———— ОБЗОРЫ ——

УДК 546.719

РАДИОИЗОТОПЫ РЕНИЯ – ПОЛУЧЕНИЕ, СВОЙСТВА И НАПРАВЛЕННАЯ ДОСТАВКА С ПОМОЩЬЮ НАНОСТРУКТУР

© 2020 г. Р. А. Алиев^{1,*}, Е. С. Кормазева¹, Е. Б. Фуркина¹, А. Н. Моисеева¹, В. А. Загрядский¹

¹ Национальный исследовательский центр "Курчатовский институт", Москва, Россия *E-mail: ramiz.aliev@gmail.com

Поступила в редакцию 06.08.2020 г. После доработки 27.08.2020 г. Принята к публикации 04.09.2020 г.

Два изотопа рения — ¹⁸⁶Re и ¹⁸⁸Re — представляют интерес для ядерной медицины. Многочисленность степеней окисления и разнообразная координационная химия рения открывают широкие возможности для синтеза различных биоконъюгатов, в том числе на основе наноразмерных носителей — липосом, дендримеров, неорганических наночастиц. В обзоре проанализированы ядерные реакции, приводящие к образованию изотопов рения, методы выделения из мишеней, а также различные варианты применения рения в ядерной медицине.

DOI: 10.1134/S1992722320040020

ОГЛАВЛЕНИЕ

Введение

1. Методы получения радиоизотопов рения

1.1. Рений-186

1.2. Рений-188

2. Выделение рения из вольфрамовых мишеней

3. Радиофармпрепараты на основе радиоизотопов рения

4. Направленная доставка с помощью наноструктур

Заключение

введение

Два изотопа рения — ¹⁸⁶Re ($T_{1/2} = 3.72$ сут, $E_{\beta max} = 1069$ кэВ, $E_{\gamma} = 137$ кэВ, 9.42%) и ¹⁸⁸Re ($T_{1/2} = 17.0$ ч, $E_{\beta max} = 2120$ кэВ, $E_{\gamma} = 155$ кэВ, 15.1%) представляют интерес для ядерной медицины. Во многом интерес обусловлен близостью химических свойств рения и технеция — наиболее широко применяемого металла в ядерной медицине: 80% всех процедур ядерной медицины проводятся с использованием изотопа технеция-99m (^{99nt}C) [1]. Популярность ^{99nt}C объясняется его благоприятными ядерно-физическими свойствами: он быстро распадается после проведения процедуры ($T_{1/2} = 6.0$ ч), испускает низкоэнергетические гамма-кванты (140.5 кэВ, 89%), которые легко регистрировать, в то же время они не создают значительной радиационной опасности для персонала. Основной метод производства — генераторный, что делает ^{99т}Тс доступным для большинства медицинских учреждений. Наиболее часто применяющийся генератор — ⁹⁹Мо/^{99т}Тс был впервые использован в 1961 г. [2]: в ядерном реакторе получают изотоп молибдена-99 (⁹⁹Мо) с периодом полураспада 65.9 ч. Затем ⁹⁹Мо фиксируют на хроматографической колонке. В результате его радиоактивного распада накапливается ^{99т}Тс, его смывают с колонки изотоническим раствором и применяют для диагностики. Процедуру выделения технеция можно повторять многократно, пока не распадется основная часть молибдена.

Хорошо изученная химия технеция открывает возможности для разработки рениевых аналогов многочисленных радиофармпрепаратов (РФП), первоначально созданных на основе ^{99m}Tc. Изотопы рения можно применять как терапевтический аналог в паре с диагностическими на основе ^{99m}Tc. При этом оба изотопа рения могут рассматриваться как тераностические, поскольку наличие мягкой гамма-линии позволяет визуализировать распределение радионуклида в организме методом однофотонной эмиссионной компьютерной томографии (**ОФЭКТ**).

Изотоп рения-186 (¹⁸⁶Re) обладает рядом преимуществ в сравнении с рением-188 (¹⁸⁸Re), в частности, его более длительный период полураспада лучше подходит для применений в таргетной эндорадиотерапии. Бета-частицы ¹⁸⁶Re имеют меньший пробег в биологической ткани в сравне-

Рис. 1. Рекомендованные МАГАТЭ величины сечений и выходов реакций, приводящих к ¹⁸⁶Re [4].

нии с ¹⁸⁸Re (3.6 и 11 мм соответственно), что позволяет поражать объекты меньшего размера.

Интерес к изотопам рения остается высоким на протяжении многих лет. Помимо упомянутой аналогии с технецием, он обусловлен тем, что ¹⁸⁸Re — один из немногочисленных терапевтических радионуклидов, получаемых в изотопном генераторе. Одним из наиболее перспективных применений радиоактивного рения является создание РФП на основе наноструктур — липосом, дендримеров, функционализированных наночастиц оксида железа.

1. МЕТОДЫ ПОЛУЧЕНИЯ РАДИОИЗОТОПОВ РЕНИЯ

1.1. Рений-186

¹⁸⁶Re можно получать в атомном реакторе, облучая тепловыми нейтронами стабильного изотопа рения-185 (¹⁸⁵Re). Однако сечение реакции относительно невелико и составляет 112 барн. С помощью (n, γ)-реакции можно получить продукт лишь с относительно невысокой удельной активностью, недостаточной для таргетной эндорадиотерапии. Так, облучением перрената алюминия, обогащенного по изотопу ¹⁸⁵Re, в реакторе университета Миссури потоком нейтронов ~4 · 10¹⁴ нейтронов/см²/с в течение двух недель был получен продукт с удельной активностью 3 Ки/мг, что составляет менее 2% от теоретической величины [3].

Получить радионуклид без носителя можно в реакциях под действием заряженных частиц. Наиболее распространенный способ – облучение изотопа вольфрама-186 (¹⁸⁶W) протонами [4] или дейтронами [5]. Сечения реакций ¹⁸⁶W(p, n)¹⁸⁶Re и ¹⁸⁶W(d, 2n)¹⁸⁶Re хорошо изучены. Согласно компиляции имеющихся экспериментальных данных, сделанной МАГАТЭ [6], максимальное сечение для первой из них, равное ~80 мбарн, достигается при 9 МэВ, для второй – ~400 мбарн при 12 МэВ. Близкие величины приводятся и в более поздней обобщающей работе [7]. При облу-

чении протонами необходимо удерживать энергию ниже 15.3 МэВ, чтобы не протекала побочная реакция ¹⁸⁶W(p, 3n)¹⁸⁴Re, приводящая к образованию долгоживущего радиоактивного изотопа ¹⁸⁴Re. Выход целевого продукта при этом составляет 3.7 МБк/(мкА ч). При облучении дейтронами энергию нужно удерживать ниже 17.6 МэВ. Выход реакции на дейтронах примерно в 4 раза выше — 14.6 МБк/(мкА ч) (рис. 1), в этом случае облучаемого материала нужно меньше, поскольку пробег дейтронов меньше, чем протонов.

Кроме вольфрамовых мишеней, предложено [8] облучать мишени осмия-192 (¹⁹²Os) протонами средних энергий. Максимальное сечение реакции ¹⁹²Os(p, $\alpha 3n$)¹⁸⁶Re составляет примерно 80 мбарн при 25 МэВ. Но и в этом случае невозможно использовать весь полезный энергетический диапазон и приходится ограничивать энергию порогом побочной реакции ¹⁹²Os(p, $\alpha 5n$)¹⁸⁴Re, равным 27.3 МэВ. Выход ¹⁸⁶Re при этом составляет 7.76 МБк/(мкА ч). В табл. 1 приведены основные эксперименты, в которых исследовались ядерные реакции, приводящие к ¹⁸⁶Re.

В качестве материала мишени используется как вольфрам природного изотопного состава, так и обогащенный по изотопу ¹⁸⁶W в виде металла [30], оксида [24] и сульфида [31].

В [32] изотопно обогащенный (96.8%) металлический вольфрам растворяли в соляной кислоте с добавлением H_2O_2 . Раствор упаривали досуха, полученный оксид вольфрама(VI) (200 мг) помещали в алюминиевую капсулу и прессовали под давлением 700 кг/см². Полученная мишень выдерживала облучение пучком 13.8 МэВ протонов интенсивностью 20–25 мкА в течение 12 ч.

В [31] в качестве материала мишени использовали сульфид вольфрама WS₂. Материал мишени наносили на алюминиевую подложку толщиной 16 мкм при помощи пресса с последующей герметизацией эпоксидной смолой. Облучения проводили при энергиях протонов до 14 МэВ и силой тока 10 мкА/ч.

В исследовании, проведенном в Лос-Аламосской национальной лаборатории [33], в качестве мишени использовали спрессованный в таблетку $(5.1 \text{ см} \times 2.54 \text{ мм}) \text{ WO}_3$ с природным изотопным составом массой 25.19 г. Таблетку спекали на возлухе при 1000°C, а затем герметизировали ее внутри капсулы из ниобия (толщина 0.6 мм спереди и 1.4 мм сзади) в вакууме с помощью электроннолучевой сварки. Мишень облучали в течение суток пучком протонов энергией до 26 МэВ со средним током 18.5 мкА. В последующих работах мишень из обогащенного WO3 массой ~10 г в ниобиевой оболочке облучали током 230 мкА в течение 16.5 ч. Энергия пучка в мишени составляла 20.7 → \rightarrow 13.3 МэВ. Из мишени было выделено 4.4 ГБк целевого радионуклида с удельной активностью ~0.8 ГБк/мкг [4]. Тем самым была показана практическая возможность наработки на ускорителях заряженных частиц медицинских количеств ¹⁸⁶Re с высокой удельной активностью.

1.2. Рений-188

¹⁸⁸ Re без носителя обычно получают в изотопном генераторе при радиоактивном распаде ¹⁸⁸W $(T_{1/2} = 69.8$ сут). Последний получают двойным нейтронным захватом из ¹⁸⁶W по пути 186 W(*n*, γ)¹⁸⁷W(*n*, γ)¹⁸⁸W. Сечения обеих реакций относительно невелики (38 и 64 барн соответственно), поэтому требуются длительные времена облучения (десятки дней). При двойном нейтронном захвате наработка целевого продукта пропорциональна квадрату плотности потока нейтронов, поэтому для получения значимых количеств ¹⁸⁸W необходимы плотности потока тепловых нейтронов не менее 10^{14} нейтронов/(см² с). Типичные величины удельной активности составляют 4-10 Ки/г для высокопоточного реактора в Окридже (1.8 · 10¹⁵ нейтронов/(см² с)) [34]. Еще два реактора – реактор СМ-3 в Димитровграде $(3 \cdot 10^{15} \text{ нейтронов/(см}^2 \text{ с}))$ и BR2 в Моле, Бельгия (1 \cdot 10¹⁵ нейтронов/(см² с)), производят ¹⁸⁸W с приемлемой удельной активностью [35]. Применяемый для зарядки генераторов ¹⁸⁸W имеет удельную активность около 5 Ки/г (185 ГБк/г), т.е. представляет собой смесь радиоактивного и стабильного изотопов. Производительность одного медицинского генератора составляет 0.25-3 Ки, это означает, что количество вольфрама, загружаемого в генератор, измеряется десятыми долями грамма. Эта ситуация радикально отличается от традиционных генераторов ⁹⁹Мо/^{99m}Tc, где радиоактивный молибден не содержит значимых примесей стабильного изотопа, поскольку получается не в реакции захвата нейтрона, а при делении урана. Поэтому в вольфрам-рениевых генераторах часто используют двухстадийный процесс с дополнительным концентрированием

Таблица 1. Описанные в литературе исследования ядерных реакций, приводящих к ¹⁸⁶Re

Материал мишени	Частицы	Энергия, МэВ	Литература
^{nat} W	р	$99 \rightarrow 46$	[9]
^{nat} W	р	$9.9 \rightarrow 6.6$	[10]
^{nat} W	р	$33.4 \rightarrow 5.7$	[11]
^{nat} W	р	$64.9 \rightarrow 32$	[12]
^{nat} W	р	$17.8 \rightarrow 7.5$	[13]
^{nat} W	р	$31.1 \rightarrow 5.6$	[14]
^{nat} W	р	$21.6 \rightarrow 4.7$	[15]
^{nat} W	р	$69.9 \rightarrow 52.1$	[16]
^{nat} W	d	$49.2 \rightarrow 7$	[17]
^{nat} W	d	$34.1 \rightarrow 22.8$	[18]
^{nat} W	d	$37.8 \rightarrow 4.9$	[19]
^{nat} W	d	$17.4 \rightarrow 6.6$	[20]
^{nat} W	d	$35 \rightarrow 8$	[21]
^{nat} W	d	$33.4 \rightarrow 8.9$	[22]
¹⁸⁶ W	р	$17.6 \rightarrow 6.5$	[23]
¹⁸⁶ W	р	$21.6 \rightarrow 4.7$	[15]
¹⁸⁶ W	р	$19.8 \rightarrow 5.5$	[24]
¹⁸⁶ W	³ He	31.6	[25]
¹⁸⁶ W	α	43.4	[26]
^{nat} Re	α	$60 \rightarrow 24.4$	[26]
natRe	р	>78	[27]
natRe	d	$40 \rightarrow 25$	[28]
natRe	р	$69.5 \rightarrow 2.8$	[29]
¹⁹² Os	р	$66.5 \rightarrow 16.8$	[8]

раствора, полученного из первой колонки, заполненной оксидом алюминия [36]. Рассматриваются и альтернативные варианты генераторов, в частности основанные на геле вольфрамата титана [37]. Предложено [38] использование наночастиц оксида циркония в качестве сорбента для ¹⁸⁸W/¹⁸⁸Re-генераторов. Емкость нанокристаллического ZrO₂ составила 325 мг/г.

2. ВЫДЕЛЕНИЕ РЕНИЯ ИЗ ВОЛЬФРАМОВЫХ МИШЕНЕЙ

И вольфрам, и рений в водных растворах устойчивы в анионной форме в высших степенях окисления (+6 и +7 соответственно), поэтому для их разделения чаще всего используют методы анионообменной хроматографии. Разделение этой пары элементов во многом основывается на

Рис. 2. Кривые элюирования вольфрама, тантала и рения [22]. Сорбент — сильноосновной анионооб-менник.

подходах, разработанных для технеция и молибдена.

Как правило, сначала элементы переводят в высшие степени окисления, растворяя облученные мишени из WO_3 в 1–2 М NaOH при нагревании. Металлический вольфрам и WS_2 растворяют в перекиси водорода, затем добавлением щелочи переводят вольфрам и рений в анионную форму.

Большинство схем разделения основано на том, что рений прочно удерживается на сильноосновных анионообменных смолах (Dowex 1 или аналогах), в то время как вольфрам и примесный тантал-183 (¹⁸³Ta), образующийся по реакции ¹⁸⁶W(p,α)¹⁸³Ta, легко смываются с колонки разбавленной щелочью или кислотой [24, 33, 31] (рис. 2). Смыть рений с колонки можно крепкой азотной кислотой (4–7 М). Метод позволяет достичь коэффициентов разделения до 10⁸ [33]. Коэффициенты распределения вольфрама и рения между хроматографической сильноосновной анионообменной смолой (AG 1 × 8) и водными растворами NaOH и HNO₃ были определены в [39] (рис. 3).

Вольфрам и рений также разделяют на сорбенте на основе оксида алюминия. Он применяется как в изотопных генераторах, так и при выделении рения из облученных вольфрамовых мишеней [13]. Разделение проводят в среде 0.9%-ного NaCl. При этом вольфрам и тантал сорбируются, а рений проходит сквозь колонку (рис. 4).

Подобно технецию рений может быть выделен в виде $\text{Re} O_4^-$ кстракцией кислородсодержащими растворителями, например метилэтилкетоном. Экстракция количественно происходит из 2 М NaOH. Вольфрам, присутствующий в виде вольфрамата, при этом остается в водной фазе [32].

3. РАДИОФАРМПРЕПАРАТЫ НА ОСНОВЕ РАДИОИЗОТОПОВ РЕНИЯ

В водных растворах рений наиболее устойчив в виде перрената. Однозарядный анион ReO₄⁻ по свойствам несколько напоминает йодид и способен накапливаться в щитовидной железе. Для получения РФП рений используют в низших степенях окисления, чаще всего (I) и (V). Восстановление рения происходит существенно сложнее, чем технеция, поэтому методы синтеза РФП, подходящие для технеция, не всегда могут быть использованы для рения.

Как правило, рений вводят в комплекс в пятивалентном состоянии, ядро комплекса чаще всего составляет оксокатион $[Re=O]^{3+}$, и в координа-

Рис. 3. Коэффициенты распределения (Ка) рения (а) и вольфрама (б) при разных концентрациях щелочи и кислоты [39].

ступных наборов.

Рис. 4. Элюирование вольфрама, тантала и рения с колонки с оксидом алюминия [11].

ционную сферу входит лиганд, имеющий четыре донорных атома, часто N и S. Координационное число технеция в таких комплексах – 5, они имеют строение тетрагональной пирамиды. Также получили распространение комплексы с ядром $[Re\equiv N]^{2+}$ (рис. 5).

Особенно интересны трикарбонильные комплексы рения (I), содержащие ядро $[\text{Re}(\text{CO})_3]^+$, поскольку трикарбонильное ядро отличается стабильностью, в то же время за счет транс-эффекта лабилизирует остальные лиганды в октаэдрической координационной сфере. Остальные координационные места могут занимать, например, ароматические амины. Существенным достижением стала разработка [40, 41] нового реагента — боранокарбоната $K_2[H_3BCO_2]$, позволившего одновременно восстанавливать ReO_4^- (или TcO_4^-) и служить источником монооксида углерода с образованием стабильного катиона $[Re(H_2O)_3(CO)_3]^+$. В результате появилась возможность реализовать синтез подобных РФП в виде коммерчески до-

Обзор координационной химии рения можно найти в [42, 43].

Для паллиативного лечения костных метастазов разработан остеотропный препарат ¹⁸⁸Re-HEDP (гидроксиэтилиден дифосфонат рения-188) [44]. Два препарата на основе дифосфонатов ¹⁸⁸Re – фосфорен и золерен – разработаны и успешно применяются в России. Изотопы рения также предлагается использовать для радиоиммунотерапии [45] и таргетной пептидной терапии [46]. Сообщалось о синтезе комплексов рения, содержащих один или два фрагмента, связывающихся с простат-специфическим мембранным антигеном [47, 48]. Сами по себе комплексы рения могут проявлять противораковые свойства. В частности, ряд трикарбонильных комплексов рения(I) способен к интеркаляции (обратимое включение в структуру) с ДНК [49].

Необычные пептидные комплексы с рением были получены путем циклизации аминокислотных фрагментов вокруг ядра [Re=O]³⁺ (рис. 6). Так, был получен синтетический циклический ренийсодержащий аналог α-меланоцитстимулирующего гормона (α-MSH). Показано, что вещество способно накапливаться в опухоли и имеет потенциал для визуализации и терапии меланомы [50]. Впоследствии этот комплекс, но уже со стабильным рением, был функционализирован с помощью хелаторов, и получен целый ряд ренийсодержащих пептидов для визуализации меланомы, меченных различными радионуклидами, в том числе ⁶²Cu- NOTA-GGG-Re(Arg¹¹)CCMSH [51]. ⁶⁴Cu- и ⁸⁶Y-DOTA-ReCCMSH(Arg¹¹) [52]. В экспериментах на животных показана эффективность аналогичного препарата на основе α-излучателя ²¹²Рb против меланомы [53].

Рис. 5. Координация рения в некоторых комплексах: ядро $[Re=O]^{3+}$, $[Re=N]^{2+}$, $[Re(CO)_3]^+$.

РОССИЙСКИЕ НАНОТЕХНОЛОГИИ том 15 № 4 2020

Рис. 6. Структура ReCCMSH(Arg11) и его производных [52].

Радиофармпрепаратам на основе ¹⁸⁸ Re для лечения рака посвящен обзор [35].

4. НАПРАВЛЕННАЯ ДОСТАВКА С ПОМОЩЬЮ НАНОСТРУКТУР

Радиоколлоиды давно применяются в ядерной медицине, в частности частицы микронного размера, содержащие радиоактивный рений, исследовали в качестве средства для терапии хронических заболеваний суставов методом радиосиновэктомии [54, 55]. Микросферы на основе человеческого сывороточного альбумина размером 20–35 мкм были загружены ¹⁸⁸Re в виде трикарбонильного комплекса [56]. Их предлагается использовать при радиоэмболизации при раке печени.

РФП, меченные ¹⁸⁸Re, предлагается использовать в терапии карциномы печени [57]. В качестве транспортирующего агента применяется липиодол (йодированный и этерифицированный липид масла мака), используемый для эмболизации сосудов, питающих опухоль. Рассматривается ряд бифункциональных хелатирующих агентов (N_2S_2), которые могут связываться с липиодолом и удерживать рений.

К радиоколлоидам близки по размерам нанообъекты, чьи размеры лежат в диапазоне 1– 100 нм по одному из измерений. Они могут быть различными по своей природе: липосомы, дендримеры, оксидные, полупроводниковые наночастицы, углеродные нанотрубки и пр. Еще в 1986 г. было установлено, что кровеносные сосуды опухоли более проницаемы для больших молекул по сравнению со здоровыми [58]. Кроме того, большие молекулы накапливаются в опухоли из-за замедленного клиренса [59]. Этот эффект получил название эффекта повышенной проницаемости и удержания (Enhanced Permeability and Retention (**EPR**) effect).

Эффект EPR стал обоснованием большинства работ в области наномедицины рака, но в то же время его значимость остается предметом дискуссий [60]. По мнению некоторых авторов, эффект выражен на моделях лабораторных животных, но у людей по причине высокой гетерогенности рака заметен значительно меньше [61]. Повидимому, его не следует считать общим правилом, эффект может быть значительным в некоторых опухолях, но незначительным в других.

Первое поколение наночастиц в основном накапливалось в опухоли именно вследствие эффекта EPR. Однако они обладали рядом недостатков, в частности значительным накоплением в печени и селезенке. Отчасти этот недостаток удалось преодолеть за счет модификации поверхности частиц полиэтиленгликолем, который, будучи инертным и гидрофильным, понижает иммуногенность наночастиц, препятствует их фагоцитозу, продлевая циркуляцию в кровотоке [62]. Следующее поколение наноносителей имеет функционализированную поверхность в результате биоконъюгации со специфическими антителами или пептидами, имеющими сродство к спе-

Рис. 7. Строение комплексов $(S_3CPh)_2(S_2CPh)Re$ (а) и Re-BMEDA (б).

цифическим опухолям или тканям (активный таргетинг) [63].

Одним из наиболее часто применяемых наноразмерных средств доставки лекарств являются липосомы. Лекарственные средства и радионуклиды, инкапсулированные в липосоме, могут находиться в одном из трех отсеков: водорастворимые вещества — в центральном водном ядре липосомы; жирорастворимые агенты переносятся в мембране; пептиды и мелкие белки имеют тенденцию концентрироваться на границе раздела липидного бислоя и водной фазы [63].

В [64] обсуждается возможность внутриопухолевого введения препаратов ¹⁸⁶Re, инкапсулированных в липосомы размером 100 нм, для нанобрахитерапии глиобластомы. В качестве лиганда используется **BMEDA** (N,N-бис(2-меркаптоэтил)-N', N'-диэтилэтилендиамин) (рис. 7). В контрольной группе животных медианная выживаемость составила 49 дней, в группе, получавшей препарат, - 126, причем большая часть животных в итоге была умерщвлена в связи с завершением эксперимента. Также в экспериментах на животных была показана эффективность липосом с комплексом ¹⁸⁸Re-SSS (рис. 7) против глиомы. Было установлено, что рений, введенный в мозг в виде перрената, выводится из организма значительно быстрее, чем инкапсулированный в липосомы [65].

Внутриопухолевое введение липосом, загруженных ¹⁸⁶Re-BMEDA, применялось в экспериментах на животных, которым были привиты в область головы и шеи раковые клетки линии SCC, выделенные из рака языка человека [66]. Трем контрольным группам были внутривенно введены немеченные липосомы, неинкапсулированный ¹⁸⁶Re-перренат или неинкапсулированное промежуточное соединение ¹⁸⁶Re-BMEDA. Средний объем опухоли в группе животных, получивших ¹⁸⁶Re-липосомы на 14-й день после лечения, снизился до 87.7 ± 20.1%, тогда как в трех контрольных группах увеличился в среднем до

395.0—514.4%. ¹⁸⁶Rе-липосомы обеспечивали более длительное удержание ¹⁸⁶Rе в опухоли, что приводило к средней поглощенной дозе облучения опухоли 526.3 \pm 93.3 Гр, в то время как в группах, получивших ¹⁸⁶Re-перренат и ¹⁸⁶Re-BMEDA, доза в опухоли составила 3.3 \pm 1.2 и 13.4 \pm 9.2 Гр соответственно.

В [67] использовали липосомы средним размером ~75 нм, загруженные комплексом (S_3CPh)₂(S_2CPh)¹⁸⁸Re. На поверхности липосом находились антитела 12g5, направленные на хемокиновые рецепторы CXCR4. На каждую частицу приходилось 13 ± 3 молекул антител. Проведенный эксперимент на мышах с имплантированными клетками злокачественной глиобластомы человека клеточной линии U87MG продемонстрировал, в том числе, замедление роста опухоли и увеличение клинической медианной выживаемости.

В [68] обсуждаются доклинические испытания препарата от рака печени на основе рения. В качестве носителя используют поли-L-лизин дендример (Colcom, Франция), смешанный с нитроимидазол-метил-1,2,3-триазол-метил-ди-(2-пиролил)-амином. Рений связывался в виде трикарбонильного комплекса. В экспериментах на животных показано, что меченный ¹⁸⁶Re дендример обладает противоопухолевой активностью, причем рост опухоли замедляется с увеличением дозы. В то же время ни сам дендример, ни рений в виде перрената такой активности не показали. В этом случае речь также идет о радиоэмболизации.

Наночастицы позволяют создавать комбинированные препараты для химиотерапии и радиотерапии. Так, в [69] на крысах проводили испытания комплексного препарата для лечения плоскоклеточного рака головы и шеи на основе липосом, меченных ¹⁸⁶Re, в которые был загружен препарат для химиотерапии доксорубицин.

В [70] были получены наночастицы на основе функционализированного оксида железа Fe₃O₄. К поверхности был присоединен рений в виде

трикарбонильного комплекса с фенантролином или бипиридином. Средний размер частиц составил около 10 нм. Частицы создавались как мультимодальный агент для МРТ (за счет магнитных свойств оксида железа) и оптической визуализации люминесценции рениевого комплекса. Эксперимент проводили со стабильным рением, однако авторы отмечают, что замена на радиоактивный изотоп позволит использовать препарат для ОФЭКТ и радиотерапии.

Наночастицы магнетита, покрытые диоксидом кремния, были функционализированы N-[3-(триметоксисилил)пропил]-этилендиамином, и на их поверхности был ковалентно связан гистидин. Далее гистидин выступал в роли лиганда, связывающего ¹⁸⁸Re в виде трикарбонила рения(I). Наночастицы показали хорошую устойчивость *in vitro* по отношению к плазме крови [71].

Частицы магнетита Fe₃O₄ бактериального происхождения (магнитосомы) также представляют интерес в качестве нанотранспортеров [72]. Магнитосомы снаружи покрыты липидами и белками, что делает возможной их функционализацию. В [73] сообщалось о синтезе магнитосом, меченных ¹⁸⁸ Re для целей таргетной терапии рака.

ЗАКЛЮЧЕНИЕ

Радиоизотопы рения имеют значительный потенциал для их применения в терапии рака. Во многом их использование на сегодня ограничивается малой доступностью. Сырье для генераторов ¹⁸⁸ Re может быть произведено лишь на нескольких реакторах в мире, что лимитирует внедрение этого радионуклида в повсеместную клиническую практику. Проблемы, связанные с масштабированием шиклотронного производства ¹⁸⁶Re, в целом решены. Развитие координационной химии рения и близкое сходство Re и Tc открывают широкие возможности для синтеза кинетически устойчивых комплексов, представляющих интерес для ядерной медицины. В частности, синтезированы комплексы рения направленные на связывание с рецепторами соматостатина, α-MSH, PSMA, CXCR4. В настоящее время несколько таргетных препаратов с радиоизотопами рения проходят клинические испытания. В частности, препарат Nimotuzumab (моноклональные антитела, направленные против рецепторов эпидермального фактора роста, меченные ¹⁸⁸Re) был испытан на пациентах с анапластической астроцитомой и мультиформной глиобластомой в рамках первой фазы клинических испытаний [74]. Авторы определили побочные эффекты и безопасную для использования дозу, подчеркнув перспективность данного подхода для лечения злокачественных глиом. Обнадеживающие результаты получены в клинических испытаниях препаратов на основе ^{188,186}Re-HEDP против костных метастаз различной природы [75].

Особый интерес представляет применение изотопов рения, связанных с наноносителями. На сеголня чаше всего используются липосомы с инкапсулированными комплексами рения. Как правило, их вводят непосредственно в опухоль, что позволяет увеличить время удерживания за счет эффекта EPR. Важным преимуществом наноносителей является мультимодальность - сочетание на одной платформе компонентов, позволяющих совмещать различные типы молекулярной визуализации и терапии. В частности, присутствие контрастных агентов позволяет сочетать МРТ с бета-радиотерапией, а введение позитронных эмиттеров – сочетать терапию и позитронно-эмиссионную томографию. Перспективной также представляется олновременная загрузка наночастиц химиотерапевтическими препаратами и бета-излучателями.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Hoedl S.A., Updegraff W.D.* // Sci. Global Security. 2015. V. 23. P. 121.
- Qaim S.M. // Radiochim. Acta. 2012. V. 100. P. 635. https://doi.org/10.1524/ract.2012.1966
- 3. *Ehrhardt G.J., Blumer M.E., Su F.M. et al.* // Appl. Radiat. Isot. 1997. V. 48. № 1. P. 1. https://doi.org/10.1016/S0969-8043(96)00124-8
- Mastren T., Radchenko V., Bach H.T. et al. // Nucl. Med. Biol. 2017. V. 49. P. 24. https://doi.org/10.1016/j.nucmedbio.2017.02.006
- 5. *Balkin E.R., Gagnon K., Dorman E. et al.* // Radiochim. Acta. 2017. V. 105. № 12. P. 1071. https://doi.org/10.1515/ract-2017-2780
- Nuclear Data for the Production of Therapeutic Radionuclides / Eds. Qaim S.M. et al. Technical Reports Series. V. 473. Vienna: IAEA, 2011. 395 p.
- Ali S.K.I., Khandaker M.U., Kassim H.A. // Appl. Radiat. Isot. 2018. V. 135. P. 239. https://doi.org/10.1016/j.apradiso.2018.01.035
- Szelecsényi F, Steyn G.F., Kovács Z. et al. // J. Radioanal. Nucl. Chem. 2009. V. 282. № 1. P. 261. https://doi.org/10.1007/s10967-009-0147-y
- 9. *Titarenko Y.E., Batyaev V.F., Titarenko A.Y. et al.* // Physics of Atomic Nuclei. 2011. V. 74. № 4. P. 551. https://doi.org/10.1134/s1063778811040181
- Khandaker M.U., Uddin M.S., Kim K.L. et al. // Nucl. Instrum. Methods Phys. Res. B. 2008. V. 266. № 7. P. 1021. https://doi.org/10.1016/j.nimb.2008.02.037
- Tárkányi F., Takács S., Szelecsényi F. et al. // Nucl. Instrum. Methods Phys. Res. B. 2006. V. 252. № 2. P. 160.

https://doi.org/10.1016/j.nimb.2006.09.010

 Tárkányi F., Ditrói F., Takács S., Hermanne A. // Nucl. Instrum. Methods Phys. Res. B. 2017. V. 391. P. 27. https://doi.org/10.1016/j.nimb.2016.11.027

- Zhang X., Li W., Fang K. et al. // Radiochim. Acta. 1999. V. 86. № 1–2. P. 11. https://doi.org/10.1524/ract.1999.86.12.11
- Tárkányi F., Hermanne A., Takács S. et al. // Nucl. Instrum. Methods Phys. Res. B. 2007. V. 264. № 2. P. 389.
 - https://doi.org/10.1016/j.nimb.2007.09.026
- 15. *Bonardi M., Groppi F, Persico E. et al.* // Radiochim. Acta. 2011. V. 99. № 1. P. 1. https://doi.org/10.1524/ract.2011.1789
- 16. Miah M.H., Kuhnhenn J., Herpers U. et al. // J. Nucl. Sci. Technol. 2002. V. 39 sup 2. P. 369. https://doi.org/10.1080/00223131.2002.10875117
- 17. *Tárkányi F., Takács S., Szelecsényi F. et al.* // Nucl. Instrum. Methods Phys. Res. B. 2003. V. 211. № 3. P. 319. https://doi.org/10.1016/S0168-583X(03)01389-2
- Ochiai K., Nakao M., Kubota N. et al. // International Conference on Nuclear Data for Science and Technology. 2007. P. 3. https://doi.org/10.1051/ndata:07663
- Khandaker M.U., Nagatsu K., Minegishi K. et al. // Nucl. Instrum. Methods Phys. Res. B. 2017. V. 403. P. 51. https://doi.org/10.1016/j.nimb.2017.04.087
- 20. *Manenti S., Persico E., Abbas K. et al.* // Radiochim. Acta. 2014. V. 102. № 8. P. 669. https://doi.org/10.1515/ract-2013-2194
- Ishioka N.S., Watanabe S., Osa A. et al. // J. Nucl. Sci. Technol. 2002. V. 39. № October 2014. P. 1334. https://doi.org/10.1080/00223131.2002.10875351
- Duchemin C., Guertin A., Haddad F. et al. // Appl. Radiat. Isot. 2015. V. 97. P. 52. https://doi.org/10.1016/j.apradiso.2014.12.011
- Lapi S., Mills W.J., Wilson J. et al. // Appl. Radiat. Isot. 2007. V. 65. № 3. P. 345. https://doi.org/10.1016/j.apradiso.2006.08.015
- Shigeta N., Matsuoka H., Osa A. et al. // J. Radioanal. Nucl. Chem. 1996. V. 205. № 1. P. 85. https://doi.org/10.1007/BF02040553
- Scott N.E., Cobble J.W., Daly P.J. // Nucl. Phys. A. 1968. V. 119. P. 131.
- 26. Ismail M. // Pramana. 1993. V. 40. № 3. P. 227. https://doi.org/10.1007/BF02900190
- Issa S.A.M., Uosif M.A. M., Michel R. et al. // Nucl. Instrum. Methods Phys. Res. B. 2013. V. 298. P. 19. https://doi.org/10.1016/j.nimb.2013.01.001
- Ditrói F., Tárkányi F., Takács S. et al. // Nucl. Instrum. Methods Phys. Res. B. 2013. V. 296. P. 92. https://doi.org/10.1016/j.nimb.2012.11.020
- Ditrói F., Tárkányi F., Takács S. et al. // Appl. Radiat. Isot. 2013. V. 77. P. 103. https://doi.org/10.1016/j.apradiso.2013.02.024
- Zhang X., Li Q., Li W. et al. // Appl. Radiat. Isot. 2001. V. 54. № 1. P. 89. https://doi.org/10.1016/S0969-8043(00)00268-2
- Gott M.D., Hayes C.R., Wycoff D.E. et al. // Appl. Radiat. Isot. 2016. V. 114. P. 159. https://doi.org/10.1016/j.apradiso.2016.05.024
- Moustapha M.E., Ehrhardt G.J., Smith C.J. et al. // Nucl. Med. Biol. 2006. V. 33. № 1. P. 81. https://doi.org/10.1016/j.nucmedbio.2005.09.006
 - РОССИЙСКИЕ НАНОТЕХНОЛОГИИ том 15 № 4 2020

- 33. Fassbender M.E., Ballard B., Birnbaum E.R. et al. // Radiochim. Acta. 2013. V. 101. № 5. P. 339. https://doi.org/10.1524/ract.2013.2031
- 34. Knapp F.F. (Russ), Mirzadeh S., Beets A.L., Du M. // J. Radioanal. Nucl. Chem. 2005. V. 263. № 2. P. 503. https://doi.org/10.1007/s10967-005-0083-4
- Lepareur N., Lacœuille F., Bouvry C. et al. // Frontiers in Medicine. 2019. V. 6. P. 132. https://doi.org/10.3389/fmed.2019.00132
- Boschi A., Uccelli L., Pasquali M. et al. // J. Chem. 2014. V. 2014. P. 529406. https://doi.org/10.1155/2014/529406
- 37. Dadachov M., Van So L., Lambrecht R., Dadachova E. // Appl. Radiat. Isot. 2002. V. 57. № 5. P. 641. https://doi.org/10.1016/S0969-8043(02)00178-1
- Chakravarty R., Shukla R., Tyagi A.K. et al. // Appl. Radiat. Isot. 2010. V. 68. № 2. P. 229. https://doi.org/10.1016/j.apradiso.2009.10.031
- 39. *Gott M.D., Ballard B.D., Redman L.N. et al.* // Radiochim. Acta. 2014. V. 102. № 4. P. 325. https://doi.org/10.1515/ract-2013-2144
- 40. *Alberto R., Ortner K., Wheatley N. et al.* // J. Am. Chem. Soc. 2001. V. 123. № 13. P. 3135. https://doi.org/10.1021/ja003932b
- Alberto R. // Eur. J. Nucl. Med. Mol. Imaging. 2003.
 V. 30. № 9. P. 1299. https://doi.org/10.1007/s00259-003-1292-0
- 42. *Donnelly P.S.* // Dalton Trans. 2011. V. 40. № 5. P. 999. https://doi.org/10.1039/c0dt01075h
- 43. Abram U., Alberto R. // J. Brazilian Chem. Soc. 2006. V. 17. № 8. P. 1486. https://doi.org/10.1590/S0103-50532006000800004
- 44. *Liepe K.* // World J. Nucl. Med. 2018. V. 17. № 3. P. 133. https://doi.org/10.4103/wjnm.WJNM_85_17
- 45. *Kinuya S., Yokoyama K., Izumo M. et al.* // Cancer Lett. 2005. V. 219. № 1. P. 41. https://doi.org/10.1016/j.canlet.2004.08.033
- 46. Makris G., Kuchuk M., Gallazzi F. et al. // Nucl. Med. Biol. 2019. V. 71. P. 39. https://doi.org/10.1016/j.nucmedbio.2019.04.004
- 47. Banerjee S.R., Foss C.A., Castanares M. et al. // J. Med. Chem. 2008. V. 51. № 15. P. 4504. https://doi.org/10.1021/im800111u
- 48. Frei A., Fischer E., Childs B.C. et al. // Dalton Trans. 2019. V. 48. № 39. P. 14600–14605. https://doi.org/10.1039/C9DT02506E
- 49. Konkankit C.C., Marker S.C., Knopf K.M., Wilson J.J. // Dalton Trans. 2018. V. 47. № 30. P. 9934. https://doi.org/10.1039/C8DT01858H
- 50. *Giblin M.F., Wang N., Hoffman T.J. et al.* // Proc. Nat. Acad. Sci. 1998. V. 95. № 22. P. 12814. https://doi.org/10.1073/pnas.95.22.12814
- 51. *Zhang X., Yue Z., Lu B.-Y. et al.* // Curr. Radiopharm. 2012. V. 5. № 4. P. 329. https://doi.org/10.2174/1874471011205040329
- McQuade P., Miao Y., Yoo J. et al. // J. Med. Chem. 2005. V. 48. № 8. P. 2985. https://doi.org/10.1021/jm0490282

- 53. Miao Y. // Clinical Cancer Research. 2005. V. 11. № 15. P. 5616. https://doi.org/10.1158/1078-0432.CCR-05-0619
- 54. Ures M.C., Savio E., Malanga A. et al. // BMC Nucl. Med. 2002. V. 2. № 1. P. 1. https://doi.org/10.1186/1471-2385-2-1
- 55. *Liepe K.* // World J. Nucl. Med. 2015. V. 14. № 1. P. 10. https://doi.org/10.4103/1450-1147.150509
- 56. Ni H.-C., Yu C.-Y., Chen S.-J. et al. // Appl. Radiat. Isot. 2015. V. 99. P. 117. https://doi.org/10.1016/j.apradiso.2015.02.020
- Banka V.K., Moon S.-H., Jeong J.M. et al. // Nucl. Med. Biol. 2015. V. 42. № 3. P. 317. https://doi.org/10.1016/j.nucmedbio.2014.11.013
- 58. Gerlowski L.E., Jain R.K. // Microvascular Res. 1986. V. 31. № 3. P. 288. https://doi.org/10.1016/0026-2862(86)90018-X
- Matsumura Y., Maeda H. // Cancer Res. 1986. V. 46. № 12. Pt 1. P. 6387.
- Nichols J.W., Bae Y.H. // J. Control. Release. 2014.
 V. 190. P. 451. https://doi.org/10.1016/j.jconrel.2014.03.057
- 61. *Danhier F.* // J. Control. Release. 2016. V. 244. P. 108. https://doi.org/10.1016/j.jconrel.2016.11.015
- 62. *Li S.-D., Huang L.* // Mol. Pharm. 2017. V. 5. № 4. P. 496.
 - https://doi.org/10.1016/B978-0-08-100557-6.00009-2
- Ting G., Chang C.-H., Wang H.-E., Lee T.-W. // J. Biomed. Biotechnol. 2010. V. 2010. P. 1. https://doi.org/10.1155/2010/953537
- 64. Phillips W.T., Goins B., Bao A. et al. // Neuro-Oncology. 2012. V. 14. № 4. P. 416. https://doi.org/10.1093/neuonc/nos060

- 65. *Allard E., Hindre F., Passirani C.L. et al.* // Eur. J. Nucl. Med. Mol. Imaging. 2008. V. 35. № 10. P. 1838. https://doi.org/10.1007/s00259-008-0735-z
- 66. *French J.T., Goins B., Saenz M. et al.* // J. Vasc. Interv. Radiol. 2010. V. 21. № 8. P. 1271. https://doi.org/10.1016/j.jvir.2010.02.027
- 67. *Séhédic D., Chourpa I., Tétaud C. et al.* // Theranostics. 2017. V. 7. № 18. P. 4517. https://doi.org/10.7150/thno.19403
- 68. *Yang G., Sadeg N., Tahar H.B.* // Drug Designing: Open Access. 2017. V. 06. № 01. P. 1. https://doi.org/10.4172/2169-0138.1000144
- 69. Soundararajan A., Bao A., Phillips W.T. et al. // Cancer Biotherapy and Radiopharmaceuticals. 2011. V. 26. № 5. P. 603. https://doi.org/10.1089/cbr.2010.0948
- 70. *Carron S., Bloemen M., Vander Elst L. et al.* // J. Mater. Chem. B. 2015. V. 3. № 21. P. 4370. https://doi.org/10.1039/C5TB00460H
- Cao J., Wang Y., Yu J. et al. // J. Magn. Magn. Mater. 2004. V. 277. № 1–2. P. 165. https://doi.org/10.1016/j.jmmm.2003.10.022
- Alphandéry E. // Frontiers in Bioengineering and Biotechnology. 2014. V. 2. https://doi.org/10.3389/fbioe.2014.00005
- Akbari-Karadeh S., Aghamiri S.M.R., Tajer-Mohammad-Ghazvini P., Ghorbanzadeh-Mashkani S. // Appl. Biochem. Biotechnol. 2020. V. 190. № 2. P. 540. https://doi.org/10.1007/s12010-019-03079-x
- 74. *Casaco A., López G., García I. et al.* // Cancer Biology Therapy. 2008. V. 7. № 3. P. 333. https://doi.org/10.4161/cbt.7.3.5414
- Finlay I. G., Mason M. D., Shelley M. // Lancet Oncology. 2005. V. 6. № 6. P. 392. https://doi.org/10.1016/S1470-2045(05)70206-0