_ НАНОБИОЛОГИЯ И ГЕНЕТИКА, ОМИКСНЫЕ ТЕХНОЛОГИИ

УЛК 504.054:593.17

ВЫЖИВАЕМОСТЬ ИНФУЗОРИЙ Paramecium caudatum В ПРИСУТСТВИИ НАНОЧАСТИЦ ОКСИДА АЛЮМИНИЯ

© 2021 г. М. А. Крючкова^{1,*}, Ф. С. Ахатова¹, Р. Ф. Фахруллин¹

¹ Казанский (Приволжский) федеральный университет, Казань, Россия *E-mail: maricshka80@gmail.com
Поступила в редакцию 04.09.2020 г.
После доработки 09.10.2020 г.
Принята к публикации 10.10.2020 г.

Острая токсичность наночастиц оксида алюминия (Al_2O_3) размером 13—16 нм исследована методом биотестирования с использованием инфузорий *Paramecium caudatum* в диапазоне концентраций 10—100 мкг/мл. Оксид алюминия оказывает острое токсичное действие на парамеций в концентрациях 20—100 мкг/мл. В качестве критерия токсичности использовали значение средняя летальная доза (LD_{50}), равное концентрации наночастиц, при которой смертность инфузорий по отношению к контролю достигала 50%. Значение LD_{50} для наночастиц Al_2O_3 составляет 23 мкг/мл при 24-часовой экспозиции. Согласно опубликованным данным токсическое действие наночастиц Al_2O_3 является специфическим и зависит от размера и поверхностного заряда частиц, от межфазного взаимодействия наночастиц с клеточной поверхностью, а также от концентрации и времени экспозиции.

DOI: 10.1134/S199272232104004X

ВВЕДЕНИЕ

Исключительные свойства наноматериалов обусловливают перспективы их широкого применения в промышленности [1]. Наночастицы (НЧ) оксидов металлов широко используются в производствах конструкционных материалов, катализаторов, накопителей энергии, красок, люминофоров, косметических и медицинских препаратов [2, 3]. Одним из важных направлений развития нанотехнологий является получение нанопорошков, 80% которых составляют порошки оксидов металлов, причем наиболее популярными и востребованными для производств являются НЧ оксида алюминия (Al_2O_3) [4]. Оксид алюминия используется для изготовления оптически прозрачной и конструкционной керамики, теплозащитных покрытий и лакокрасочных материалов, выступает в роли катализатора в ряде процессов органического синтеза [5, 6]. Вследствие больших объемов производства АІ₂О₃ и незамкнутого характера многих технологических циклов, в которых он используется, данный наноматериал может быть значимым загрязнителем и представлять серьезную угрозу для окружающей среды [7]. Отметим, что токсический эффект от частиц нанодиапазона значительно больше, чем от аналогичных по составу частиц микронных размеров [8, 9].

Несмотря на распространенность, алюминий и его соединения относятся к токсичным элемен-

там [10]. НЧ ${\rm Al_2O_3}$ легко поглощаются различными клеточными культурами [11, 12], оказывая при этом цитотоксическое действие [12, 13] и обладая способностью к каталитической генерации свободных радикалов [14]. Пыль глинозема (\sim 33 г/м³ за пять часов в день) вызывает сильное повреждение эпителия дыхательных путей крыс [15].

В природные воды алюминий и его соединения попадают естественным путем при частичном растворении глин и алюмосиликатов, а также в результате вредных выбросов промышленных предприятий и со сточными водами [15]. С каждым годом таких выбросов в окружающую среду становится все больше, а контроль за степенью загрязнения ими все ниже. Поскольку НЧ Al₂O₃ нерастворимы в воде и практически не способны к биологической деградации, они могут накапливаться в составе компонентов природных экосистем и оказывать губительное влияние на большинство живых организмов, обитающих в природных водоемах [16]. Установлено вредное действие водных дисперсий Al_2O_3 на дафний [17], пресноводных улиток [18], рыб [19], почвенных нематод [20] и насекомых [21].

Основными методами контроля экологического состояния водоемов продолжают оставаться физико-химические методы. Однако наряду с аналитическими методами все чаще применяются методы биологического тестирования, позволяющие оценить всю совокупность свойств ис-

следуемой среды по ответным реакциям живых организмов. Такими организмами являются пресноводные инфузории, они широко распространены в водоемах и играют заметную роль в самоочистке воды. Являясь одноклеточными организмами, инфузории одновременно демонстрируют реакции на организменном и клеточном уровне, тем самым расширяя диапазон критериев оценки токсичности. К сожалению, вопросы реакции инфузорий на частицы Al_2O_3 изучены недостаточно.

Основная цель данного исследования — определение токсического эффекта наночастиц оксида алюминия в эксперименте на инфузориях *Paramecium caudatum* (*P. caudatum*).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для оценки токсичности НЧ Al_2O_3 использовали коммерческий препарат фирмы Sigma-Aldrich, представляющий собой нанодисперсный порошок белого цвета с диаметром частиц 16.4 ± 10.0 нм и ζ -потенциалом 44.3 ± 1.8 . Измерение ζ -потенциала и гидродинамического диаметра частиц проводили с использованием прибора Zetasizer Nano ZS (Malvern).

НЧ Al₂O₃ были охарактеризованы с помощью темнопольной электронной микроскопии (ТЭМ) и атомно-силовой микроскопии (АСМ). АСМизображения получены с помощью микроскопа Dimension Icon (Bruker), работающего в режиме PeakForce Tapping, с использованием зонда ScanAsyst-Air (Bruker) (номинальная длина 115 мкм. наконечник радиусом 2 нм, жесткость пружины $0.4~{\rm H}~{\rm M}^{-1}$). Полученные данные обработаны с использованием программного обеспечения Nanoscope Analysis v.1.7. (Bruker). HЧ Al₂O₃ визуализировали при помощи высококонтрастной ТЭМ CytoViva®. ТЭМ-изображения получены с помощью конденсора CytoViva®, присоединенного к микроскопу Olympus BX51, оснащенному флюоритным объективом (×100) и ССD-камерой.

Для биотестирования водную суспензию НЧ Al_2O_3 готовили непосредственно перед исследованием. Для устранения агрегации суспензию обрабатывали ультразвуком (в течение 2 мин при 44 кГц и 40 Вт). Острую токсичность НЧ Al_2O_3 исследовали в концентрациях 100, 50, 40, 30, 25, 20, 15 и 10 мкг/мл при различных экспозициях (0.16, 0.5, 1, 3, 5 и 24 ч).

В качестве модельных организмов использовали равноресничных инфузорий P. caudatum. Оценку устойчивости инфузорий к воздействию $H4\ Al_2O_3$ проводили по методике [22], основанной на определении выживаемости инфузорий. P. caudatum культивировали в десятикратном разведении среды Лозина-Лозинского, приготов-

ленной растворением следующих навесок солей в 1 л дистиллированной воды: NaCl (1.0 г), KCl (0.1 г), NaHCO₃ (0.2 г), MgSO₄ (0.1 г), CaCl₂ (0.1 г) с добавлением водной суспензии дрожжей Saccharomyces cerevisiae (3 мл) при температуре 22— 24°С. Для проведения экспериментов инфузорий отбирали вручную, используя микропипетку. Для наблюдения за парамециями использовали стереоскопический микроскоп Carl Zeiss Stemi 2000С. Для проведения биотестирования применяли культуральный планшет с лунками. Микропипеткой отбирали по 10—12 особей в минимальном количестве среды и переносили в лунки планшета. После помещения инфузорий в планшеты в контрольные лунки приливали по 0.2 мл культуральной среды, а в опытные — по 0.2 мл тестируемой пробы. Отмечали время начала биотестирования. В процессе экспозиции ни в контрольных, ни в опытных лунках кормление инфузорий не осуществлялось. Критерием токсичности служила гибель инфузорий. Неподвижные и изменившие форму клетки считали погибшими. Кроме того, оценивали изменение характера движения инфузорий.

Выживаемость инфузорий (N, %) определяли по формуле

$$N = N_2/N_1 \times 100$$
,

где N_2 , N_1 — среднеарифметическое значение количества инфузорий в конце и начале опыта, шт.

В качестве критерия токсичности использовали показатель средняя летальная доза (LD_{50}) , определяемый графически как концентрация исследуемого раствора, при которой токсичность составляет 50%.

Все эксперименты проводили в трех повторностях. При этом каждая серия опытов была выполнена не менее трех раз. При статистической обработке полученных результатов использовали t-критерий Стьюдента. Достоверными считали различия при $p \le 0.05$.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Данное исследование направлено на изучение потенциально токсических эффектов, вызванных $H^4Al_2O_3$, которые в настоящее время широко используются в промышленности. Типичные ACM-изображения демонстрируют геометрию и размер частиц Al_2O_3 , имеющих форму эллипсоидов и диаметр, равный 13-16 нм. Данные изображения максимально характеризуют топографию поверхности. Для визуализации частиц Al_2O_3 использовали T^2M (рис. 1).

Для оценки токсичности Al_2O_3 в качестве модели *in vivo* использовали *P. caudatum* — подвижные одноклеточные микроскопические организмы, питающиеся дрожжами и захватывающие

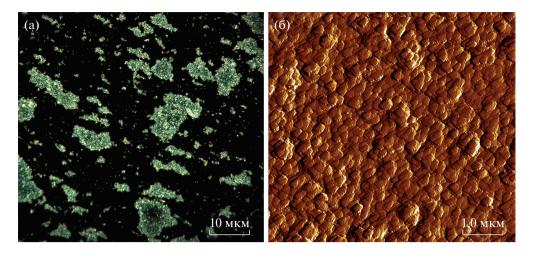
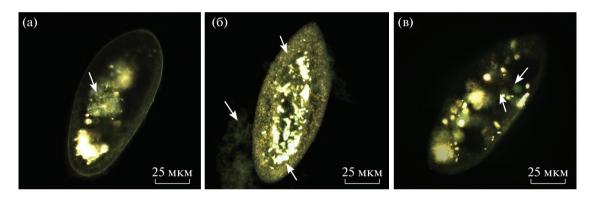



Рис. 1. Наночастицы оксида алюминия: а — темнопольная микроскопия, б — атомно-силовая микроскопия.

Рис. 2. ТЭМ-изображения инфузорий *P. caudatum*: а — контроль (стрелкой указаны пищеварительные вакуоли, заполненные дрожжевыми клетками), 6 —поглощение наночастиц оксида алюминия *P. caudatum* (обозначено стрелкой); визуализация распределения $H4 Al_2O_3$ в цитоплазме *P. caudatum* (обозначено стрелками), в — визуализация заполненных частицами оксида кремния пищеварительных вакуолей (обозначено стрелками).

другие частицы, суспендированные в водной среде. Парамеции имеют типичную форму эллипсоида, сами клетки прозрачные, что позволяет визуализировать органеллы, например пищеварительные вакуоли, заполненные дрожжевыми клетками (рис. 2а). С помощью усиленной ТЭМ можно наблюдать поглощение частиц Al₂O₃. Из рис. 2б видно, как частицы Al₂O₃ попадают в клетку P. caudatum из водной среды. Оксид алюминия ингибирует фагоцитарную активность у *P. cauda*tum, при этом нарушается процесс образования пищеварительных вакуолей во всем диапазоне изученных концентраций. При более низких концентрациях НЧ АІ₂О₃ были диффузно распределены в цитоплазме (рис. 2б). Например, оксид кремния в концентрации 5 мг/мл оказывает слаботоксичное действие [23], но при этом не препятствует образованию пищеварительных вакуолей даже при больших концентрациях. После попадания внутрь НЧ оксида кремния переносятся

в пищеварительные вакуоли, визуализированные с помощью ТЭМ (рис. 2в).

Высококонтрастные ТЭМ-изображения позволяют быстро, просто и эффективно наблюдать НЧ Al_2O_3 внутри прозрачных тел парамеций, так же как и в предыдущих исследованиях с микроскопическими червями *Caenorhabditis elegans* [24] и инфузориями *P. caudatum* [23].

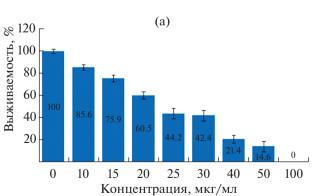
В типичном эксперименте оценивали острую токсичность H^4 Al_2O_3 в диапазоне концентраций от 10 до 100 мкг/мл. При этом исследовали выживаемость инфузорий при различных экспозициях (табл. 1).

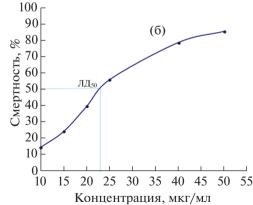
Для оценки выживаемости учитывали число мертвых особей. Показателями гибели инфузорий служат деформация тела, разрыв оболочки, лизис клетки, а также сохранение неподвижности. Через 0.16 ч эксперимента при концентрациях 100 и 50 мкг/мл отмечали отсутствие двигательной активности у 50% клеток. Через 0.5 ч при

C, мкг/мл	0.16 ч	0.5 ч	1 ч	3 ч	5 ч	24 ч	
100	34.2 ± 3.2	0	0	0	0	0	
50	52.2 ± 3.6	29.2 ± 4.4	29.2 ± 4.2	21.9 ± 4.9	14.6 ± 4.9	14.6 ± 4.8	
40	64.3 ± 3.4	42.9 ± 4.6	35.7 ± 4.3	28.6 ± 4.3	28.6 ± 4.2	21.4 ± 3.5	
30	81.8 ± 4.4	63.6 ± 4.5	45.7 ± 4.5	45.4 ± 4.8	45.4 ± 4.3	42.4 ± 4.5	
25	81.4 ± 3.8	70.8 ± 3.6	61.9 ± 3.6	53.0 ± 4.2	52.3 ± 4.7	44.2 ± 4.7	
20	81.8 ± 3.7	81.8 ± 4.1	72.7 ± 3.9	64.5 ± 2.8	63.0 ± 2.9	60.5 ± 3.2	
15	90.4 ± 2.3	86.7 ± 2.6	86.2 ± 2.8	78.3 ± 2.5	76.9 ± 2.9	75.9 ± 2.9	
10	95.2 ± 2.0	92.6 ± 2.2	90.4 ± 2.3	88.3 ± 2.7	87.2 ± 2.7	85.6 ± 2.5	

Таблица 1. Выживаемость инфузорий P. caudatum (%) в зависимости от концентрации оксида алюминия

концентрации $100 \, \mathrm{mkr/mn}$ наблюдали разрыв клеточной оболочки и лизис клеток, а при концентрации $50 \, \mathrm{mkr/mn}$ около $30\% \, \mathrm{kлеток}$ сохраняли двигательную активность. В остальных концентрациях большая часть клеток сохраняла нормальную двигательную активность. Показатели выживаемости инфузорий после $24 \, \mathrm{u}$ инкубации с $\mathrm{Al_2O_3}$ представлены на рис. 3a. Наибольшее снижение выживаемости наблюдалось при концентрациях $20-100 \, \mathrm{mkr/mn}$, при которых $\mathrm{Al_2O_3}$ оказывает острое токсичное действие на инфузории. Концентрации $10 \, \mathrm{u} \, 15 \, \mathrm{mkr/mn}$ оказывают слаботоксичное действие на парамеций.


В качестве критерия токсичности использовали LD_{50} — летальная доза Al_2O_3 , вызывающая гибель половины (50%) организмов за определенный промежуток времени (24 ч). В результате проведенных исследований параметры токсичности Al_2O_3 в остром опыте составили: LD_{50} = = 23 мкг/мл (рис. 36).


В других исследованиях НЧ Al_2O_3 оказались менее токсичными. В [25] установлено, что концентрация Al_2O_3 (размер частиц 83 нм), при которой происходит гибель 50% инфузорий *Parame*-

сіит multimicronucleatum в 48-часовой экспозиции, составляет 9269 мг/л. Токсичность $HY Al_2O_3$ (с размером частиц Δ_{50} 7 и 70 нм) изучали по хемотоксическому ответу инфузорий P. caudatum [26]. Согласно проведенным исследованиям $HY Al_2O_3$ ($\Delta_{50} = 70$ нм) оказались наиболее токсичными ($LD_{50} = 1.22$ мг/л), чем $HY (\Delta_{50} = 7$ нм), которые не оказывали токсичного действия.

Несоответствие данных о зависимости токсичности $H4 Al_2O_3$ от размера частиц может быть вызвано использованием авторами различных методов оценки токсичности.

Токсичность Al_2O_3 зависит от межфазного взаимодействия НЧ с клеточной поверхностью, а также от физико-химических свойств НЧ (размер и поверхностный заряд) [25]. С уменьшением размеров НЧ площадь поверхности увеличивается, что вызывает дозозависимое увеличение окислительного стресса [27]. Окислительный стресс является одним из основных механизмов токсического действия НЧ Al_2O_3 , возникающий в условиях воздействия НЧ на водные организмы [26]. Также значимым фактором является заряд частиц. Наибольшую опасность представляют

Рис. 3. Токсичность оксида алюминия на инфузориях *P. caudatum*: a — выживаемость инфузорий после 24 ч инкубации с оксидом алюминия, b —

положительно заряженные частицы, обладающие высоким сродством к макромолекулам ДНК и, следовательно, несущие генотоксический потенциал [27].

Токсичность НЧ АІ₂О₃ различна для разных тест-организмов. Было выявлено ингибирующее влияние Al₂O₃ с размером частиц 70 нм на рост микроводорослей *Chlorella vulgaris* (LD₅₀ = 15 мг/л), а для Daphnia magna Al₂O₃ оказался менее токсичным, LD₅₀ составляет более 100 мг/л [26]. Оксид алюминия (с размером частиц 16 нм) в концентрации 4 мг/л индуцирует необратимые гистопатологические поражения жаберных, печеночных и мозговых тканей пресноводных рыб Oreochromis mossambicus после 96 ч воздействия [19]. При сравнении среднелетальной дозы Al₂O₃ у разных видов выявлено, что инфузории P. caudatum являются более чувствительными организмами для оценки токсичности Al₂O₃ в водных средах $(LD_{50} = 23 \text{ мкг/мл}).$

При анализе литературных данных можно сделать вывод, что токсическое действие $H4\ Al_2O_3$ является специфическим и зависит от размера и поверхностного заряда частиц, а также от концентрации и времени экспозиции.

Таким образом, высокая токсичность НЧ Al₂O₃ может быть вызвана небольшими размерами частиц (13-16 нм) и высокой проникающей способностью, что облегчает их перераспределение внутри клетки. Оксид алюминия, используемый в этом исследовании, демонстрирует положительный поверхностный потенциал (44 мВ). что также может способствовать увеличению токсичности. Известно, что НЧ АІ₂О₃ способны генерировать активные формы кислорода, повреждать ДНК, нарушать экспрессию белков, деполяризовывать клеточную мембрану, вызывать морфологические изменения и гибель клеток [12, 28]. Оксид алюминия оказывает вредное воздействие на низшие водные организмы, участвующие в самоочищении водоемов и представляющие собой кормовые ресурсы для рыб. Следовательно, контаминация водной среды НЧ АІ₂О₂ может оказывать негативное влияние на живые организмы и представлять опасность для водных экосистем.

Несмотря на то что инфузории как модельный объект широко используются для оценки токсичности, механизмы токсических эффектов HY Al_2O_3 на *P. caudatum* практически не изучены. Это свидетельствует о необходимости проведения дополнительных токсикологических исследований.

ЗАКЛЮЧЕНИЕ

Опасность наночастиц оксида алюминия оценивали по выживаемости инфузорий *P. caudatum*.

НЧ Al_2O_3 оказывают острое токсическое воздействие на парамеций. При концентрации 100 мкг/мл (экспозиция 0.5 ч) наблюдается 100%-ная гибель инфузорий. Значение LD_{50} составляет 23 мкг/мл при 24-часовой экспозиции. Сравнительно высокая токсичность НЧ Al_2O_3 может быть вызвана небольшими размерами (13—16 нм) и положительным зарядом частиц, а также высокой проникающей способностью, что облегчает их перераспределение внутри клетки.

Работа выполнена за счет средств субсидии, выделенной Казанскому федеральному университету для выполнения государственного задания № 0671-2020-0058 в сфере научной деятельности. Работа выполнена в рамках программы повышения конкурентоспособности Казанского федерального университета за счет гранта президента Российской Федерации (МД-2153.2020.3).

СПИСОК ЛИТЕРАТУРЫ

- Chatterjee R. // Environ. Sci. Technol. 2008. V. 2. P. 339. https://doi.org/10.1021/eS0870909
- Gangwar J., Gupta B.K., Srivastava A.K. // Defense Sci. J. 2016. V. 66. № 4. P. 323. https://doi.org/10.14429/dsj.66.10206
- 3. *Годымчук А.Ю., Савельев Г.Г., Зыкова А.П.* Экология наноматериалов: учебное пособие. М.: БИ-НОМ. Лаборатория знаний, 2012. 272 с.
- 4. Зейналов О.А., Комбарова С.П., Багров Д.В. и др. // Обзоры по клинической фармакологии и лекарственной терапии. 2016. Т. 14. № 3. С. 24. https://doi.org/10.17816/RCF14324-33
- Roussel N., Lallemant L., Chane-Ching J.Y. et al. // J. Am. Ceram. Soc. 2013. V. 96. № 4. P. 1039. https://doi.org/10.1111/jace.12255
- 6. *Иванов В.В., Кайгородов А.С., Хрустов В.Р. и др. //* Российские нанотехнологии. 2006. Т. 1. № 1–2. С. 201.
- 7. *Шумакова А.А., Тананова О.Н., Арианова Е.А. и др.* // Вопросы питания. 2012. Т. 81. № 6. С. 54.
- 8. *Ma H., Williams P.L., Diamond S.A.* // Environ. Pollut. 2013. V. 172. P. 76. https://doi.org/10.1016/j.envpol.2012.08.011
- Моргалев Ю.Н., Гостева И.А., Моргалева Т.Г. и др. // Российские нанотехнологии. 2018. Т. 13. № 5-6. С. 97.
- Parka E.J., Leeb G.H., Yoonc C. et al. // J. Appl. Toxicol. 2016. V. 36. P. 424. https://doi.org/10.1002/jat.3233
- Di Virgilio A.L., Reigosa M., de Mele M.F. // J. Biomed. Mater. Res. A. 2010. V. 92. № 1. P. 80. https://doi.org/10.1002/jbm.a.32339
- 12. Radziun E., Dudkiewicz-Wilczynska J., Ksiaek I. et al. // Toxicol. In Vitro. 2011. V. 25. № 8. P. 1694.
- Song Z.M., Tang H., Deng X. et al. // J. Nanosci. Nanotechnol. 2017. V. 17. № 5. P. 2881. https://doi.org/10.1166/jnn.2017.13056

- Dong E., Wang Y., Yang S.T. et al. // J. Nanosci. Nanotechnol. 2011. V. 11. № 9. P. 7848. https://doi.org/10.1166/jnn.2011.4748
- Шугалей И.В., Гарабаджиу А.В., Илюшин М.А., Судариков А.М. // Экологическая химия. 2012. Т. 21. № 3. С. 172.
- Cardwell A.S., Adams W.J., Gensemer R.W. et al. // Environ. Toxicol. Chem. 2018. V. 37. P. 36. https://doi.org/10.1002/etc.3901
- 17. *Pakrashi S., Dalai S., Humayun A. et al.* // PLOS One. 2013. V. 8. № 9. P. e74003. https://doi.org/10.1371/journal.pone.0074003
- 18. *Musee N.*, *Oberholster P.J.*, *Sikhwivhilu L.*, *Botha A.M.* // Chemosphere. 2010. V. 81. № 10. P. 1196. https://doi.org/10.1016/j.chemosphere.2010.09.040
- Vidya P.V., Chitra K.C. // Int. J. Fisheries Aquatic Studies. 2018. V. 3. P. 13.
- Coleman J.G., Johnson D.R., Stanley J.K. et al. // Environ. Toxicol. Chem. 2010. V. 29. № 7. P. 1575. https://doi.org/10.1002/etc.196
- Stadler T., Buteler M., Weaver D.K., Sofie S. // J. Stored Prod. Res. 2012. V. 48. P. 81. https://doi.org/10.1016/j.jspr.2011.09.004

- 22. ГОСТ 31674-2012. Межгосударственный стандарт. Корма, комбикорма, комбикормовое сырье. Методы определения общей токсичности. Введен в действие приказом Федерального агентства по техническому регулированию и метрологии от 29.11. 2012 г. N 1477-ст (с изменениями на 15.11.2016 г). 30 с.
- 23. Kryuchkova M., Danilushkina A., Lvov Y., Fakhrullin R. // Environ. Sci.: Nano. 2016. V. 3. P. 442. https://doi.org/10.1039/c5en00201j
- 24. Fakhrullina G.I., Akhatova F.S., Lvov Y.M., Fakhrullin R.F. // Environ. Sci.: Nano. 2015. V. 2. P. 54. https://doi.org/10.1039/C4EN00135D
- Li K., Chen Y., Zhang W. et al. // Chem. Res. Toxicol. 2012. V. 25. P. 1675. https://doi.org/10.1021/tx300151y
- Gosteva I., Morgalev Yu., Morgaleva T., Morgalev S. // IOP Conf. Ser.: Mater. Sci. Eng. 2015. V. 98. P. 012007. https://doi.org/10.1088/1757-899X/98/1/012007
- Gatoo M.A., Naseem S., Arfat M.Y. et al. // BioMed Res. Int. 2014. V. 8. P. 498420. https://doi.org/10.1155/2014/498420
- 28. Зайцева Н.В., Землянова М.А., Степанков М.С., Игнатова А.М. // Экология человека. 2018. № 5. С. 9. https://doi.org/10.33396/1728-0869-2018-5-9-15