РОССИЙСКИЕ НАНОТЕХНОЛОГИИ, 2021, том 16, № 3, с. 387–392

НАНОМАТЕРИАЛЫ ФУНКЦИОНАЛЬНОГО И КОНСТРУКЦИОННОГО НАЗНАЧЕНИЯ

УДК 538.911

ФАЗОВЫЙ СОСТАВ И ТЕРМОЭЛЕКТРИЧЕСКИЕ СВОЙСТВА МАТЕРИАЛОВ НА ОСНОВЕ Cu_{2-x} Se (0.03 $\leq x \leq$ 0.23)

© 2021 г. А. А. Иванов¹, Р. Х. Акчурин², Д. И. Богомолов^{3,4}, В. Т. Бублик³, М. В. Воронов⁵, М. Г. Лаврентьев^{3,6}, В. П. Панченко^{3,5}, Ю. Н. Пархоменко^{3,5}, Н. Ю. Табачкова^{3,7,*}

¹ Национальный исследовательский центр "Курчатовский институт", Москва, Россия ² Московский технологический университет "МИРЭА", Москва, Россия

³ Национальный исследовательский технологический университет "МИСиС", Москва, Россия

⁴ АО "Ферротек Норд", Москва, Россия

⁵ АО "Гиредмет", Москва, Россия

⁶ ООО "РМТ", Москва, Россия

⁷ Институт общей физики им. А.М. Прохорова РАН, Москва, Россия

*E-mail: ntabachkova@misis.ru

Поступила в редакцию 25.11.2020 г. После доработки 25.11.2020 г. Принята к публикации 21.12.2020 г.

Проведено исследование фазового состава и термоэлектрических свойств образцов Cu_{2-x} Se при разном отклонении состава от стехиометрии (x = 0.03, 0.08, 0.13, 0.18, 0.23). Объемные термоэлектрические материалы на основе Cu_{2-x} Se получены методом искрового плазменного спекания. Исследование фазового состава проводили методом рентгеновской дифрактометрии. В зависимости от состава материалы на основе Cu_{2-x} Se представляли собой либо однофазный материал, содержащий только кубическую фазу β -Cu₂Se, либо двухфазный, содержащий при комнатной температуре смесь моноклинной α -Cu₂Se и кубической β -Cu₂Se фаз. Показано, что отклонение состава от стехиометрии в Cu_{2-x} Se увеличивается концентрация основных носителей заряда, что связано с образованием вакансий меди. Существенный вклад в термоэлектрическую эффективность соединений Cu_{2-x} Se вносит изменение теплопроводности. Из исследованного диапазона составо максимальными значениями термоэлектрической эффективности $ZT \sim 1.3$ при 600°C обладали образцы состава Cu_{197} Se.

DOI: 10.1134/S1992722321030080

введение

Для термоэлектрического материаловедения поиск и получение новых материалов с повышенной термоэлектрической эффективностью ZT представляют ключевую проблему, поскольку величина ZT материала определяет функциональные возможности и эксплуатационные характеристики изготавливаемых на его основе термопреобразователей электрических энергии. Эффективность термоэлектрических генераторов (ТЭГ) возрастает при увеличении рабочего диапазона температур, т.е. при переходе от низко- к среднетемпературному термоэлектрическому материалу (**ТЭМ**) ($\Delta T = 500-900$ К). Большой интерес представляют высокоэффективные среднетемпературные материалы, к которым относятся ТЭМ на основе Cu или Ag, такие как Cu_{2 – r}M (M == S, Se и Te) [1–12]. Типичными представителями

подобных материалов являются соединения на основе Cu_{2-x} Se [3, 5, 7, 8].

Селенид меди является перспективным материалом для ТЭГ и обладает исключительно высокой термоэлектрической эффективностью. В [13–15] сообщалось о получении Cu₂Se с добротностью ZT от 1.2 до 1.6 в интервале температур от 800 до 1000 К. Считается, что такие высокие значения связаны с аномально низкой теплопроводностью селенида меди при высоких температурах, что объясняется высокой подвижностью ионов меди.

 Cu_2Se имеет две модификации: низкотемпературную α - Cu_2Se и высокотемпературную β - Cu_2Se фазы. Фаза β - Cu_2Se имеет ГЦК-решетку, в которой межузельные ионы меди распределены в тетраэдрических, тригональных и октаэдрических порах, однако существуют противоречивые сведения о заселенности данных межузельных пози-

Рис. 1. Дифрактограммы образцов Cu_{2-x} Se после искрового плазменного спекания в зависимости от отклонения состава от стехиометрии.

ций [16–20]. Наличие большого количества межузельных атомов Cu с очень высоким коэффициентом диффузии (~ 10^{-5} см² с⁻¹) приводит к подавлению решеточной теплопроводности и, соответственно, увеличению значений термоэлектрической эффективности [13].

Согласно фазовой диаграмме системы Cu-Se [21] атомные соотношения Си : Se в фазе Си₂Se могут изменяться от 2:1 до 1.75:1. Таким образом, химический состав соединения на основе Cu₂Se можно записать как Cu_{2-x} Se ($0 \le x \le 0.25$). Очевидно, что такое отклонение от стехиометрии будет влиять на кристаллическую структуру материала [22]. Так, температура фазового перехода для стехиометрического соединения Cu₂Se составляет ~410 К. При отклонении от стехиометрии и увеличении содержания вакансий Си температура фазового перехода $\alpha \rightarrow \beta$ для Cu_{2 – x}Se постепенно сдвигается в область более низких температур [23]. Согласно [24] при 0.15 ≤ x ≤ 0.25 Си_{2- х}Se содержит только кубическую β-фазу даже при комнатной температуре.

Так как увеличение концентрации вакансий Си будет повышать концентрацию основных носителей заряда, отклонение от стехиометрии в Cu_{2-x} Se будет существенно влиять на транспортные характеристики ТЭМ. В настоящей работе проведено систематическое исследование фазового состава и термоэлектрических свойств Cu_{2-x} Se (x = 0.03, 0.08, 0.13, 0.18, 0.23).

МЕТОДИКА ЭКСПЕРИМЕНТА

Образцы селенида меди с различным отклонением от стехиометрического состава получали методом механохимического синтеза с использованием планетарной шаровой мельницы РМ400 (Retsch, Германия). В качестве исходных материалов использовали порошки Си (99.9%) и Se (99.999%), все операции с которыми проводили в перчаточном боксе в инертной среде. Порошки в соотношениях, отвечающих составам Cu₁₉₇Se, Cu_{1.92}Se, Cu_{1.87}Se, Cu_{1.82}Se и Cu_{1.77}Se, помещали в герметичные стальные стаканы со стальными шарами. Соотношение шаров и навески по массе составляло 10:1 соответственно. Помол проводили при комнатной температуре в течение 2 ч со скоростью вращения мельницы 300 об./мин. Полученные порошки синтезированного материала компактировали методом искрового плазменного спекания (ИПС) в установке SPS-511S (SPS Syntex Inc., Япония) с выдержкой 10 мин при 600°С и 50 МПа.

Фазовый состав образцов исследовали методом рентгеновской дифрактометрии на установке Bruker D8 при комнатной температуре. Для характеристики морфологии объемных образцов использовали сканирующую электронную микроскопию (СЭМ) (JSM-6480LV).

Электрофизические параметры измеряли на установке Ulvac ZEM–3 (Япония). Температуропроводность и теплоемкость измеряли методами лазерной вспышки на установке Netzsch LFA 457 (Германия) и дифференциальной сканирующей калориметрии посредством Netzsch DSC–404C соответственно. Теплопроводность вычисляли по формуле $\kappa = D_t C_p d$, где D_t – температуропроводность, C_p – теплоемкость и d – плотность. Вклад решеточной теплопроводности учитывался в соответствии с законом Видемана–Франца, где число Лоренца вычислялось в зависимости от коэффициента термоэдс [25]. Плотность объемных образцов измеряли методом Архимеда.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис. 1 приведены дифрактограммы для образцов Cu_{2-x}Se (x = 0.03, 0.08, 0.13, 0.18, 0.23) после ИПС.

Для образцов Cu_{1.77}Se и Cu_{1.82}Se на дифрактограмме видны только отражения, принадлежащие кубической модификации β-Cu₂Se. Фазовый состав образцов Cu_{1.97}Se, Cu_{1.92}Se, Cu_{1.87}Se представляет собой смесь α -Cu₂Se и β -Cu₂Se. При этом наибольшее количество низкотемпературной α -фазы наблюдается для образца Cu_{1.97}Se. При увеличении отклонения состава от стехиометрии количество α -фазы уменьшается, а β -Cu₂Se увеличивается. Этот результат хорошо согласуется с фазовой диаграммой [21], которая показывает, что количество моноклинной α -фазы при комнатной температуре постепенно уменьшается с увеличением содержания вакансий Cu в Cu_{2-x}Se.

Результаты фазового анализа образцов после ИПС хорошо согласуются с данными фазового анализа порошков после помола для всех составов. Таким образом, процесс компактирования не изменил структуру и фазовый состав образцов $Cu_{2-x}Se$.

Методом СЭМ исследовали морфологию поверхности сколов образцов. На рис. 2 приведены изображения поверхности сколов образцов с разным отклонением состава Cu_{2-x} Se от стехиометрического. Размеры элементов структуры изменяются в основном от 1 до 5 мкм для всех исследуемых составов. Так как скалываются зерна в соответствии со структурой халькогенидов преимущественно по плоскостям спайности, отражение электронов от разных кристаллических поверхностей с разным наклоном поверхностей скола зерен позволяет судить о зеренной структуре при формировании изображения в отраженных электронах.

На рис. 3 приведена температурная зависимость электропроводности образцов Cu₂ _ _xSe. При увеличении температуры электропроводность для всех исследуемых образцов уменьшается. Но значения электропроводности сильно зависят от состава. При комнатной температуре с увеличением отклонения состава от стехиометрического электропроводность заметно увеличивается. Так, для состава Cu_{1 77}Se значение электропроводности при комнатной температуре примерно в 5 раз больше, чем для образца Cu_{1.97}Se. Это может быть связано с увеличением количества вакансий Cu в образцах в Cu_{2-x}Se при увеличении х и, соответственно, увеличении концентрации основных носителей заряда. Данное предположение согласуется с результатами [23], где концентрация носителей заряда для образцов $Cu_{1.97}$ Se и $Cu_{1.74}$ Se составляла 0.5 и 4.5 × 10²⁰ см⁻³ соответственно.

Немонотонное изменение зависимости проводимости в области температур $25-200^{\circ}$ С для образцов Cu_{1.97}Se, Cu_{1.92}Se и Cu_{1.87}Se связано с фазовым переходом низкотемпературной фазы α -Cu₂Se в высокотемпературную кубическую фазу β -Cu₂Se. По данным фазового анализа данные

Рис. 2. Изображения поверхности сколов образцов $Cu_{1.97}$ Se (а), $Cu_{1.87}$ Se (б) и $Cu_{1.77}$ Se (в).

образцы при комнатной температуре содержали смесь α- и β-фаз.

На рис. 4 приведена температурная зависимость коэффициента термоэдс образцов $Cu_{2-x}Se$. С увеличением температуры значения коэффи-

Рис. 3. Температурная зависимость электропроводности $Cu_{2-x}Se$.

циента термоэдс для всех образцов увеличиваются. Значения коэффициента термоэдс для образцов Cu_{1.77}Se, Cu_{1.82}Se и Cu_{1.87}Se близки при сопоставимых температурах. При уменьшении x в Cu_{2-x}Se и приближении состава к стехиометрическому значения коэффициента термоэдс увеличиваются. Наибольшими значениями коэффициента термоэдс из исследуемого диапазона составов обладают образцы Cu_{1.97}Se во всем температурном интервале.

Результаты измерений теплоемкости С_{*p*} исследуемых образцов показали, что для образцов разного состава значения удельной теплоемкости близки и составляют ~0.4 Дж/гр К. На рис. 5 приведена температурная зависимость теплопроводности к. Для всех исследуемых составов можно наблюдать тенденцию уменьшения теплопроводности с увеличением температуры. При увеличении отклонения состава от стехиометрии значения теплопроводности увеличиваются. При комнатной температуре значение теплопроводности для образца Cu_{1 77}Se составляет $\kappa = 7.5$ BT/м K, что почти в 4 раза больше, чем для образца Cu_{1.97}Se $(\kappa = 1.8 \text{ Br/м K})$. При увеличении температуры зависимость теплопроводности от состава сохраняется, но становится менее выраженной. Так, при температуре 600°С значения теплопроводности для образцов $Cu_{1.77}$ Se, $Cu_{1.82}$ Se и $Cu_{1.87}$ Se близки и составляют порядка к = 2.5 Вт/м К. Для состава $Cu_{1.92}$ Se теплопроводность при 600°C – 1.2 Bт/м K. Минимальное значение $\kappa = 0.98$ Вт/м К при 600°С наблюдали для образца Си_{1 97}Se.

Для определения вклада компонентов теплопроводности были рассчитаны температурные

Рис. 4. Температурная зависимость коэффициента термоэдс Cu_{2-x}Se.

зависимости решеточной κ_{lat} и электронной κ_e составляющих согласно следующим выражениям:

$$\kappa_{lat} = \kappa - \kappa_e, \tag{1}$$

$$\kappa_e = L\sigma T, \tag{2}$$

$$L = 1.5 + e^{-\frac{|\alpha|}{116}},\tag{3}$$

где *L* – число Лоренца, определяемое данными [24], *T* – абсолютная температура.

На рис. 6 представлены полученные температурные зависимости исследуемых образцов Cu_{2-x} Se. Как видно из рисунка, электронная составляющая теплопроводности κ_e вносит суще-

8 Cu_{1 77}Se 7 $-Cu_{1.82}Se$ - Cu_{1.87}Se 6 $-Cu_{1,92}Se$ 5 BT/M K - Cu_{1.97}Se 4 ž 3 2 1 0 0 100 200 300 400 500 600 T, °C

Рис. 5. Температурная зависимость теплопроводности Cu_{2-x} Se.

Рис. 6. Температурная зависимость электронной и решеточной составляющих теплопроводности Cu_{2 - x}Se.

Рис. 7. Температурная зависимость термоэлектрической эффективности Cu_{2 – x}Se.

ственно больший вклад в общую теплопроводность, чем решеточная κ_{lat} . При комнатной температуре значения электронной составляющей теплопроводности κ_e сильно увеличиваются с отклонением состава от стехиометрического из-за увеличения концентрации основных носителей заряда (дырок), что согласуется с данными измерения электропроводности. Температурная зависимость электронной составляющей теплопроводности имеет аналогичный характер с температурной зависимостью общей теплопроводности. Значения электронной составляющей теплопроводности уменьшаются с увеличением температуры для всех составов.

Значения решеточной составляющей теплопроводности существенно ниже значений электронной теплопроводности. Значения решеточной теплопроводности изменяются в зависимости от состава при 600°С от ~0.8 до 0.28 Вт/м К для образцов $Cu_{1.77}$ Se и $Cu_{1.97}$ Se соответственно.

На рис. 7 приведена температурная зависимость термоэлектрической эффективности образцов Cu_{2-x}Se ($0.03 \le x \le 0.23$). Значения *ZT* для всех образцов растут с увеличением температуры. Для образцов Cu_{2-x}Se ($0.13 \le x \le 0.23$) значения термоэлектрической эффективности близки во всем температурном диапазоне. При уменьшении *x* и приближении состава Cu_{2-x}Se к стехиометрическому *ZT* возрастает. При 600°С максимальное значение *ZT* было получено для состава Cu_{1.97}Se.

ЗАКЛЮЧЕНИЕ

Методом искрового плазменного спекания получены образцы среднетемпературных термоэлектрических материалов на основе $Cu_{2-x}Se$ с разным отклонением состава от стехиометрии (x = 0.03, 0.08, 0.13, 0.18, 0.23). Анализ фазового состава показал, что образцы $Cu_{2-x}Se$ ($0.18 \le x \le 0.23$) представляют собой однофазный материал, содержащий только кубическую фазу β -Cu₂Se. Образцы $Cu_{2-x}Se$ ($0.03 \le x \le 0.13$) являются двухфазными при комнатной температуре и содержат смесь моноклинной α -Cu₂Se и кубической β -Cu₂Se фаз.

Выявлено, что отклонение состава от стехиометрии оказывает значительное влияние на электрофизические характеристики материала. При увеличении отклонения состава от стехиометрии в Cu_{2-x} Se увеличивается концентрация основных носителей заряда, что связано с образованием вакансий меди. Существенный вклад в термоэлектрическую эффективность для соединений Cu_{2-x} Se вносит изменение теплопроводности. При температуре 600°C значения теплопроводности изменяются от 2.5 до 0.98 Вт/м К для образцов $Cu_{1.77}$ Se и $Cu_{1.97}$ Se соответственно. Из исследованного диапазона составов максимальными значениями термоэлектрической эффективности *ZT* ~1.3 при 600°C обладали образцы состава $Cu_{1.97}$ Se.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (проект № 18-32-20211).

СПИСОК ЛИТЕРАТУРЫ

- Shinde S.K., Ghodake G.S., Dubal D.P. et al. // J. Taiwan Inst. Chem. Eng. 2017. V. 75. P. 271. https://doi.org/10.1016/j.jtice.2017.01.028
- Yu B., Liu W.S., Chen S. et al. // Nano Energy. 2012.
 V. 1. P. 472. https://doi.org/10.1016/j.nanoen.2012.02.010

ИВАНОВ и др.

- Liu H.L., Yuan X., Lu P. et al. // Adv. Mater. 2013. V. 25. P. 6607. https://doi.org/10.1002/adma.201302660
- Tan G.J., Zhao L.D., Kanatzidis M.G. // Chem. Rev. 2016. V. 116. P. 12123. https://doi.org/10.1021/acs.chemrev.6b00255
- Su X.L., Fu F., Yan Y.G. et al. // Nat. Commun. 2014. V. 5. P. 4908. https://doi.org/10.1038/ncomms5908
- Zhao L.L., Wang X.L., Wang J.Y. et al. // Sci. Rep. 2015. V. 5. P. 7671. https://doi.org/10.1038/srep07671
- Day T.W., Weldert K.S., Zeier W.G. et al. // Chem. Mater. 2015. V. 27. P. 7018. https://doi.org/10.1021/acs.chemmater.5b02405
- Yang L., Chen Z.G., Han G. et al. // Acta Mater. 2016. V. 113. P. 140. https://doi.org/10.1016/j.actamat.2016.04.050
- Ge Z.H., Zhang B.P., Chen Y.X. et al. // Chem. Commun. 2011. V. 47. P. 12697. https://doi.org/10.1039/c1cc16368j
- He Y., Day T.W., Zhang T.S. et al. // Adv. Mater. 2014. V. 26. P. 3974. https://doi.org/10.1002/adma.201400515
- He Y., Lu P., Shi X. et al. // Adv. Mater. 2015. V. 27. P. 3639. https://doi.org/10.1002/adma.201501030
- He Y., Zhang T.S., Shi X. et al. // NPG Asia Mater. 2015. V. 7. P. 210. https://doi.org/10.1038/am.2015.91
- Liu H., Shi X., Xu F. et al. // Nature Mater. 2012. V. 11. P. 422. https://doi.org/10.1038/nmat3273

- Ballikaya S., Chi H., Salvador J.R., Uher C. // J. Mater. Chem. A. 2013. V. 1. P. 12478. https://doi.org/10.1039/C3TA12508D
- Day T.W., Borup K.A., Zhang T. et al. // Mater. Renew. Sustain. Energy. 2014. V. 3. P. 26. https://doi.org/10.1007/s40243-014-0026-5
- Heyding R.D., Murray R.M. // Can. J. Chem. 1976.
 V. 54. P. 841.
- Yamamoto K., Kashida S. // J. Solid State Chem. 1991.
 V. 93. P. 202. https://doi.org/10.1016/0022-4596(91)90289-T
- Danilkin S.A., Skomorokhov A.N., Hoser A. et al. // J. Alloys. Compd. 2003. V. 361. P. 57. https://doi.org/10.1016/S0925-8388(03)00439-0
- Skomorokhov A.N., Trots D.M., Knapp M. et al. // J. Alloys. Compd. 2006. V. 421. P. 64. https://doi.org/10.1016/j.jallcom.2005.10.079
- Nguyen M.C., Choi J.H., Zhao X. et al. // Phys. Rev. Lett. 2013. V. 111. P. 165502. https://doi.org/10.1103/PhysRevLett.111.165502
- Massalski T.B., Okamoto H., Subramanian P.R., Kacprzak L. Binary Alloy Phase Diagrams – Second edition. Ohio: ASM International, 1990. 3589 p.
- 22. Gulay L., Daszkiewicz M., Strok O., Pietraszko A. // Chem. Met. Alloys. 2011. V4. P. 200. https://doi.org/10.30970/cma4.0184
- Xiao X.X., Xie W.J., Tang X.F., Zhang Q.J. // Chem. Phys. 2011. V. 20. P. 087201. https://doi.org/10.1088/1674-1056/20/8/087201
- Yu J., Zhao K., Qiua P. et al. // Ceram. Int. 2017. V. 43. P. 11142. https://doi.org/10.1016/j.ceramint.2017.05.161
- Kim H.S., Gibbs Z.M., Tang Y. et al. // Apl. Mater. 2015.
 V. 4. P. 041506. https://doi.org/10.1063/1.4908244