———— ОБЗОРЫ ———

УДК 621.318.1, 537.621-537.624

# СИНТЕТИЧЕСКИЕ АНТИФЕРРОМАГНИТНЫЕ СТРУКТУРЫ В ТЕХНОЛОГИИ УСТРОЙСТВ СПИНТРОНИКИ

© 2021 г. В. В. Амеличев<sup>1</sup>, Д. В. Васильев<sup>1,\*</sup>, А. И. Крикунов<sup>1</sup>, Ю. В. Казаков<sup>1</sup>, Д. В. Костюк<sup>1</sup>, Е. П. Орлов<sup>1</sup>, Д. А. Жуков<sup>1</sup>, П. А. Беляков<sup>1</sup>

<sup>1</sup> Научно-производственный комплекс "Технологический центр", Москва, Россия

\**E-mail: 29diman05@mail.ru* Поступила в редакцию 29.07.2020 г. После доработки 26.08.2020 г. Принята к публикации 25.09.2020 г.

Рассмотрены синтетические антиферромагнитные (САФ) структуры и их влияние в фиксированном слое спин-туннельного перехода на величину магниторезистивного эффекта и температурную стабильность. САФ-структура состоит из двух ферромагнитных (ФМ) слоев, между которыми расположена немагнитная пленка. Обменное взаимодействие ионов двух ФМ-слоев имеет осциллирующий характер и зависит от толщины немагнитного слоя, шероховатости поверхности ФМ-слоев. Рассмотрен механизм перемагничивания САФ с фиксацией антиферромагнитным слоем и при ее отсутствии, а также влияние последовательности напыления слоев в САФ-структуре на ее свойства. Приведено описание основных применений САФ-структур в составе устройств спинтроники.

DOI: 10.1134/S1992722321020023

### ОГЛАВЛЕНИЕ

Введение

1. Магнитные свойства САФ

2. Особенности формирования САФ-структур

3. Применение САФ для MRAM и преобразователей магнитного поля

Заключение

# введение

Исследования последних десятилетий в области взаимодействия многослойных магнитных наноструктур привели к ряду открытий и важным практическим применениям. Результаты исследования характера взаимодействия двух тонких ферромагнитных (ФМ) слоев, разделенных немагнитным металлическим (НМ) слоем, являются значимыми и актуальными в области создания приборов и устройств на основе гигантского магниторезистивного (ГМР) эффекта.

Взаимодействие двух ФМ-слоев, разделенных НМ-слоем, имеет осциллирующий характер и является физической основой функционирования многих устройств на основе ГМР-эффекта. Осциллирующий характер взаимодействия позволяет реализовать структуры с антипараллельным состоянием ФМ-слоев. Такие трехслойные структуры называют синтетическими антиферромагнетиками (САФ), они обладают рядом уникальных свойств и используются как в элементах энергонезависимой памяти, так и в сенсорных устройствах, в основном на спин-туннельном магниторезистивном (**СТМР**) эффекте.

Использование САФ позволяет повысить эффективное поле обменного смещения, снизить магнитостатическое поле опорного слоя, повысить термостабильность структур, увеличить магниторезистивный эффект [1, 2]. В элементах памяти на основе STT (*spin-transfer torque*) MRAM САФ позволяет снизить пороговые значения токов и время переключения [3, 4]. В памяти на основе Toggle MRAM САФ является базовым элементом конструкции [5]. САФ в преобразователях магнитного поля на основе СТМР-эффекта после термомагнитной обработки формирует скрещенную магнитную конфигурацию, что приводит к снижению коэрцитивности свободного слоя до единиц эрстед [6].

Во всех случаях для успешной имплементации САФ в устройства спинтроники необходимо тщательное изучение магнитных свойств САФ и конструктивно-технологических параметров разрабатываемого устройства, наибольшее значение имеют: зависимость взаимодействия ФМ-слоев САФ от толщины HM-слоя, влияние процессов роста и последующих термомагнитных обработок на магнитные свойства САФ.



**Рис. 1.** Соотношение между углами и направлениями основных магнитных векторов САФ-структуры, ОЛН – ось легкого намагничивания, ОТН – ось трудного намагничивания [10].

# 1. МАГНИТНЫЕ СВОЙСТВА САФ

Как правило, САФ состоит из двух ФМ-слоев, разделенных НМ-слоем, для которых характерно взаимодействие Рудермана–Киттеля–Касуя–Иосиды (РККИ-взаимодействие).

Энергия взаимодействия имеет знакопеременный осциллирующий характер как функция от расстояния между взаимодействующими ионами: в зависимости от расстояния между ионами материал может проявлять ФМ- или антиферромагнитные (**AΦ**) свойства [7], данный эффект широко применяется в спиновых клапанах на основе ГМР- и СТМР-эффектов.

В [8] представлен подход Рудермана-Киттеля к объяснению осциллирующей обменной связи между ФМ-слоями, разделенными НМ-слоем, рассмотрена роль дефектов (дислокаций и межфазной шероховатости) на РККИ-взаимодействие. На расстоянии отсечки связь между магнитными слоями подавляется воздействием дислокаций, эта величина зависит от несоответствия параметров решетки между ФМ- и НМ-слоями. Влияние шероховатости проявляется в двух аспектах [8]: толщина разделительного слоя колеблется с некоторыми отклонениями около среднего значения, поэтому при расчете взаимодействия необходимо учитывать данные флуктуации; также шероховатость разрушает плоскостную трансляционную инвариантность структуры. Отклонения толщины разделительного слоя влияют на период осциллирующей связи, второй фактор влияния изменяет колебания независимо от их периода.

В рамках упрощенной модели Мейклджона и Бина [10] полная энергия САФ-структуры, отнесенная к единице площади, может быть записана как

$$E = -\mu_0 H M_F t_F (\cos(\theta - \beta) + \cos(\theta - \alpha)) + K_F t_F (\sin^2(\alpha) + \sin^2(\beta)) - J_{PKKH} \cos(\beta - \alpha),$$
(1)



**Рис. 2.** Кривая намагничивания САФ-структуры  $(K_F = 0)$  [12].

где первое слагаемое — энергия Зеемана для обоих ФМ-слоев; второе — энергия магнитокристаллической анизотропии обоих ФМ-слоев; третье энергия межслойного РККИ-взаимодействия ФМ-слоев;  $\mu_0$  — магнитная проницаемость вакуума;  $\mu_0 \approx 1.25663706212(19) \times 10^{-6}$  Н  $A^{-2}$ ;  $K_F$  — константа магнитокристаллической анизотропии. Соотношения углов  $\alpha$  и  $\beta$  и векторов *H* и  $M_F$  приведены на рис. 1.

Минимизация общей энергии относительно  $\alpha$ и  $\beta$  в случае, когда магнитокристаллической анизотропией в ФМ-слоях можно пренебречь, позволяет представить кривую намагничивания САФ-структуры таким образом, как это показано на рис. 2.

При нулевом поле  $\Phi$ М-слои связаны антиферромагнитно. При увеличении поля в том или ином направлении вектор намагниченности слоев следует за направлением поля вплоть до коллинеарного состояния. Величина поля  $H_{sat}$  соответствует состоянию, при котором внешним воздействием преодолевается межслойное РККИвзаимодействие САФ-наноструктуры, а энергия РККИ-взаимодействия определяется как

$$J_{\rm PKKM} = -\mu_0 H_{sat} M_s t/2, \qquad (2)$$

где  $M_s$  и t – намагниченность насыщения и толщина  $\Phi$ М-слоев соответственно.

В СВМР (спин-вентильных магниторезистивных) и СТМР-наноструктурах один из слоев САФ выполняет функцию опорного слоя самостоятельно или в составе ФМ многослойной структуры. В этом случае необходима фиксация САФ посредством его контакта с АФ-слоем. Возникающее при этом обменное смещение приводит к однонаправленной магнитной анизотропии [11]. В том случае, когда САФ связан механизмом обменного смещения с АФ-слоем, полная энергия

196



**Рис. 3.** Многослойная структура, содержащая САФ- и АФ-слои [12].

системы на единицу площади может быть представлена как

$$E = -\mu_0 H M_F t_F (\cos(\theta - \beta) + \cos(\theta - \beta)) + K_F t_F (\sin^2(\alpha) + \sin^2(\beta)) - (3) - J_{PKKH} \cos(\beta - \alpha) - J_{EB} \cos(\beta),$$

где последний член уравнения представляет энергию связи АФ-слоя с нижним ФМ-слоем САФ (рис. 3). Направления основных векторов и углы между ними соответствуют рис. 1.

Минимизация общей энергии структуры СА $\Phi/A\Phi$  в отношении углов  $\alpha$  и  $\beta$  при условии отсутствия магнитокристаллической анизотропии позволяет представить кривую намагничивания СА $\Phi/A\Phi$  как на рис. 4 [12].

При слабых магнитных полях на кривой имеется плато, обусловленное фиксированием нижнего слоя САФ через обменное смещение. При этом верхний слой САФ также фиксирован через РККИ-взаимодействие.

При росте поля в отрицательном направлении более  $H_1$  преодолевается РККИ-связь между ФМ-слоями САФ и происходит разворот ФМслоев в направлении поля вплоть до состояния насыщения  $H_{sat1}$ . При росте поля в положительном направлении для перемагничивания ФМслоев необходимо преодолеть поле обменного смещения и РККИ-связь ФМ-слоев САФ. При этом

$$H_1 = -\frac{J_{\rm PKKH}}{\mu_0 M_F t_F},\tag{4}$$

$$H_2 = \frac{J_{\text{РККИ}} + J_{EB}}{\mu_0 M_F t_F}.$$
(5)

Расчетные зависимости позволяют выявить наиболее общие закономерности формирования кривой перемагничивания АФ/САФ при определенных упрощающих допущениях.

При этом один из ФМ-слоев САФ находится в контакте с АФ-слоем и связан с ним обменным взаимодействием, а второй ФМ-слой граничит со спейсером (НМ-слой в СВМР или барьерный

РОССИЙСКИЕ НАНОТЕХНОЛОГИИ том 16 № 2 2021



**Рис. 4.** Схематичное изображение кривой перемагничивания АФ/САФ-структуры [12].

слой в СТМР) и выполняет роль опорного слоя. На рис. 5 представлены два типа структур и соответствующие им кривые перемагничивания [13]. Как видно, в структуре, не содержащей САФ, петля перемагничивания свободного слоя смещена относительно нуля, что обусловлено магнитостатическим взаимодействием свободного и опорного слоев.

В структуре, содержащей САФ, замкнутая магнитная конфигурация ФМ-слоев САФ значительно ослабляет взаимодействие свободного и опорного слоев. В структуре, содержащей САФ, наблюдается минимальное смещение петли перемагничивания [14].

При определенной величине магнитного поля  $H_{SF}$  САФ переходит в спин-флоп-состояние [15]. Угол между векторами намагниченности ФМ-слоев, разделенных слоем Ru, из-за РККИ-взаи-модействия составляет 180°. Векторы намагниченности отклоняются на угол, близкий к 90° от направления приложенного поля.

Спин-флоп-переход происходит в АФ при сравнительно большом значении внешнего магнитного поля, приложенного вдоль оси антиферромагнетизма, при котором направление намагниченности поворачивается перпендикулярно направлению внешнего магнитного поля [16]. При температурах, значительно меньших температуры Нееля, восприимчивость вдоль оси антиферромагнетизма меньше восприимчивости в поперечном направлении, при определенном значении магнитного поля (H<sub>SF</sub>) разность магнитных энергий перпендикулярна оси антиферромагнетизма и вдоль нее сравнивается с энергией анизотропии, что влечет за собой резкое изменение направления намагниченности на угол 90° [15].



**Рис. 5.** Типичные CBMP-наноструктуры и кривые намагничивания: а – CBMP-наноструктура с обычным АФ-слоем, б – CBMP-наноструктура с САФ в фиксированном слое [13].

Спин-флоп-эффект применяется для снижения перекрестной анизотропии в устройствах, где не только опорный слой связан с АФ-пленкой, но и чувствительный слой. Снижение перекрестной анизотропии осуществляется изменением направления обменной анизотропии САФ путем фиксации его в спин-флоп-состоянии, в то время как намагниченность свободного слоя расположена в направлении поля магнитной термообработки.



Направление поля роста

**Рис. 6.** Соотношение направлений намагниченности слоев САФ в процессе роста:  $a - \Delta t < 0, 6 - \Delta t > 0$  [13].

#### 2. ОСОБЕННОСТИ ФОРМИРОВАНИЯ САФ-СТРУКТУР

В зависимости от последовательности напыления слоев, кристаллической структуры слоев, толщин ФМ-пленок и НМ-слоя, режимов термомагнитной обработки магнитные свойства САФструктуры могут значительно изменяться [17–19].

Направление фиксации АФ/САФ зависит от соотношения толщин ФМ-слоев, а также от последовательности их напыления. При фиксации снизу (рис. 6) в зависимости от разницы в толщинах слоев  $P_1$  и  $P_2$ , определяемой как  $\Delta t = t_{P2} - t_{P1}$ , намагниченность всей структуры САФ может быть различной. При  $\Delta t < 0$  намагниченность  $P_1$ устанавливается параллельно ростовому полю и фиксируется обменным смещением с АФ-слоем. Намагниченность слоя  $P_2$  устанавливается антипараллельно P<sub>1</sub> в соответствии с РККИ-взаимодействием, которое, как правило, существенно превосходит влияние ростового поля. При  $\Delta t > 0$ суммарный магнитный момент САФ изменит знак и произойдет разворот P<sub>2</sub> в направлении ростового поля.

Зарождение и рост слоя  $P_2$  происходят в условиях конкуренции ростового поля и РККИ-взаимодействия. Поскольку система в каждый момент времени находится в состоянии равновесия, то в процессе роста слоя  $P_2$  его намагниченность будет дрейфовать в направлении ростового поля. Следствием этого является отклонение направления фиксации от направления ростового поля.

Технологически возможны два варианта фиксации САФ сверху (*top*) и снизу (*bottom*) по отношению к спейсеру (рис. 7). В том или ином случае необходимо учитывать соответствие кристаллической структуры на границе раздела АФ-слоя и фиксируемого слоя САФ. Соответствие кристаллической структуры определяется степенью пре-



**Рис.** 7. Два типа CBMP-структур с САФ:  $a - \phi$ иксация сверху (*top*);  $6 - \phi$ иксация снизу (*bottom*) [13].

имущественной ориентации кристаллитов обоих слоев в определенном направлении и малой величиной рассогласования межатомных расстояний в плоскости границы раздела АФ/САФ.

В случае реализации варианта *top*-стека нанесение АФ-слоя осуществляется на сформированную САФ-структуру с наведенной анизотропией. В большинстве случаев в качестве слоя, граничащего с АФ, используется пленка СоFе. Слои СоFе, полученные методом магнетронного распыления, характеризуются ГЦК-решеткой и высокой степенью преимущественной ориентации кристаллитов (текстуры) в направлении (111). Для напыленных АФ-слоев, таких как FeMn, IrMn, PtMn, характерны схожие структурные параметры и близкие значения параметров кристаллической решетки. В данном случае не возникает проблемы для формирования структурно-когерентной границы раздела АФ/САФ [13, 20, 21].

При реализации *bottom*-варианта стека АФпленка напыляется на затравочный слой, близкий по своим структурным параметрам к АФ, наблюдается хорошо выраженная текстура (111) как для подслоев Cu, NiFe, Ru, так и для IrMn [13].

В [22] исследовалась взаимосвязь между отношением СТМР-эффекта и кристаллизацией слоя СоFеВ путем термомагнитной обработки в спинтуннельных переходах (СТП) с барьером MgO с ориентацией (001), свободными слоями СоFeB и фиксированными слоями САФ СоFe/Ru/CoFeB. Обнаружено, что кристаллизация в высокоориентированную ОЦК-структуру (001) в закрепленном слое СоFeB, нанесенном на разделительный



Рис. 8. Процесс записи в Toggle MRAM [23].

слой Ru, способствует достижению высокого СТМР-эффекта посредством термомагнитной обработки при высоких значениях температуры.

Анализ наноструктур с САФ и кристаллическим АФ с помощью рентгеновской дифракции [22] показал, что барьер MgO действует в качестве шаблона для кристаллизации как свободных слоев СоFeB, так и закрепленного слоя СоFeB в структуре с САФ, тогда как в кристаллизации закрепленного слоя CoFeB в наноструктуре с кристаллическим АФ преобладала затравка слоя Со Fe под ним, который находился в прямом контакте со слоем CoFeB, в результате чего CoFeB наследовал ту же текстуру [22]. Вставка Ru между слоями СоFe и СоFeB предотвращает наследование текстуры из нижнего слоя СоFe, вызывая кристаллизацию свободного аморфного слоя СоFeB со стороны MgO. Также важно, что слой Ru уменьшил шероховатость поверхности, вызванную свойствами нижележащих слоев.

## 3. ПРИМЕНЕНИЕ САФ ДЛЯ MRAM И ПРЕОБРАЗОВАТЕЛЕЙ МАГНИТНОГО ПОЛЯ

Структуры с САФ применяются в преобразователях магнитного поля, запоминающих устройствах с произвольным доступом с различными способами записи информации.

В основе Toggle MRAM лежит САФ-структура в свободном слое, которая обеспечивает перемагничивание комбинацией импульсов тока в шинах, при этом импульс тока в одной шине не может переключить ячейку.

В первоначальном состоянии два ФМ-слоя находятся в антипараллельном состоянии вдоль длинной оси эллиптического элемента СТП. В начальный момент времени при подаче тока в одну из шин, например в строку, создается магнитное поле, необходимое для перехода САФ в спинфлоп-состояние. Далее подается ток одновременно в обе шины, результирующее магнитное



**Рис. 9.** Магниторезистивные кривые спинового клапана с параллельной (штриховая линия) и скрещенной конфигурацией магнитной анизотропии, сформированной термомагнитной обработкой при поле спин-флоп-состояния (темные символы) и поле насыщения (светлые символы) [6].

поле поворачивается на  $45^{\circ}$ , на следующем шаге ток подается только в столбец, результирующее поле разворачивается еще на  $45^{\circ}$ . После отключения шин в отсутствие магнитного поля ФМ-слои возвращаются в антипараллельное состояние [23]. Таким образом, последовательность импульсов тока в шины повернула свободный слой на  $180^{\circ}$ , изменив логическое состояние ячейки.

Toggle MRAM имеет срок хранения информации более 10 лет, цикл чтения—записи составляет 35 нс. За счет радиационной стойкости микросхемы Toggle MRAM могут входить в состав космической аппаратуры, но энергопотребление данного вида памяти достаточно высоко из-за необходимости подавать импульсы тока для записи величиной 50 мА.

САФ-структуры входят в состав преобразователей магнитного поля на основе СВМР- и СТМР-наноструктур. Для применения СВМР- и СТМР-наноструктур в качестве магниточувствительных элементов требуются структуры с высоким магниторезистивным эффектом и низкополевой петлей гистерезиса свободного слоя [6, 24]. Уменьшение величины коэрцитивности свободного слоя достигается формированием скрещенной конфигурации магнитной анизотропии – ось однонаправленной анизотропии (ООА) перпендикулярна оси легкого намагничивания (ОЛН). Скрещенную конфигурацию магнитной анизотропии возможно сформировать двумя режимами термомагнитной обработки: в магнитном поле, эквивалентном полю перехода в спин-флопсостояние, направление внешнего магнитного поля параллельно ОЛН; в магнитном поле, превышающем поле насыщения, направление которого перпендикулярно ОЛН [25].

В [6] рассмотрены спиновые клапаны вида Та 50 Å/NiFe 30 Å/CoFe 35 Å/Cu 28 Å/CoFe 35 Å/Ru 8 Å/CoFe 25 Å/FeMn 100 Å/Ta 20 Å с САФ-структурой CoFe/Ru/CoFe, где первоначально была сформирована параллельная конфигурация ОЛН и ООА. Скрещенную конфигурацию получали термомагнитной обработкой в различных режимах: в первом случае образец нагревали до температуры блокировки и охлаждали в магнитном поле, перпендикулярном ОЛН и превышающем поле насыщения. Во втором варианте величина магнитного поля соответствовала спин-флоп-состоянию, на рис. 9 представлены низкополевые части магниторезистивных кривых спинового клапана с параллельной и скрещенной конфигурацией анизотропии, полученной двумя способами термомагнитной обработки [6].

Применение САФ в фиксированном слое позволяет получить низкокоэрцитивную петлю перемагничивания с незначительным снижением магниторезистивного эффекта. На основе данных структур могут быть изготовлены преобразователи магнитного поля с высокой чувствительностью и низкой нелинейностью.

## ЗАКЛЮЧЕНИЕ

Обзор исследований САФ-структур показал перспективность применения данных материалов в устройствах спинтроники. Интеграция САФ в спиновых клапанах изменяет механизм кристаллизации, улучшает термостабильность, повышает магниторезистивный эффект наноструктур.

При фиксации САФ-структуры петля перемагничивания свободного слоя симметрична относительно нуля, что обусловливается отсутствием магнитостатического взаимодействия свободного и опорного слоев и является одним из главных требований для устройств памяти.

САФ-структуры обеспечивают формирование скрещенной конфигурации магнитной анизотропии для снижения коэрцитивности свободного слоя и последующей линеаризации выходной характеристики преобразователя магнитного поля на основе СВМР- или СТМР-эффекта в области нуля.

В основе Toggle MRAM лежит спин-туннельный переход с САФ-наноструктурой в свободном слое, перемагничивание которого осуществляется с помощью вращающегося магнитного поля, создаваемого последовательностью импульсов тока ортогонально расположенных токовых шин. Вероятность переключения состояния ячейки одной шиной низка, за счет чего обеспечивается значительно лучшая селективность.

#### СПИСОК ЛИТЕРАТУРЫ

- 1. *van den Berg H.A.M., Clemens W., Gieres G. et al.* // IEEE Trans. Mag. 1996. V. 32. № 5. P. 4624.
- Leal J.L., Kryder M.H. // J. Appl. Phys. 1998. V. 83. № 7. P. 3720.
- Hayakawa J., Ikeda S., Lee Y.M. et al. // Jpn Soc. Appl. Phys. 2006. V. 45. P. 37.
- Bergman A., Skubic B., Hellsvik J. et al. // Phys. Rev. 2011. V. 83. P. 6.
- Savtchenko L., Engel B., Rizzo N. et al. Method of writing to scalable magnetoresistance random access memory element. US6545906B1L. G11C11/16. 2003.
- Чернышова Т.А., Миляев М.А., Наумова Л.И. и др. // Физика металлов и металловедение. 2017. Т. 118. № 5. С. 439.
- 7. *Stöhr J., Siegmann H.C.* Magnetism: from fundamentals to nanoscale dynamics. Springer, 2006. 822 p.
- 8. Bruno P., Chappert C. // Phys. Rev. 1992. V. 46. № 1. P. 11.
- Bruno P., Chappert C. // Phys. Rev. Lett. 1991. V. 67. № 12. P. 1602.
- Bloemen P.J.H. Metallic multilayers, experimental investigation of magnetic anisotropy and magnetic interlayer coupling. Eindhoven University of Technology. 1993. 202 p.
- 11. Forrester D.M., Kovacs E., Kurten K.E., Kusmartsev F.V. // Int. J. Mod. Phys. B. 2008. V. 23. № 20. P. 4021.
- 12. Deen L.D.P. The temperature and field stability of exchange biased magnetic multilayers containing a syn-

thetic antiferromagnet. Eindhoven University of Technology, 2015. 78 p.

- 13. *Kim Y.K., Lee S.R., Park J.S., Park G.H.* // J. Korean Phys. Soc. 2003. V. 43. № 3. P. 396.
- Fruchart O., Dieny B. // J. Magn. Magn. Mater. 2012. V. 324. № 4. P. 365.
- Миляев М.А., Наумова Л.И., Чернышова Т.А. и др. // Физика металлов и металловедение. 2016. Т. 117. № 12. С. 1227.
- Negulescu B., Lacour D., Hehn M. et al. // J. Appl. Phys. 2011. V. 109. P. 103911.
- Pinzaru C., Stoleriu L., Stancu A. // IEEE Trans. Magn. 2014. V. 50. № 7. P. 6733284.
- Duine R.A., Lee K.J., Parkin S.S.P., Stiles M.D. // Nat. Phys. 2018. V. 14. № 3. P. 217.
- Tadisina Z.R., Gupta S., LeClair P., Mewes T. // J. Vac. Sci. Technol. 2008. V. 26. № 4. P. 735.
- 20. *Rizwan S., Han X.F., Zhang S., Zhao Y.G.* // Appl. Phys. Lett. 2012. V. 101. № 8. P. 082414.
- Guo Z.B., Zong B.Y., Qiu J.J. et al. // Solid. State. Comun. 2010. V. 150. № 1. P. 45.
- Lee Y.M., Hayakawa J., Ikeda S. // Appl. Phys. Lett. 2006. V. 89. № 4. P. 17.
- Dieny B., Goldfarb R.B., Lee K.J. Introduction to magnetic random-access memory. IEEE Magnetics, 2017. 255 p.
- 24. Guedes A., Mendes J.M., Freitas P.P. // J. Appl. Phys. 2006. V. 99. P. 08B703(1-3).
- Наумова Л.И., Миляев М.А., Проглядо В.В. и др. // Естественные и технические науки. 2015. № 10. С. 92.