 373, 473 и 673 К. На основе кинетических кривых определены скорости образования $W(H_2)$ и радиационно-химические выходы $G(H_2)$ молекулярного водорода, значения которых приведены в табл. 1. Как видно из таблицы, с увеличением содержания нано- ZrO_2 выходы молекулярного водорода увеличиваются в ~4 раза в зависимости от температуры разложения, что связано с наибольшей активностью поверхностно-активных центров типа Zr^{4+} .

РОССИЙСКИЕ НАНОТЕХНОЛОГИИ том 15 № 2 2020

Сравнение значений скоростей образования молекулярного водорода при термическом $W_{T}(H_2)$ и радиационно-термическом $W_{RT}(H_2)$ разложении воды в системе нано-ZrO₂ + нано-SiO₂ показывает, что в температурном диапазоне T = 373-673 К γ -радиация играет стимулирующую роль. Так как значения скоростей образования H_2 при радиационно-термическом разложении увеличиваются по сравнению с термическим разложением воды.

ЗАКЛЮЧЕНИЕ

Методом ИК-фурье-спектроскопии изучено радиационно-термическое разложение воды в системе нано- ZrO_2 + нано- SiO_2 + H_2O в диапазоне температур T = 373 - 673 К под воздействием у-квантов. Показано, что адсорбция воды в нанооксидах циркония и кремния происходит по молекулярному и диссоциативному механизмам. Зарегистрированы промежуточно-активные продукты радиационно-гетерогенного разложения воды — гидриды циркония и кремния, гидроксильные группы. Показано, что изменение соотношения нанопорошков ZrO₂ и SiO₂ приводит к уменьшению радиационно-каталитической активности по сравнению с исходным ZrO₂. Определены значения скоростей и радиационно-химических выходов молекулярного водорода при радиолизе воды в присутствии смесей нано-ZrO₂ +

+ нано-SiO₂ с различными соотношениями компонентов. Выявлено, что значения скоростей и радиационно-химических выходов уменьшаются при переходе от нано-ZrO₂ к нано-SiO₂. Показана стимулирующая роль радиации в радиационно-термическом разложении воды в системе нано-ZrO₂ + нано-SiO₂ + H₂O в диапазоне температур T = 373-673 K.

Показана возможность применения метода ИК-фурье-спектроскопии для изучения радиационных процессов в гетерогенной системе нано- ZrO_2 + нано- SiO_2 + H_2O при различных температурах под воздействием у-квантов. Выявлено, что адсорбция воды в нанооксидах циркония и кремния протекает по молекулярным и диссоциативным механизмам. Облучение указанной гетеросистемы при поглошенной дозе 10 кГр приводит к радиационно-химическому разложению H₂O. В отличие от гомогенной фазы радиолиз воды в присутствии нанооксидов циркония и кремния сопровождается образованием промежуточных продуктов разложения поверхностных гидридов и гидроксильных групп. Определены радиационно-химические выходы Н₂. Показано, что изменение соотношения нанопорошков ZrO₂ и SiO₂ вызывает изменение радиационной активности гетеросистемы нано-ZrO₂ + нано-SiO₂ + $+ H_2O$.

СПИСОК ЛИТЕРАТУРЫ

- 1. Агаев Т.Н., Гарибов А.А., Меликова С.З., Иманова Г.Т. // Химия высоких энергий. 2018. Т. 52. № 2. С. 129.
- 2. Гарибов А.А., Агаев Т.Н., Меликова С.З. и др. // Российские нанотехнологии. 2017. Т. 12. № 5-6. С. 22.
- Гарибов А.А. // Вопросы атомной науки и техники. Серия ядерной техники и технологии. 1989. Вып. 2. С. 32.
- La Verne J.A., Tonnies S.E. // J. Phys. Chem. B. 2003. V. 107. P. 7277.
- Petrik N.G., Alexandrov A.B., Vall A.I. // J. Phys. Chem. B. 2001. V. 105. P. 5935.
- 6. Гарибов А.А., Агаев Т.Н., Иманова Г.Т. и др. // Химия высоких энергий. 2014. Т. 48. № 3. С. 239.
- 7. Агаев Т.Н., Гаджиева Н.Н., Меликова С.З. // Прикладная спектроскопия. 2018. Т. 85. № 2. С. 351.
- Ranjan S.H., Ranga R.G. // Mater. Ici. Ind. Acad. Sci.2000. V. 23. № 5. P. 349.
- Seino S., Fujimoto R., Yamamoto T.A. // Mater. Res. Soc. Sump. Proc. 1999. V. 608. P. 505.
- 10. Perez-Luna A.G., Martinez-Hemandez A.L., Barrera G.M., Santes C.V. // Adv. Mater. Lett. 2016. V. 7. № 2. P. 156.
- 11. *Пикаев А.К.* Дозиметрия в радиационной химии. М.: Наука, 1975. 311 с.
- 12. *Харламов А.Н., Зубарева Н.А., Лунина Е.В. //* Вестн. МГУ. Сер. 2. Химия. 1989. Т. 39. № 1. С. 29.
- 13. Давыдов А.А. ИК-спектроскопия в химии поверхности окислов. Новосибирск: Наука, 1984. 256 с.