———— ОБЗОРЫ ———

УДК 66.088

НАНОЧАСТИЦЫ МЕТАЛЛОВ, СОЕДИНЕНИЙ МЕТАЛЛОВ И КОМПОЗИТОВ, ПОЛУЧЕННЫЕ ЭЛЕКТРИЧЕСКИМ ВЗРЫВОМ ПРОВОЛОЧЕК

© 2021 г. А. В. Первиков^{1,2}

¹ Институт физики прочности и материаловедения СО РАН, Томск, Россия

² Томский государственный университет, Томск, Россия

E-mail: pervikov@list.ru Поступила в редакцию 28.08.2020 г. После доработки 14.04.2021 г. Принята к публикации 14.04.2021 г.

Наночастицы (НЧ) обладают уникальным сочетанием физико-химических свойств, что делает их перспективными материалами для использования в таких областях науки и техники, как материаловедение, биомедицина, катализ. В обзоре приведены данные о структурных характеристиках НЧ металлов, сплавов, композитов, а также оксидов, карбидов и нитридов металлов, полученных электрическим взрывом проволочек (ЭВП). Основное внимание уделено взаимосвязи дисперсного, фазового состава НЧ с условиями ЭВП и параметрами буферной среды (химический состав, давление), в которой осуществляется взрыв. Результаты проанализированных исследований показывают, что ЭВП позволяет получать широкий спектр порошков на основе НЧ.

DOI: 10.1134/S1992722321040099

ОГЛАВЛЕНИЕ

Введение

1. Формирование наночастиц в условиях ЭВП

2. Технологические основы получения наночастиц с использованием ЭВП

3. Наночастицы металлов и композитов

4. Наночастицы сплавов

5. Наночастицы оксидов, карбидов и нитридов металлов

6. Наночастицы, полученные совместным электрическим взрывом двух проволочек Заключение

заключение

введение

Наночастицы (**HY**) металлов, соединений металлов и композитные **HY** обладают уникальным сочетанием физико-химических свойств, что делает их перспективными материалами для использования в таких областях науки и техники, как материаловедение, биомедицина, катализ и др. [1–9]. Данное обстоятельство требует разработки новых и совершенствования существующих методов и подходов к получению **HY** с заданными структурными характеристиками, определяющими функциональные свойства **HY**.

Одним из методов получения широкого спектра НЧ является электрический взрыв проволочек (ЭВП) [10]. ЭВП происходит в результате нагрева проволочек импульсом тока плотностью $10^{6}-10^{9}$ А/см². При скорости энерговклада от 0.1 ло 10^2 кДж/г нс и плотности тока $i \ge 10^7$ А/см² реализуется режим быстрого взрыва проволочек. При меньших значениях скорости энерговклада и плотности тока реализуется режим медленного взрыва, при котором основная масса вещества проволочки диспергируется в виде капель жидкого металла размером от единиц до сотен микрон. При скорости энерговклада, превышающей 10² кДж/г нс, реализуется режим сверхбыстрого ЭВП, при котором вводимая энергия выделяется в тонком приповерхностном слое проволочки, а основная масса металла остается "холодной".

ЭВП широко используется для изучения состояния вещества в условиях высоких плотностей энергии [11–14], генерации рентгеновского излучения и ударных волн [15–19], инициирования разрядного канала [20, 21], получения порошков на основе НЧ металлов и их химических соединений [22, 23].

Быстрый ЭВП как метод получения НЧ обладает рядом преимуществ при сравнении с другими физическими методами, а именно: высокой скоростью охлаждения НЧ металлов/сплавов (до 10⁹ K/с) [24], что позволяет в ряде случаев стабилизировать метастабильные состояния конденсированной фазы в наноразмерном состоянии;

 высоким коэффициентом преобразования энергии (КПД до 90%) [22] при ее передаче на нагрузку (взрывающаяся проволочка);

 – универсальностью технологического оборудования, позволяющего получать НЧ металлов, оксидов, карбидов, нитридов за счет изменения буферной среды, в которой происходит взрывообразное разрушение проволочки и формирование НЧ;

 широкими возможностями варьирования дисперсного и фазового состава получаемых порошков, что достигается гибким регулированием электрофизических параметров ЭВП, геометрических параметров проволочки, давлением буферного газа.

Обзор посвящен описанию современного состояния исследований в области получения НЧ металлов, соединений металлов и композитных НЧ с использованием ЭВП.

1. ФОРМИРОВАНИЕ НАНОЧАСТИЦ В УСЛОВИЯХ ЭВП

Сложность физических процессов, протекающих в условиях нагрева проволочки импульсом тока плотностью $i \ge 10^7 \,\text{A/cm}^2$, не позволяет сформулировать общепринятую модель взрывообразного разрушения металла проволочки [10, 25]. Результаты экспериментальных и теоретических исследований показывают, что при введении в режиме быстрого ЭВП в проволочку энергии (E), превышающей энергию сублимации металла проволочки (Е_c), основная масса расширяющихся продуктов ЭВП представлена кластерами конденсированной фазы [12, 26–31]. Гистограммы распределения по размерам полученных методом ЭВП наночастиц металлов/сплавов описываются нормально-логарифмическим законом [23, 24, 28]. Данная функциональная зависимость указывает на то, что НЧ формируются в результате коагуляции частиц меньших размеров (кластеров), механизм формирования которых остается невыясненным [31].

На основании экспериментальных и теоретических исследований в [32] предложена модель ЭВП, в соответствии с которой присутствие кластеров в продуктах ЭВП при $E > E_c$ является следствием неоднородного выделения энергии в объеме проволочки. Согласно модели преимущественное выделение энергии в объеме проволочки при протекании импульса тока происходит на границах кристаллитов. При реализации указанного механизма выделения энергии проволочка взрывооб-

разно разрушается на кластеры, размеры которых близки к исходным размерам кристаллитов металла проволочки.

Согласно [12] присутствие кластеров в расширяющихся продуктах ЭВП при $E > E_c$ является следствием формирования перегревных неустойчивостей в объеме проволочки на резистивной стадии нагрева металла в твердом /жидком состоянии ($\partial \rho / \partial T > 0$). Однако такая неопределенность не позволяет оценить температуру кластеров на начальной стадии расширения продуктов ЭВП.

Согласно [33-35] присутствие кластеров в расширяющихся продуктах ЭВП при $E > E_c$ является следствием развития перегревных неустойчивостей, формирующихся в результате локального увеличения удельного электрического сопротивления жидкого металла. Локальное увеличение улельного электрического сопротивления происходит в результате разрушения кластеров ближнего порядка в жидком металле. Результаты исследований показали, что увеличение среднего размера зерен от 4 до 110 мкм и среднего размера кристаллитов от 73 до 132 нм медной проволочки не приводит к увеличению среднего размера НЧ Си, формирующихся в результате электрического взрыва медных проволочек с указанными структурными характеристиками [34]. В [33] на примере временных зависимостей тока, напряжения и электрического сопротивления, характерных для ЭВП цинка и латуни, показано, что при переходе металла/сплава проволочек в жидкое состояние наблюдается уменьшение электрического сопротивления с ростом температуры. Это показало, что нагрев проволочек цинка и латуни импульсом тока плотностью $i \sim 3 \times 10^7 \,\text{A/cm}^2$ выше температуры плавления не приводит к фрагментации металла/сплава, как было предложено в [32]. Уменьшение с ростом температуры электрического сопротивления жидких фаз цинка и латуни показало, что при нагреве металла/сплава до температуры плавления не происходит формирования перегревных неустойчивостей в соответствии с [12]. Следовательно, в условиях нагрева проволочек импульсом тока плотностью $j \sim 3 \times$ $\times 10^{7} \, \text{A/cm}^{2}$ реализуется однородный нагрев металла/сплава без преимущественного выделения энергии на границах кристаллитов. Наблюдаемая на примере ЭВП цинка и латуни зависимость $\partial \rho / \partial T < 0$ свидетельствует, что нагрев импульсом тока металла/сплава выше температуры плавления приводит к формированию жидкой фазы с сохранением ближнего порядка, а электропроводность жидкого металла/сплава описывается в рамках теории жидких металлов Займана.

В [35] на основе данных о сохранении ближнего порядка в жидком металле в условиях нагрева проволочек импульсом тока плотностью $j \ge 10^7 \text{ A/сm}^2$ предложена модель формирования

кластеров конденсированной фазы, присутствующих в продуктах ЭВП при $E > E_c$. Согласно модели присутствие кластеров в продуктах ЭВП является следствием неоднородного нагрева жидкого металла, вызванного локальным увеличением vдельного электрического сопротивления в peзультате разрушения кластеров ближнего порядка. В основу модели положен статистической подход к описанию строения жидких металлов, разработанный в [36]. Расчеты, проведенные с использованием модели [36], показали, что минимальные температуры кластеров металлов на ранней стадии расширения продуктов ЭВП имеют следующие значения: медь – 2000 К, никель – 2500 K, Zn – 1160 K, серебро – 2400 K, алюминий – 1600 K, свинец – 1300 К [35]. Результаты расчета температуры кластеров не противоречили теоретическим и экспериментальным данным по температуре конденсированной фазы вешества проволочки на начальной стадии взрывообразного расширения, полученным в [12, 37].

Согласно [38] при $E/E_c > 1.5$ перегревные неустойчивости проявляются в виде тонких нитей, что характерно при $\partial \rho / \partial T < 0$. Это показывает, что формирование перегревных неустойчивостей вследствие разрушения кластеров ближнего порядка возможно в режимах нагрева металла импульсом тока, при которых плотность металла проволочки меньше или равна плотности металла на бинодали. В противном случае металл проволочки нагревается без существенного расширения вплоть до критических температур, при которых вероятна термическая ионизация металла ($\partial \rho / \partial T < 0$), способствующая формированию перегревных неустойчивостей в виде нитей [39].

Согласно [26] формирование кластеров происходит в результате распада метастабильного состояния конденсированной фазы вещества проволочки. Проведенная оценка показала, что при $E/E_c \approx 3$ массовое содержание конденсированной фазы в расширяющихся продуктах ЭВП серебряной проволочки составляет ~50 мас. %. Эти данные показали необходимость учета неоднородного выделения энергии по сечению проволочки при разработке моделей эволюции конденсированной фазы вещества проволочки в условиях нагрева импульсом тока плотностью $j \ge 10^7$ A/см².

В [27] на примере электрического взрыва алюминиевых проволочек диаметром 0.1 и 0.4 мм и длиной 13 и 11 см соответственно проведены экспериментальные и теоретические исследования механизмов формирования НЧ в условиях ЭВП. В экспериментах проволочкам с указанными геометрическими параметрами передавалось одинаковое количество энергии (~500 Дж). При этом для проволочки диаметром 0.1 мм соотношение E/E_c составляло ~15.2, а для проволочки диаметром 0.4 мм -~1.1. Результаты исследований пока-

зали, что гистограммы распределения по размерам НЧ алюминия описываются нормально-логарифмическим законом. Средний размер НЧ с увеличением диаметра проволочки увеличивается от 33 до 103 нм. Результаты моделирования процессов образования НЧ алюминия в условиях проведенных экспериментов показали соответствие расчетных и экспериментальных данных для средних размеров НЧ. Показано, что увеличение числа одиночных атомов Al в расширяющихся продуктах взрыва приводит к снижению числа крупных НЧ в получаемых образцах. Также отмечена необходимость учета ион-индуцированной нуклеации при рассмотрении механизмов формирования НЧ металлов в условиях ЭВП и обращают внимание на то, что теплота, выделяемая при фазовых переходах на стадиях формирования НЧ, способствует увеличению среднего размера НЧ.

В [28] проведено численное моделирование образования и роста НЧ АІ. Установлено, что степень насыщения и скорость нуклеации растут с увеличением скорости охлаждения. Показано, что увеличение скорости охлаждения системы "буферный газ-кластеры алюминия" приводит к уменьшению среднего размера НЧ АІ и ширины распределения НЧ по размерам. Полученные данные о влиянии скорости охлаждения продуктов ЭВП на средний размер НЧ согласуются с экспериментальными данными [23].

Обзор литературных данных показывает, что формирование НЧ металлов/сплавов в условиях ЭВП может проходить по одному из двух преобладающих механизмов; в результате коагуляции кластеров конденсированной фазы. формирующихся на стадии взрывообразного разрушения проволочки, либо в результате коагуляции кластеров, формирующихся из газо-плазменной фазы. Формирование продуктов ЭВП в преимущественно газо-плазменном состоянии наиболее вероятно в режимах ЭВП с дуговой стадией разряда, на которой в расширяющиеся продукты ЭВП вводится энергия, существенно превышающая энергию сублимации металла/сплава проволочки [27, 40]. Таким образом, реализация одного из указанных механизмов формирования НЧ определяется режимом ЭВП, что указывает на необходимость согласования электрофизических параметров разрядного контура с геометрическими параметрами проволочки [22].

2. ТЕХНОЛОГИЧЕСКИЕ ОСНОВЫ ПОЛУЧЕНИЯ НАНОЧАСТИЦ С ИСПОЛЬЗОВАНИЕМ ЭВП

Для получения широкого спектра НЧ с использованием ЭВП применяются установки на базе *RLC*-контура (рис. 1). Для реализации ЭВП емкостный (*C*) накопитель энергии заряжается с

Рис. 1. Принципиальная электрическая схема установок для получения наночастиц с использованием ЭВП.

помощью высоковольтного источника питания (**ВИП**) до заданного напряжения U_0 . При срабатывании разрядника (*K*) в электрической цепи протекает импульс тока. *R* и *L* – активное сопротивление и индуктивность элементов цепи соответственно, значения которых определяются из опыта короткого замыкания [33]. При протекании импульса тока проволочка взрывообразно разрушается. Основным источником информации о фазовых переходах металла/сплава проволочки в условиях нагрева импульсом тока служат временные зависимости тока и напряжения, регистрируемые с помощью токового шунта (*R*₃) и делителя напряжения (*R*₁, *R*₂) [33].

Для реализации ЭВП, обеспечивающего получение НЧ с заданным дисперсным составом, необходимо соблюдение соотношения между геометрическими параметрами проволочки и параметрами *RLC*-контура [22].

Из-за влияния скин-эффекта при больших частотах и диаметрах проволочек основное количество энергии при нагреве импульсом тока выделяется в приповерхностном слое проволочки, что приводит к ее неоднородному нагреву по сечению. Для снижения указанной неоднородности радиус проволочки должен быть меньше толщины скин-слоя (δ), определяемой из выражения [41]:

$$\delta = \sqrt{\frac{2\rho}{\mu\omega}},\tag{1}$$

где ρ — удельное электрическое сопротивление материала проволочки, μ — магнитная проницаемость материала проволочки, ω — частота колебаний, определяемая параметрами *L* и *C* с использованием выражения

$$\omega = \frac{1}{\sqrt{LC}}.$$
 (2)

Вследствие скин-эффекта величина плотности тока убывает от поверхности к центру проволочки в 2.7 раза на расстояние δ . В этой связи для проволочки с радиусом $r \sim \delta$ величины энергий, вводимых в приповерхностный и приосевой слои, будут различаться на порядок. Для случая $r > \delta$ в приосевые слои проволочки вводится существенно меньшая энергия, что приводит к тому, что в продуктах ЭВП присутствуют капли жидкого металла микронных и субмикронных размеров при введении в проволочку энергии, превышающей энергию ее сублимации. Поэтому для уменьшения ширины распределения НЧ по размерам радиус проволочки должен быть меньше толщины скин-слоя, что обеспечит более однородный нагрев проволочки по сечению.

На рис. 2 показана принципиальная конструкция установок на базе *RLC*-контура для получения НЧ с использованием ЭВП [42, 43]. Установка состоит из взрывной камеры (1), содержащей высоковольтный (2) и заземленный (3) электроды. Длина взрываемой проволочки определяется изменяемым расстоянием между электродами 2 и 3. Потенциал на электрод 2 подается от ВИП (4). Непрерывная подача проволоки осуществляется механизмом подачи (5). При замыкании межэлектродного промежутка в цепи протекает импульс тока, что приводит к ЭВП. Образующиеся при ЭВП частицы уносятся газовым потоком (рис. 2б) в сепаратор (6). В сепараторе происходит разделение частиц на две фракции с различными размерами. Частицы больших размеров оседают в бункере (7), а частицы меньших размеров уносятся газовым потоком (в, г) в циклон (8) и оседают в бункере (9). Очищенный от частиц газовый поток (а) с помощью вентилятора (10) подается во взрывную камеру. Установки работают в импульсном режиме. Частота взрывов может достигать 1 Гц, а длина проволочки изменяться от 50 до 200 мм. Изменение буферной среды (Ar, He, N₂, $Ar + O_2, C_x H_v, H_2 O$), в которой происходит взрыв проволочки, позволяет получать как НЧ металлов/сплавов, так и нитриды, оксиды, карбиды металлов.

Внешний вид установок для получения НЧ с использованием ЭВП в газах и их конструктивное исполнение приведены в [42–44]. При ЭВП в жидких средах установка содержит взрывную камеру, заполненную жидким углеводородом или деионизованной водой, систему электродов и механизм подачи проволочки [45, 46].

Основное различие в конструктивном исполнении установок для получения НЧ в газовых средах заключается в количестве и геометрических размерах циклонов для улавливания НЧ. В [47] приведена схема установки, содержащей сепаратор и три циклона для улавливания НЧ различных размеров. На примере НЧ Си и Fe продемонстрирована возможность разделения фракций размером 30–60 и 20–50 нм. В циклонах для улавливания НЧ присутствуют в незначительном количестве частицы субмикронных размеров, что, согласно [47], является следствием скачкообразного роста давления и скорости потока газа через циклоны, обусловленного циклическим взрывным расширением продуктов ЭВП. В [48] приведена конструкция установки, позволяющая поместить НЧ металла из бункера в растворы солей без контакта с кислородом воздуха. С использованием данного подхода были синтезированы НЧ Сu@Ag, формирующиеся при помещении НЧ меди в раствор AgNO₃.

Основные различия конструкций установок обусловлены необходимостью сепарации по размерам формирующихся частиц в газовом потоке. Сепарация частиц вызвана присутствием частиц микронных и субмикронных размеров в продуктах взрыва проволочек даже при $E/E_c > 1$. Исследования показывают, что присутствие микронных частиц в продуктах ЭВП может являться следствием не только неоднородного нагрева проволочек по сечению, но и неоднородного нагрева по длине проволочки. В [49] показано, что для конфигурации электродов "острие-плоскость", характерной для системы "высоковольтный электрод-проволочка" на рис. 2, наблюдается низкий энерговклад в области "острия" проволочки, длина которой составляет 0.1-0.2 мм, при общей длине проволочки 1-4 мм. Согласно [49] считается, что низкий энерговклад может быть обусловлен формированием плазмы, шунтирующей ток, протекающий по проволочке. Однако механизм формирования плазмы требует проведения дополнительных исследований.

Анализ литературных данных показывает, что разработанные к настоящему времени конструкции установок позволяют получать широкий спектр НЧ металлов, сплавов и химических соединений металлов. Установки обеспечивают возможность изменения в широких пределах как электрофизических параметров ЭВП, так и геометрических параметров ЭВП, так и геометрических параметров проволочек, что позволяет осуществлять гибкое регулирование энергетических параметров ЭВП, определяющих дисперсный состав НЧ.

Однако используемые в установках конструкции сепараторов и циклонов для улавливания частиц с различными размерами не подкреплены теоретическими расчетами. Используемые конструкции установок в ряде случаев не позволяют провести сепарацию микро- и наночастиц в газовом потоке, что указывает на необходимость проведения дополнительных экспериментальных и теоретических исследований с привлечением математического моделирования.

Рис. 2. Принципиальная конструкция установок для получения наночастиц с использованием ЭВП.

3. НАНОЧАСТИЦЫ МЕТАЛЛОВ И КОМПОЗИТОВ

С использованием ЭВП может быть получен широкий спектр НЧ различных металлов. Детальные исследования влияния параметров ЭВП на структурные характеристики НЧ металлов проведены в [22, 23]. На примере электрического взрыва (ЭВ) проволочек меди, алюминия в атмосферах аргона и смеси аргона и кислорода изучено влияние величины E/E_c , диаметра проволочки на дисперсный и фазовый состав формирующихся НЧ. Было показано, что средний размер НЧ металлов уменьшается с увеличением E/E_c . Увеличение диаметра проволочки при неизменном значении Е/Е приводит к увеличению среднего размера НЧ. Данные зависимости были неоднократно подтверждены в последующих работах других авторов.

В табл. 1 приведены данные о параметрах синтеза и дисперсном составе НЧ металлов и композитов Me@C "ядро(металл)/оболочка(углерод)", полученных с использованием ЭВП.

В [50] исследованы закономерности изменения дисперсного состава и кристаллической структуры (**KC**) НЧ, формирующихся при ЭВ медной проволочки в атмосфере воздуха при различном давлении. Установлено, что при уменьшении давления от 10^5 до 5×10^3 Па средний размер НЧ уменьшается от 31.3 до 23.6 нм. Рентгеноструктурный анализ (**PCA**) образцов показал присутствие КС, соответствующих соединениям СиО, Си₂О и Си. На основании данных РСА показано, что при уменьшении давления газа содержание Си в образцах увеличивается.

ПЕРВИКОВ

Состав		П				
	С, мкФ	<i>U</i> ₀ , кВ	<i>d</i> , мм	<i>l</i> , мм	Буферная среда	литература
Cu	1.85	10.0	0.125	61	Воздух	[50]
	1.85	10.0	0.125	61	$Ar + N_2$	[51]
	0.70	10.0	0.100		Этанол	[52]
	10.0	5.5	0.148	50	Вода	[53]
			0.150		Этанол, толуол	[54]
	30	3	0.200	25	Этанол	[55]
		26	0.400	88	$Ar + CH_4$	[56]
Al	1.0	5.0	0.250	20	Ar, He	[57]
	3.0	17.0-24.0	0.500	58	Ar/He/N ₂	[58]
Ag	30	3.0	0.2, 0.3	27	Вода	[59]
					N_2	[60]
		26	0.400	88	$Ar + CH_4$	[56]
Au	30	3.0	0.2	27	Вода + ПАВ	[61]
Zn	30	3.0	0.25	40	Вода, этанол	[62]
	96	4.6	0.25	30	Толуол/ и др.	[63]
Fe		30	0.470	89	$Ar + N_2$	[64]
						[65]
					$Ar + C_4H_{10}$	[66]
Ni	206.0	5.3	0.600	72	Вода	[67]
					$Ar + C_4H_{10}$	[66]
Pd	30	3	0.200	30	Ar, N ₂ , He	[68]
W	3	23	0.25	50	Ar, N ₂ , He	[69]
Та		27	0.20	70	Ar	[70]
Со	6	24-28	0.6	50	N ₂	[71]
Графен	78.8	19.0-25.0	3.5	50	Вода	[72]
Sn		20	0.300	90	$Ar + CH_4$	[73]
Zr	10	4-12	0.14	50	Этанол	[74]

Таблица 1. Параметры синтеза НЧ металлов и композитов с использованием ЭВП

Исследование влияния состава буферного газа на средний размер и КС наночастиц, формирующихся при ЭВ медной проволочки в смеси газов Ar + N₂ при давлении 0.5×10^5 Па, проведено в [51]. Результаты исследований показали, что средний размер НЧ уменьшается от 35.4 до 29.8 нм с увеличением содержания N₂ в буферном газе от 0 до 75%. По данным РСА для всех полученных образцов характерно присутствие только Си.

НЧ Си с использованием ЭВ медной проволочки в этаноле получены в [52]. Исследование дисперсного состава НЧ показало, что средний размер составляет ~10 нм. Полученный коллоидный раствор на основе НЧ смешивали с раствором Cu(NO₃)₃ 3H₂O. На следующем этапе полученный комплексный раствор наносился на подложку. В результате последующего лазерного нагрева на поверхности подложки формировалось электропроводящее медное покрытие.

В [53] получены НЧ Си при электрическом взрыве медной проволочки в воде. По данным РСА в полученных образцах присутствуют КС, соответствующие Си (91.3%) и Си₂O (8.7%). Исследования дисперсного состава показали, что распределение НЧ по размерам является бимодальным, а именно от 10 до 40 и от 80 до 180 нм.

НЧ Си были получены в [54] для создания электропроводящих чернил. ЭВ медной проволочки осуществлялся в этаноле и толуоле. Средний размер НЧ при E/E_c , равном 2.1, 2.9 и 3.6, составил соответственно 140, 110 и 80 нм. Данные просвечивающей электронной микроскопии (ПЭМ) показали, что на поверхности НЧ присутствует аморфный слой, соответствующий СиО.

Для снижения агломерации НЧ порошки дополнительно подвергались механическому размолу в шаровой мельнице. В результате исследований были получены токопроводящие медные чернила с электропроводностью 10–28 мкСм/см при содержании НЧ Си от 10 до 40 мас. %.

В [55] с использованием ЭВ медной проволочки в суспензии (этанол), содержащей графитовые листы с линейными размерами до 10 мкм, был получен композитный материал медь-графит. Средний размер НЧ Си составил 100 нм. После наработки необходимого содержания НЧ Си этанол выпаривали при 80°С в вакууме. На следующем этапе проводилось восстановление водородом оксидных фаз при 700°С в течение 2 ч. Полученный композитный материал подвергался искровому плазменному спеканию при 900°С в течение 10 мин. Результаты исследований показали, что полученный медно-графитовый материал обладает более высокой износостойкостью при трении по сравнению с чистой медью и медно-графитовым материалом, полученным альтернативным методом.

ЭВ медной проволочки в смеси газов Ar + CH₄ позволил получить композитные HЧ Cu@C [56]. ЭВП реализован при давлении смеси газов, равном 1.5×10^5 Па, и содержании CH₄, равном 10 об. %. Средний размер НЧ составлял ~50 нм. Результаты исследований показали, что создание на поверхности НЧ Си защитного углеродного слоя позволяет предотвратить спекание и окисление НЧ при их нагреве вплоть до 800°C.

Исследование влияния химической природы и давления буферного газа на дисперсный состав НЧ Аl, полученных ЭВП, проведено в [57]. Установлено, что при давлениях буферных газов Ar и He, равных 3×10^4 Па, 8×10^4 Па и 1.15×10^5 Па, наименьший средний размер НЧ Al, формирующихся в Ar и He, наблюдается при 8×10^4 Па. Согласно [57] минимальный средний размер НЧ Al при 8×10^4 Па является следствием максимального значения величины E/E_c при указанном давлении при прочих равных параметрах экспериментов.

В [58] НЧ Аl получены с использованием ЭВ алюминиевой проволочки в атмосферах Ar, N₂ и He. PCA образцов показал, что в атмосфере N₂ формируется соединение AlN. Средний размер HЧ, полученных в Ar, N₂ и He при прочих равных параметрах ЭВП, составил соответственно 34.89, 30.64 и 24.46 нм. НЧ Al использовали для генерации водорода в реакции с водой. Результаты исследований показали, что для HЧ, полученных в He, характерны наибольшая скорость реакции и минимальная энергия активации.

НЧ Ад получены в [59] с использованием ЭВ серебряных проволочек различных диаметров в

воде. Результаты исследований показали, что увеличение температуры воды от 20 до 80°С приводит к увеличению среднего размера НЧ и интервала распределения НЧ по размерам. Было установлено, что наиболее стабильными являются коллоидные растворы серебра, полученные при минимальных значениях температуры воды и диаметрах проволоки.

В [60] исследовано влияние размера НЧ Ад, полученных ЭВ серебряной проволочки в атмосфере азота, на КС. Установлено, что НЧ размером менее 25 нм имеют гексагональную структуру, НЧ размером от 25 до 30 нм характеризуются как гексагональной, так и кубической структурой, а для НЧ размером более 30 нм характерна только кубическая структура.

В [56] получены композитные HЧ Ag@C при ЭВ серебряной проволочки в атмосфере смеси газов Ar + CH₄. Спекание HЧ Ag@C в атмосферах Ar, N₂ и смеси Ar + N₂ показало, что углеродная оболочка предотвращает спекание HЧ до 800°C.

В [61] изучено влияние состава поверхностноактивного вещества (ПАВ) на дисперсный состав и стабильность коллоидных растворов, содержащих НЧ Аи, полученные ЭВ золотой проволочки в воде с ПАВ. В результате исследований были получены стабильные (до 10 дней) коллоидные растворы со средним размером НЧ от 10 до 14 нм.

НЧ Zn получены в [62] с использованием ЭВП в воде и этаноле. Исследование структуры и дисперсного состава показало, что НЧ, полученные в этаноле, имеют средний размер ~150 нм. НЧ, полученные в этаноле, имели сферическую форму, тогда как часть НЧ, полученных в воде, имела форму, отличную от сферической. Средний размер НЧ сферической формы составлял ~100 нм, тогда как для НЧ с несферической формой указанное значение составляло ~300 нм.

В [63] в присутствии различных органических соединений, предотвращающих образование оксидного слоя на поверхности, синтезированы НЧ Zn со средним размером ~100 нм.

НЧ Fe получены в смеси газов Ar + 30% N₂ при давлении 1.2×10^5 Па [64]. Исследование дисперсного состава и КС наночастиц показало, что средний размер частиц составляет 106 нм и в образце присутствуют следующие КС: α -Fe (95 ± 1%), γ -Fe (2 ± 1%) и магнетит (3 ± 1%). Величина намагниченности полученных образцов составляла 87% от величины, характерной для объемного железа. Результаты исследований показали перспективность использования полученных НЧ для создания магнитореологических жидкостей.

В [65] синтезированы НЧ Fe с высокой намагниченностью (186 \pm 3 Гс см³/г). Исследование дисперсного состава и КС показало, что средний размер частиц составляет 49 \pm 2 нм, КС частиц соответствует соединениям α -Fe и γ -Fe₂O₃. Установлено присутствие на поверхности НЧ оксидной немагнитной оболочки FeO_x, способствующей химической стабильности и биосовместимости НЧ.

Композитные НЧ Fe@C получены в [66]. Присутствие углеродной оболочки на поверхности НЧ Fe обеспечивалось взаимодействием поверхности частиц железа с толуолом. В результате исследований были получены НЧ Fe@C с размером 50-80 нм и намагниченностью 179 Гс см³/г.

НЧ Ni синтезированы с использованием ЭВ никелевой проволочки в воде [67]. Исследование дисперсного состава показало, что образец представлен частицами со средним размером ~20 нм. Также в образце присутствуют отдельные частицы микронных размеров. По данным РСА в образцах присутствуют КС, соответствующие Ni, NiO и Ni(OH)₂.

Композитные HЧ Ni@C получены с использованием ЭВ никелевой проволочки в смеси газов Ar + C₄H₁₀ [66]. Средний размер синтезированных частиц составил 47 нм. РСА показал присутствие KC, соответствующей Ni. Величина намагниченности составила 52 Гс см³/г.

Синтез НЧ Рd с использованием ЭВП проведен в [68]. Результаты исследований показали, что средний размер НЧ, формирующихся при ЭВП в атмосферах Ar, He и N_2 , увеличивается с увеличением давления газа от 10⁴ до 10⁵ Па. Для образцов, полученных при указанных условиях, характерно присутствие НЧ со средним размером от 19 до 32 нм. РСА показал присутствие в образцах КС, соответствующей Pd.

Синтез НЧ W в атмосферах Ar, N₂ и Не реализован в [69]. Результаты исследований показали, что средний размер НЧ составляет 21.02, 16.27 и 12.88 нм для Ar, N₂ и Не соответственно при прочих равных параметрах ЭВП. По данным РСА в образцах присутствуют KC, соответствующие α -W, β -W и оксиду вольфрама.

В [70] получены и исследованы порошки Та. Исследование дисперсного состава показало, что распределение частиц по размерам является бимодальным. Средний размер частиц наноразмерной фракции составляет 120 нм, а микронной фракции ~5 мкм. По данным РСА в образце присутствуют КС, соответствующие α-Та и β-Та.

Синтез НЧ Со с использованием ЭВП проведен в [71]. Установлено, что изменение E/E_c от 1.89 до 2.58 приводит к уменьшению среднего размера НЧ, определенного по данным ПЭМ, от 64 до 54 нм. Комплексные исследования структурных характеристик НЧ, проведенные с использованием ПЭМ, РСА и адсорбции газа, показали, что с уменьшением среднего размера НЧ их структура изменяется от поликристаллической к монокристаллической.

В [72] с использованием ЭВП графитовых стержней в воде получены однослойные и многослойные нанолисты графена. Показано, что изменение величины E/E_c позволяет регулировать структуру листов графена.

С использованием ЭВ оловянной проволочки в атмосфере смеси газов Ar + CH₄ получены композитные HЧ Sn@C [73]. Средний размер НЧ составил 62 нм. Результаты исследований показали, что полученные НЧ могут быть использованы в качестве анодного материала в литий-ионных батареях.

С использованием ЭВ циркониевой проволочки в этаноле получены НЧ Zr@C [74]. Показано, что размеры НЧ лежат в интервале от 10 до 150 нм. С увеличением E/E_c средний размер частиц уменьшается от 43.9 до 24.9 нм. На основании полученных данных был предложен механизм формирования углеродной оболочки на поверхности НЧ Zr.

4. НАНОЧАСТИЦЫ СПЛАВОВ

НЧ сплавов могут быть получены с использованием ЭВП, когда в качестве материала проволочки используется сплав, либо на поверхность проволочки нанесен слой другого металла. Данные подходы позволяют получить широкий спектр НЧ сплавов с различным содержанием компонент. Параметры синтеза ряда НЧ сплавов с использованием ЭВП приведены в табл. 2.

Для получения НЧ сплава Ti–Cr использовалась титановая проволочка, покрытая хромом [75]. Соотношение металлов в проволочке составило 75Ti/25Cr ат. %, средний размер полученных НЧ – 40 нм. В образце также присутствовали отдельные частицы размером от 2 до 20 мкм. Данные РСА показали, что в образце присутствуют КС, соответствующие α -Ti, β -(Ti,Cr) и TiCr₂. Содержание Cr в β -(Ti,Cr) составило 13 ат. %.

В [76] получены НЧ сплава FeNi₃. Средний размер НЧ – 50 нм. Величина намагниченности полученного образца – 56.7 Гс см³/г.

НЧ сплава Ni₃₆Fe₆₄ получены при ЭВП указанного состава в атмосфере азота при давлении 1.2×10^5 Па и различных значениях E/E_c [77]. Результаты показали, что при увеличении E/E_c от 0.8 до 2.3 средний размер НЧ уменьшается от 159 до 54 нм. Содержание γ - и α -фаз в образцах составляло соответственно 90 и 10%. Намагниченность образцов при 300 К уменьшается со 126 до 111 Гс см³/г при увеличении E/E_c от 0.8 до 2.3.

НЧ сплава Sn-0.75Си получены при ЭВП соответствующего состава в атмосфере Ar при различных значениях E/E_c и давлении газа [78]. Ре-

Состор		Питаратира					
COCTAB	С, мкФ	<i>U</i> ₀ , кВ	<i>d</i> , мм	<i>l</i> , мм	Буферная среда	литература	
Ti–Cr	3.5	11.4		20	Ar	[75]	
Fe-Ni	30	2.5	0.09	40	Вода	[76]	
	1.6-3.2	20-30	0.25	70-100	N ₂	[77]	
Sn-Cu	30	1.6-6.0	0.3	20	Ar	[78]	
Cu–Sn	20		0.4	60	Раствор аскор. кислоты	[79]	
Cu–Zn	20		0.4	60	Раствор аскор. кислоты	[79]	
					Ar	[80]	
Al-Mg	3	30	1.0	60	Ar, He	[81]	
Fe-Cr-Ni,	200	1	0.2	20	Вода, парафин и др.	[82]	
Fe-Ni-Co							
316L			0.35-0.50		Ar	[85]	
Cr–Ni–Al			0.4	80	Ar	[86]	
Cr–Ni–W			0.6	70	Ar		

Таблица 2. Параметры синтеза НЧ сплавов с использованием ЭВП

зультаты исследований показали, что в условиях проведенных экспериментов формируются НЧ со средним размером 28 нм. Данные РСА показали присутствие в образцах КС, соответствующей Sn. Средний размер НЧ уменьшается с увеличением E/E_c или уменьшением давления буферного газа.

НЧ сплавов Cu–1Sn и Cu–30Zn получены в [79] с использованием ЭВП соответствующих составов в водном растворе аскорбиновой кислоты. НЧ использовали для создания токопроводящих чернил. Результаты исследований показали, что уменьшение удельного электрического сопротивления материала на основе НЧ Cu–1Sn после спекания составило от 3.49×10^{-4} Ом м до 1.64×10^{-6} Ом м. Для материала на основе НЧ Cu–30Zn соответствующее уменьшение составило от 4.76×10^{0} Ом м до 3.78×10^{-4} Ом м.

В [80] изучены закономерности изменения КС НЧ Си–Zn, полученных ЭВП сплава Си–37Zn в аргоне, в зависимости от величины E/E_c . Показано, что увеличение E/E_c от 0.8 до 2.0 не приводит к изменению КС, представленной β-CuZn и α-Cu. Согласно полученным данным полного перехода вещества проволочки в газо-плазменное состояние при $E/E_c \approx 2.0$ не происходит.

В [81] получены НЧ сплава Al-Mg при ЭВП сплава 65.55 Al/34.45 Mg мас. % в атмосфере аргона. На основании данных дифференциальной сканирующей калориметрии установлено, что НЧ сплава Al-Mg имеют более низкие значения температуры и энтальпии плавления по сравнению с чистым алюминием. Это указывает на перспективность использования полученных НЧ для создания твердых ракетных топлив с улучшенными характеристиками.

В [82] исследована КС образцов, полученных ЭВП сплавов FeCrNi-ASI 304, FeNiCo-Kovar при $E/E_c \ge 1$ в жидких средах: воде, парафине, этиленгликоле и силоксане. Результаты показали, что при ЭВП сплава FeCrNi-ASI 304 в воде формируются оксиды FeCr₂O₄, (FeCr)₂O₃ и СгООН. При ЭВП сплава FeNiCo-Kovar в этиленгликоле количество углеродсодержащих побочных продуктов невелико, что, согласно [82], является следствием удаления побочных продуктов в виде газов (СО, СО₂). При ЭВП данного сплава в силоксане побочные продукты образуются в результате разложения силоксана, а металлические компоненты с ОЦК- и ГЦК-структурой внедряются в матрицу из оксида кремния. На основании полученных данных была предложена модель взаимодействия "горячих" продуктов ЭВП с охлаждающей жидкостью.

В [83] проведены детальные исследования энергетических характеристик ЭВП сплава AISI 304 диаметром от 0.6 до 0.8 мм и длиной от 40 до 160 мм. Исследование особенностей ЭВП с указанными геометрическими параметрами играет важную роль для получения однородных смесей микро- и наночастиц с использованием ЭВП.

Одним из новых направлений в области практического применения НЧ является создание порошковых композиций на основе микро- и наночастиц для PIM-технологии. В [84] показано, что добавление наноразмерной фракции позволяет снизить температуру спекания порошков и увеличить относительную плотность изделий, полу-

ПЕРВИКОВ

Состав		П				
	С, мкФ	<i>U</i> ₀ , кВ	<i>d</i> , мм	<i>l</i> , мм	Буферная среда	Литература
Ti-O	10-30	2-6	0.100	25	O ₂	[88]
	12.5	40	0.500	300	Воздух/вода	[89]
	3.2	21	0.500	—	$Ar + O_2$	[90]
	3.0	21-28	0.250	50, 135	O ₂	[91]
	80	4.5-15.5	0.70	48	Вода + H_2O_2	[92]
Fe–O	-	30	0.47	—	$N_2 + O_2$	[42]
	3.5	11.4	0.30	20	$Ar + O_2$	[93, 94]
	12.5	8-20	0.25	100	Вода + оксид графена	[95]
	16.9	2.6-6.3	0.20	32	Воздух	[96]
Cu–O	3	30	0.1	30	Вода + NaOH, NH ₃ · H ₂ O	[97]
W–O	3	23	0.25	50	O ₂	[98]
Ni–O	1.7	8	0.45	45	O ₂	[99]
Мо-О	30	3-6	0.25	45	$N_2 + O_2$	[100]
Al-O	7.5, 30	3	0.100	28, 38	Этанол/вода	[101]
	—	—	0.350	—	$Ar + O_2$	[102]
Zn-O	3	14-24	0.5	100	O ₂	[103]
Zr–O	3.1		0.52		$Ar + O_{2, N_2} + O_2$	[104]

Таблица 3. Параметры синтеза НЧ оксидов металлов с использованием ЭВП

чаемых спеканием однородных смесей микро- и наночастиц.

В [85, 86] на примере сплавов 316L, Cr-70Ni-A1 (аналог XH70Ю). Cr-60Ni-W (аналог XH60BT) предложен новый подход к получению однородных смесей микро- и наночастиц, основанный на использовании режимов ЭВП при значениях $E/E_c \le 1$. Так, на примере ЭВП сплава 316L показано, что при $E/E_c \approx 1.1$ формируется однородная смесь микро- и наночастиц с бимодальным распределением частиц по размерам [85]. Средний размер НЧ составляет ~70-90 нм, а средний размер частиц микронной фракции лежит в интервале от 1.5 до 2 мкм. Широкие возможности изменения диаметра проволочки и E/E_{c} позволяют регулировать содержание микрои наночастиц в смеси. В [86] исследован дисперсный состав и КС однородных смесей микро- и наночастиц, полученных ЭВП сплавов Cr-70Ni-Al, Cr-60Ni-W. Показано, что присутствие НЧ позволяет снизить температуру спекания порошка до 750°С для сплава Cr-60Ni-W и до 800°С для Cr-70Ni-Al.

В [87] показано, что образцы, полученные лазерным сплавлением порошков на основе смеси микро- и наночастиц сплава 316L, обладают большей твердостью по сравнению с образцами, полученными лазерным сплавлением микронных частиц. При этом образцы на основе смеси микрои наночастиц имели более высокую пористость (~15%), что являлось следствием более низкой текучести фидстока на основе смеси микро- и наночастиц.

5. НАНОЧАСТИЦЫ ОКСИДОВ, КАРБИДОВ И НИТРИДОВ МЕТАЛЛОВ

Реализация ЭВП в химически активных средах позволяет получать НЧ оксидов, карбидов и нитридов металлов. В табл. 3 приведены параметры получения ряда НЧ оксидов металлов с использованием ЭВП.

НЧ TiO₂ получены при ЭВ титановой проволочки в атмосфере кислорода при E/E_c в интервале от 1.9 до 52.1 [88]. В соответствии с данными РСА с увеличением E/E_c в указанном интервале содержание рутила в полученных образцах увеличивается от 6 до 84% при давлении 10⁵ Па, а средний размер НЧ уменьшается от 30.9 до 20.4 нм.

В [89] проведено исследование структуры НЧ оксида титана, формирующихся при ЭВ титановой проволочки в воде и воздухе. Было установлено, что частицы, полученные в воздухе, имеют размеры от 10 до 200 нм. КС НЧ соответствует рутилу и анатазу. Размеры кристаллитов рутила и анатаза составляли 14.6 и 10.3 нм соответственно. Размеры НЧ, полученных в воде, составляли от 10 до 300 нм. При этом содержание фракции частиц размером менее 50 нм было выше по сравнению с образцом, полученным в воздухе. Такая зависимость, согласно [89], является следствием более высокой скорости охлаждения НЧ в воде по сравнению с воздухом, что приводит к увеличению содержания более мелкой фракции. Размеры кристаллитов рутила и анатаза составили 5.7 и 15.4 нм соответственно. В образце, полученном в воде, идентифицирована КС, не соответствующая ни одному из известных соединений Ті-О.

Сравнительный анализ фотокаталитической активности НЧ TiO₂, полученных различными методами, включая ЭВП, проведен в [90]. НЧ ТіО₂ получены ЭВ титановой проволочки в атмосфере смеси газов Ar + 20% O_2 при давлении 1.2 × $\times 10^5$ Па. Результаты сравнительного анализа показали, что НЧ, полученные ЭВП, имеют наибольшую фотокаталитическую активность по сравнению с НЧ, полученными лазерным испарением мишени и коммерческим диоксидом титана AEROXIDE P25 (P25) производства Evonik, ранее выпускавшимся компанией Degussa под маркой Р25. КС наночастиц, полученных ЭВП, состояла на 28 и 72% из рутила и анатаза соответственно, а величина удельной поверхности составляла 47.3 м²/г.

В [91] исследовано влияние величин E/E_c и давления буферного газа на дисперсный состав и КС НЧ ТіО₂. Результаты показали, что содержание рутила увеличивается, а размер НЧ уменьшается с увеличением E/E_c и/или уменьшением Р. Полученные данные подтвердили результаты [88].

НЧ ТіО₂ получены в [92] с использованием ЭВ титановой проволочки в воде с добавлением H_2O_2 . Результаты исследований показали, что образцы, полученные в воде при нулевом содержании H_2O_2 , имеют сложный фазовый состав, включающий рутил, анатаз и нестехиометрические соединения TiO_{2-x} . Образцы, полученные в воде с добавлением 5, 10% H_2O_2 , содержат преимущественно КС рутила и анатаза, а также Ti_3O_5 , Ti_9O_{17} . Результаты исследований показали, что образец, полученный в воде без добавления H_2O_2 при минимальной величине E/E_c , обладает наилучшим поглощением в области видимого света.

НЧ оксида железа с использованием ЭВ железной проволочки в смеси газов $N_2 + 20\% O_2$ синтезированы в [44]. Размеры полученных НЧ лежали в интервале от 5 до 100 нм. Данные РСА показали, что КС образцов соответствует магнетиту и гематиту.

В [93, 94] исследованы дисперсный состав и КС НЧ оксида железа, полученных в атмосфере смеси газов Ar + O₂. Содержание кислорода составляло 5, 10 и 30 об. %. Результаты показали,

что содержание оксидов железа увеличивается с увеличением кислорода. Средний размер НЧ уменьшается от 141 до 79 нм при увеличении кислорода от 5 до 30%. В [94] с использованием полученных в [93] образцов проведены исследования зависимости величины адсорбции As от фазового состава образцов НЧ. Результаты показали, что максимальные значения адсорбции As (19.7 мг/г) характерны для образца, полученного при 5% О₂.

В [95] с использованием ЭВ железной проволочки получен композитный материал Fe–FeO– оксид графена. Для получения указанного материала ЭВ железной проволочки проводился в воде, содержащей нанолисты оксида графена. Результаты исследований показали, что с увеличением E/E_c изменяется фазовый состав продуктов реакции, а именно, при минимальном значении E/E_c фазовый состав соответствует соединениям Fe, FeO, графену, а при максимальном значении E/E_c в продуктах реакции присутствуют FeO, Fe₃C, FeO(OH) и частицы графита.

НЧ оксида железа получены с использованием ЭВ железной проволочки в воздухе при значениях E/E_c , равных 1.0, 3.8 и 6.0 [96]. Согласно данным РСА для всех образцов характерно присутствие КС, соответствующих Fe, Fe₃O₄ и γ-Fe₂O₃. Средний размер НЧ составил 48 нм. Исследование магнитных свойств показало, что величина намагниченности образцов зависит от формы НЧ и изменяется при 300 К от 80 до 64 Гс см³/г.

В [97] получены НЧ оксида меди с различной морфологией при ЭВ медной проволочки в воде, содержащей NaOH и NH₃ · H₂O. Показано, что в присутствии NaOH формируются листовые двумерные структуры оксида меди, а с увеличением содержания NaOH наблюдается увеличение степени агломерации листов. Добавление NH₃ · H₂O приводит к росту объемных иерархически организованных структур оксида меди. Установлено, что оптические свойства полученных образцов изменяются в зависимости от морфологии частиц.

НЧ оксида вольфрама получены с использованием ЭВ вольфрамовой проволочки в кислороде при различных значениях E/E_c и давления газа [98]. Результаты исследований показали, что средний размер НЧ уменьшается от 47 до 11 нм при увеличении E/E_c от 1 до 3 и увеличивается от 11 до 32 нм при увеличении давления газа от 50 до 200 кПа. Данные РСА показывают, что в полученных образцах присутствуют КС, соответствующие WO₃ и β -W. Содержание β -W уменьшается с ростом давления буферного газа.

В [99] получены НЧ оксида никеля при ЭВ никелевой проволочки в кислороде. Исследование дисперсного состава и КС образцов показало, что КС соответствует соединению NiO, а средний

ПЕРВИКОВ

Состав		Питоролиро				
	С, мкФ	<i>U</i> ₀ , кВ	<i>d</i> , мм	<i>l</i> , мм	Буферная среда	литература
W–C	3	14-24	0.25, 0.1	100	CH_4, C_2H_2	[105]
	3	23	0.25	50	CO_2, CH_4	[106]
	12.5	40	0.3-1.0	200	Парафин	[107]
Mo-C	3	28	0.25	100	Парафин, CH ₄	[108]
	30	4	0.10	25	Ar + керосин	[109]
Zr–C	3	27.5	0.5	39	CH ₄	[110]
Ti–C	3	15-26	0.25	135	CH ₄ ,C ₂ H ₂	[111]
Ti–N	12.5	40	0.1, 0.5	300	Жидкий азот	[112]
	3.5	11.4	0.3	20	Азот	[113]
Zr–N						[114]

Таблица 4. Параметры синтеза НЧ карбидов и нитридов металлов с использованием ЭВП

размер НЧ составляет 47–53 нм. Исследования показали высокую фотокаталитическую активность образцов при разложении соединения (CH₃)₃COCH₃.

В [100] с использованием ЭВ молибденовой проволочки в атмосфере смеси газов N_2 и O_2 получены НЧ оксида молибдена при различных значениях E/E_c и давления газа. Результаты исследований показали, что оптимальные условия для формирования β -Мо O_3 наблюдаются при минимальных значениях E/E_c и давления газа (25 кПа).

Коллоиды оксида алюминия получены в [101] с использованием ЭВ алюминиевой проволочки в воде и этаноле при различных значениях E/E_c . Результаты исследований показали, что для НЧ, полученных в этаноле, характерна отрицательная величина ζ -потенциала, а для НЧ, полученных в воде, ζ -потенциал положителен. Установлено, что НЧ, полученные в этаноле, имеют меньшее содержание кислорода по сравнению с НЧ, полученными в воде.

В [102] исследовано влияние величины E/E_c на содержание фаз оксида алюминия в образцах, полученных при ЭВ алюминиевой проволочки в смеси газов Ar + 20% O₂. Показано, что содержание оксида алюминия, близкое к 100%, достигается при $E/E_c \ge 1.5$.

В [103] исследованы дисперсный состав и КС НЧ оксида цинка, полученных с использованием ЭВ цинковой проволочки при различных значениях E/E_c и давления газа. Данные РСА показали, что КС соответствует соединению ZnO. Присутствие фазы Zn характерно для образца, полученного при минимальном значении E/E_c , равном единице. Для образцов, полученных при постоянном давлении и значениях E/E_c , равных 1, 2, 3, средний размер НЧ составляет соответственно 62, 53 и 51 нм. Для образцов, полученных при $E/E_c \approx 3$ и давлениях 150, 100 и 25 кПа, средний размер НЧ составляет 51, 46 и 44 нм соответственно.

В [104] показано, что использование режимов ЭВП при $E/E_c \approx 0.5$ позволяет получать НЧ оксида циркония с удельной поверхностью, равной 60 м²/г (для смеси газов N₂ + O₂) и 70 м²/г (для смеси газов Ar + O₂).

В табл. 4 приведены параметры ЭВП, характерные для получения НЧ карбидов и нитридов металлов.

НЧ карбида вольфрама получены в [105] с использованием ЭВ вольфрамовой проволочки в метане, смеси "аргон + ацетилен" и смеси "метан + + ацетилен" при различных значениях E/E_c и давления газа. Анализ образцов, полученных в метане, показал, что увеличение E/E_c от 3 до 19 и давления от 20 до 170 кПа не приводит к значительному изменению среднего размера НЧ, лежащего в интервале от 21.7 до 25.2 нм. Данные РСА показали присутствие в образцах КС, соответствующих WC_{1-х} и W. Минимальное содержание W в образцах наблюдается при $E/E_c \approx 19$. Для смеси газов "аргон + ацетилен" характерно формирование КС, соответствующих WC_{1-x} , W_2C и W. При использовании в качестве буферной среды ацетилена в полученных образцах наряду с КС WC_{1-x} , W_2C в значительном количестве содержится КС, соответствующая углероду. При использовании смеси "метан + ацетилен" зависимость фазового состава образцов от E/E_c и давления газа аналогична зависимости, полученной для чистого метана.

В [106] проведены исследования НЧ, полученных ЭВ вольфрамовой проволочки в атмосферах углекислого газа и метана при различных значениях *E*/*E*_c и давления газа. Полученные образцы имели сложный фазовый состав, включающий фазы оксидов и карбидов вольфрама, а также α- и β-W.

В [107] НЧ карбида вольфрама были получены в результате ЭВП вольфрама с различным диаметром в жидком парафине. Данные РСА полученных образцов показали, что с уменьшением величины E/E_c в образцах увеличивается содержание W₂C, WC и графита, тогда как при максимальном значении E/E_c преобладающей КС является WC_{1 – x}. На основании чего был получен вывод, что содержание WC_{1 – x} в полученных образцах определяется содержанием ионизованной газоплазменной фазы в продуктах ЭВП.

НЧ карбида молибдена в [108] получали в результате ЭВ молибденовой проволочки в метане. Для экспериментов использовались проволочки с покрытием и без него. В качестве покрытия использовалась смесь парафина и графита. По данным РСА в образцах, полученных при давлениях метана, равных 25, 50 и 100 кПа, и $E/E_c \approx 3$, наряду с основным соединением МоС присутствуют Мо и Мо₂С. Их содержание с увеличением давления газа уменьшается. Для образцов, полученных при ЭВП с покрытием, по данным РСА характерно наличие только МоС. Средний размер НЧ, полученных в результате ЭВП с покрытием, зависит от соотношения парафина и графита в покрытии и составляет от 14 до 26 нм.

Использование ЭВ молибденовой проволочки в смеси Ar и паров керосина при давлении 25 кПа позволило получить образцы с содержанием MoC, равным 98.4% [109]. Средний размер НЧ составил 24 нм. Установлено, что увеличение давления смеси приводит к уменьшению содержания фазы MoC.

В [110] установлены зависимости дисперсного состава и КС образцов, полученных в результате ЭВ циркониевой проволочки в атмосфере метана, от различных значений E/E_c и давления газа. Согласно РСА при значениях E/E_c , лежащих в интервале от 2 до 4.8, в полученных образцах наряду с ZrC присутствует Zr. В образцах, полученных при давлении газа, равном 25, 50, 100 и 150 кПа, также подтверждено присутствие Zr наряду с ZrC. Средний размер HЧ, полученных при различных значениях E/E_c и давления газа, лежал в интервале от 19 до 25 нм.

НЧ карбида титана, полученные при ЭВП в атмосферах метана и смеси аргон/ацетилен при различных значениях E/E_c и давления газа, исследованы в [111]. Показано, что образцы на основе TiC могут быть получены в атмосферах метана и смеси аргон/ацетилен при $E/E_c \approx 4$ и при давлении газа от 20 до 180 кПа. При уменьшении E/E_c в не зависимости от величины давления и типа буферного газа в образцах по данным РСА идентифицируется присутствие Ті.

В [112] получены образцы нитрида титана со средним размером НЧ ~50 нм.

Порошки на основе НЧ нитрида титана получены в [113]. Электрический взрыв титановой проволочки проводили в атмосфере азота при различных давлениях. Установлено, что в интервале давлений буферного газа 0.02–0.15 МПа формируются НЧ преимущественно кубической формы. Увеличение давления буферного газа позволяет уменьшить содержание КС, соответствующей нестехиометрическому соединению TiN_{0.3}.

В [114] получены и исследованы HЧ ZrN. Установлено, что с увеличением E/E_c в интервале от 1 до 3 при давлении газа (N₂), равном 100 кПа, средний размер НЧ уменьшается от 22 до 16 нм. Увеличение давления буферного газа от 25 до 100 кПа приводит к незначительному изменению среднего размера формирующихся НЧ.

6. НАНОЧАСТИЦЫ, ПОЛУЧЕННЫЕ СОВМЕСТНЫМ ЭЛЕКТРИЧЕСКИМ ВЗРЫВОМ ДВУХ ПРОВОЛОЧЕК

Относительно новым и недостаточно изученным подходом к получению биметаллических НЧ и наночастиц на основе сложных оксидов является использование совместного электрического взрыва двух проволочек различных металлов [115]. Характерные особенности расширения продуктов взрыва двух проволочек и их взаимодействие рассмотрены в [116-118]. Для упрощения технологических операций, обеспечивающих непрерывную подачу проволочек к высоковольтному электроду (рис. 2), проволочки подаются в виде скрутки [119]. С использованием данного подхода получен широкий спектр биметаллических НЧ: Al-Pb [35], Cu-Ni [79, 120], Cu-Sn, Cu-Ag [78, 121], Fe-Ti [122], Ni-Al [123], Fe-Cu, Fe-Ag [124], Ni-Ag [125], Fe-Pb [126], Cu-W [127], Ti-Ag [128], Al-Cu, Al-Ag, Al-Zn [129], Cu-Nb, Си-Рь [130]. Отметим, что в [122] показана возможность получения биметаллических НЧ совместным ЭВ десяти проволочек. Это показывает, что совместный взрыв нескольких проволочек различных металлов/сплавов может быть использован для получения многокомпонентных НЧ металлов и их химических соединений [131–133].

Отличительная особенность совместного взрыва двух проволочек различных металлов проявляется в том, что параллельно включенные в *RLC*-контур проволочки взрываются последовательно (не синхронно). На рис. 3 приведены временные зависимости токов и напряжения, характерные для совместного ЭВП Ta–Al (а, в, д) и Ta–Cu (б, г, е), имеющих одинаковые диаметры и

Рис. 3. Временные зависимости токов *I*(*t*) и напряжения *U*(*t*), характерные для совместного электрического взрыва проволочек Ta–Al (а, в, д) и Ta–Cu (б, г, е). Параметры ЭВП Ta–Al: $d_{Ta} = d_{AI} = 0.3 \text{ мм}, l_{Ta} = l_{AI} = 85 \text{ мм}, C = 3.2 \text{ мк}\Phi, a - U_0 = 24 \text{ кB}, b - U_0 = 27 \text{ кB}, d - U_0 = 30 \text{ кB}, среда – аргон (2 × 10⁵ Па). Параметры ЭВП Ta–Cu: <math>d_{Ta} = d_{Cu} = 0.3 \text{ мм}, l_{Ta} = l_{Cu} = 80 \text{ мм}, C = 3.2 \text{ мк}\Phi, 6 - U_0 = 24 \text{ кB}, r - U_0 = 27 \text{ кB}, e - U_0 = 27 \text{ кB}, c = 0.3 \text{ мм}, l_{Ta} = l_{Cu} = 80 \text{ мм}, C = 3.2 \text{ мк}\Phi, b = 0.3 \text{ мм}, l_{Ta} = l_{Cu} = 80 \text{ мм}, C = 3.2 \text{ мк}\Phi, b = 0.3 \text{ мм}, c = 3.2 \text{ мк}\Phi, b = 0.3 \text{ мм}, c = 3.2 \text{ мк}\Phi, b = 0.3 \text{ мм}, c = 3.2 \text{ мк}\Phi, b = 0.3 \text{ мм}, c = 3.2 \text{ мк}\Phi, b = 0.3 \text{ мм}, c = 3.2 \text{ мк}\Phi, b = 0.3 \text{ мм}, c = 3.2 \text{ мк}\Phi, b = 0.3 \text{ мм}, c = 3.2 \text{ мк}\Phi, b = 0.3 \text{ мм}, c = 3.2 \text{ мк}\Phi, b = 0.3 \text{ мм}, c = 3.2 \text{ мк}\Phi, b = 0.3 \text{ мм}, c = 3.2 \text{ мк}\Phi, b = 0.3 \text{ мм}, c = 3.2 \text{ мк}\Phi, b = 0.3 \text{ MM}, c = 3.2 \text{ мк}\Phi, b = 0.3 \text{ MM}, c = 3.2 \text{ мк}\Phi, b = 0.3 \text{ MM}, c = 3.2 \text{ мк}\Phi, b = 0.3 \text{ MM}, c = 3.2 \text{ MK}\Phi, b = 0.3 \text{ MM}, c = 3.2 \text{ MK}\Phi, b = 0.3 \text{ MM}, c = 3.2 \text{ MK}\Phi, b = 0.3 \text{ MM}, c = 3.2 \text{ MK}\Phi, b = 0.3 \text{ MM}, c = 3.2 \text{ MK}\Phi, b = 0.3 \text{ MM}, c = 3.2 \text{ MK}\Phi, c = 0.3 \text{ MM}, c = 3.2 \text{ MK}\Phi, c = 0.3 \text{ MM}, c = 3.2 \text{ MK}\Phi, c = 0.3 \text{ MM}, c = 3.2 \text{ MK}\Phi, c = 0.3 \text{ MM}, c = 3.2 \text{ MK}\Phi, c = 0.3 \text{ MM}, c = 3.2 \text{ MK}\Phi, c = 0.3 \text{ MM}, c$

длину. Анализ данных показывает, что первой взрывается проволочка металла, имеющего меньшее удельное электрическое сопротивление. Быстрый рост электрического сопротивления алюминиевой и медной проволочек приводит к скачкообразному увеличению тока, протекающего по танталовой проволочке. Интенсивное увеличение протекающего тока способствует развитию перегревных неустойчивостей в объеме жидкого металла, что указывает на необходимость более детального исследования фазового состояния вещества танталовой проволочки в указанных режимах нагрева. Согласно рис. 3 увеличение протекающего в цепи тока приводит к уменьшению временного интервала между последовательными взрывами проволочек различных металлов. Из данных рисунка следует, что при значениях E_c для алюминиевой, медной и танталовой проволо-

Рис. 4. Формирование структурно-фазовых состояний биметаллических НЧ в условиях совместного электрического взрыва двух проволочек различных металлов.

чек, равных соответственно 200, 286 и 426 Дж, в режимах нагрева проволочек импульсом тока, близких к критическим (рис. 3д, 3е), в проволочки вводится энергия порядка $1.5E_c$ (Та) и $3.0E_c$ (Аl, Cu). Отметим, что для танталовой проволочки наблюдается отключение тока до нулевого значения, что нехарактерно для ЭВ одиночных проволочек тугоплавких металлов в газах при микросекундных временах нагрева из-за поверхностного шунтирования [10].

В [115] предложен безразмерный критерий K, позволяющий оценить реализацию синхронного/несинхронного совместного ЭВП в зависимости от теплофизических параметров металла проволочки и ее геометрических параметров. Показано, что если значение $K \approx 1$, реализуется синхронный взрыв проволочек, а если K > 1, реализуется несинхронный взрыв.

Основное внимание исследований в области получения биметаллических НЧ с использованием совместного ЭВ двух проволочек различных металлов сосредоточено на определении условий синтеза, позволяющих получать НЧ с заданной структурой, дисперсным и фазовым составом. В настоящее время в литературе отсутствуют результаты систематических исследований влияния параметров электрофизических совместного ЭВП различных металлов, типа и величины давления буферного газа на дисперсный и фазовый состав биметаллических НЧ. Определение указанного влияния является важным для понимания закономерностей формирования структурно-фазовых состояний биметаллических НЧ, зависящих от размера НЧ, соотношения металлов в НЧ, скорости охлаждения НЧ [134-136].

В [129, 130] на примере биметаллических НЧ на основе металлов с ограниченной взаимной растворимостью Fe/Ag, Ni/Ag, Cu/Nb, Cu/Pb, Al/Zn и металлов с неограниченной взаимной растворимостью Al/Ag, Al/Cu проведены комплексные исследования влияния величины энтальпии смешения металлов на структуру биметаллических НЧ, формирующихся в атмосфере аргона. Показано, что в условиях несихронного ЭВ двух проволочек из металлов с ограниченной взаимной растворимостью формируются НЧ со структурой "янус-частица" и "ядро-оболочка" (рис. 4). При несинхронном ЭВП металлов с неограниченной взаимной растворимостью формируются биметаллические НЧ на основе твердых растворов и интерметаллидов. Результаты исследований показали, что подбор содержания металлов в продуктах ЭВП позволяет получать НЧ с заданным фазовым составом [35, 130].

Отметим, что для некоторых бинарных систем изменение величины Е/Е может оказывать существенное влияние на структурно-фазовое состояние биметаллических НЧ, формирующихся в условиях совместного взрыва двух проволочек различных металлов [137]. На примере биметаллических НЧ Аg56Сu44 мас. % показано, что увеличение E/E_c от 1.1 до 2.8 приводит к изменению структуры НЧ от "янус-частица" до "ядро-оболочка" (рис. 5). Для образцов, полученных при $E/E_c \approx 1.1$ и 1.6, характерно преобладание частиц двух типов: с относительно однородным распределением компонент в объеме НЧ и частиц со структурой "янус-частица" (рис. 5а, 5б). Увеличение E/E_c до 2.8 приводит к изменению структуры частиц. В образце преобладают частицы со структурой "ядро-оболочка" (Ag@Cu) и янусподобные частицы (рис. 5в, 5г). Представленные

(a) (б) 100 нм 100 нм (B) (r) 100 нм 100 н

Рис. 5. Микрофотографии НЧ Аg–Cu, полученных при различных значениях *E*/*E*_c.

данные позволяют предположить, что структура частиц "ядро-оболочка" на рис. 5в является промежуточным состоянием при формировании равновесной структуры янус-подобных НЧ на рис. 5г. Наблюдаемые изменения структуры НЧ Ад-Си при увеличении *E*/*E*_c до 2.8 могут быть вызваны изменением фазового состояния продуктов ЭВП. При преобладании газоплазменной фазы в продуктах ЭВП формирование НЧ происходит за счет конденсации из газовой фазы. Так как температуры плавления меди и серебра различаются незначительно, это способствует однородному распределению металлов в объеме НЧ на стадии ее формирования [138]. Последующее охлаждение НЧ приводит к кристаллизации расплава, при которой на первом этапе кристаллизуется оболочка на основе меди (рис. 5в). Однако согласно литературным данным для НЧ Аg–Сu более энергетически выгодной является структура Cu@Ag [139]. Данное обстоятельство позволяет объяснить трансформацию структуры НЧ Аg–Cu, наблюдаемую на рис. 5в, 5г.

В [140, 141] исследован дисперсный и фазовый состав HЧ, полученных совместным ЭВ двух проволочек Zn/Al, Zn/Ag, Zn/Cu, Zn/Ti, Cu/Fe в смеси газов Ar + O_2 . Результаты анализа структуры HЧ с помощью ПЭМ и РСА показали, что в условиях проведенных экспериментов формируются HЧ со сложной структурой и фазовым составом, зависящими от соотношения металлов в продуктах ЭВП. Так, при ЭВП Zn/Al с соотношением Zn56/Al44 ат. % формируются HЧ, содержащие

фазы ZnO, Al₂O₃ и ZnAl₂O₄. Для ЭВП Zn/Ag с соотношением Zn55/Al45 ат. % характерно наличие в образце Ag и ZnO. В случае ЭВП Cu/Zn с соотношением Zn55/Cu45 ат. % в полученных образцах присутствуют CuO и ZnO. Для ЭВП Zn/Ti с соотношением Ti66/Zn34 ат. % характерно формирование ZnO, TiO₂, Zn₂TiO₄. Отметим, что в настоящее время отсутствуют работы, посвященные установлению зависимостей фазового и дисперсного состава HЧ, полученных ЭВ двух проволочек различных металлов в кислородсодержащей атмосфере, от параметров синтеза, а именно от величин энергий, вводимых в проволочки, содержания кислорода в буферном газе, давления газа.

В [142-144] проведены исследования физикохимических свойств материалов на основе биметаллических НЧ. полученных совместным взрывом двух проволочек различных металлов. Показано, что на основе НЧ Fe-Cu, Fe-Ag могут быть получены объемные материалы с антимикробными свойствами по отношению к грамотрицательным клеткам штамма Pseudomonas aeruginosa и грамположительным клеткам штамма Staphylo*соссиѕ аигеиѕ*. Установлено, что скорость растворения железа в натрий-фосфатном буферном растворе у консолидированных образцов Fe/Cu значительно выше, чем у консолидированных материалов, полученных из НЧ Fe/Ag и смесей НЧ [142]. В [143, 144] с использованием магнитно-импульсного прессования и искрового плазменного спекания НЧ Fe-Cu и W-Cu получены объемные нанокристаллические псевдосплавы. Результаты исследований показали, что полученные материалы обладают высокой твердостью, износостойкостью и электропроводностью по сравнению с аналогичными составами, полученными альтернативными методами.

Совместный ЭВ двух проволочек различных металлов может быть использован для получения однородных смесей микро- и наночастиц сплавов. В [119] на примере совместного ЭВП Ті/АІ с соотношением металлов Ті51АІ49 мас. % показана возможность получения однородных смесей микро- и наночастиц. Анализ дисперсного состава показал, что в образце присутствуют микро- и наночастицы. Микрочастицы обогащены титаном, тогда как НЧ содержат оба металла в равной степени. Данные РСА показали, что КС образцов соответствует α_2 -Ti₃Al и γ -TiAl. Полученные образцы порошков на основе смеси микро- и наночастиц могут быть использованы для создания изделий сложной формы с помощью РІМ-технологии [84].

ЗАКЛЮЧЕНИЕ

В обзоре показано, что использование ЭВП позволяет получать порошки на основе НЧ металлов, сплавов, оксидов, карбидов и нитридов металлов. Единственным ограничением получения необходимых НЧ с использованием ЭВП является отсутствие диспергируемого материала в виде проволочки. Варьирование величины вводимой в проволочки энергии, давления и типа буферного газа позволяет регулировать дисперсный и фазовый состав НЧ. Тем не менее средний размер получаемых с использованием ЭВП НЧ существенно превышает средний размер НЧ, получаемых, к примеру, осаждением из растворов солей. Уменьшение среднего размера НЧ, получаемых ЭВП, может быть достигнуто за счет использования проволочек диаметром менее 0.1 мм и буферных газов с высокой теплопроводностью (Не, Н₂). Однако данный подход на порядок уменьшит производительность метода. Обзор литературы показывает, что результаты указанных исследований в настоящее время отсутствуют.

Достоверно установлено, что увеличение энергии, вводимой в проволочки, приводит к уменьшению среднего размера НЧ. Также показано, что увеличение вводимой в проволочки энергии и давления химически активного буферного газа позволяет снизить содержание фаз металлов при получении НЧ оксидов, нитридов и карбидов металлов. Эти данные показывают, что для получения НЧ химических соединений с использованием ЭВП продукты взрыва должны преимущественно находиться в газо-плазменном состоянии. Однако для определения достоверного механизма формирования НЧ в условиях ЭВП в инертных и химически активных газах необходимо дальнейшее развитие представлений о фазовом состоянии продуктов ЭВП.

Использование совместного электрического взрыва двух проволочек различных металлов позволяет существенно расширить спектр получаемых НЧ. Однако в литературе отсутствуют результаты систематических исследований установления связи между структурными характеристиками биметаллических НЧ, НЧ сложных оксидов и параметрами синтеза, а также данные о влиянии естественного старения на дисперсный и фазовый состав получаемых с использованием ЭВП НЧ. Это указывает на необходимость проведения данных исследований с целью получения на основе биметаллических НЧ и НЧ сложных оксидов функциональных материалов с заданными свойствами.

Исследование выполнено при финансовой поддержке Российского фонда фундаментальных исследований (проект № 19-18-50433).

СПИСОК ЛИТЕРАТУРЫ

- Khan I., Saeed K., Khan I. // Arabian J. Chem. 2019.
 V. 12. P. 908. https://doi.org/10.1016/j.arabjc.2017.05.011
- Jeevanandam J., Barhoum A., Chan Y.S. et al. // Beilstein J. Nanotechnol. 2018. V. 9. P. 1050. https://doi.org/10.3762/bjnano.9.98
- Samyn P., Barhoum A., Ohlund T. et al. // J. Mater. Sci. 2018. V. 53. P. 146. https://doi.org/10.1007/s10853-017-1525-4
- 4. Berner M.K., Talawar M.B., Zarko V.E. // Combust. Explo. Shock. 2013. V. 49. P. 625. https://doi.org/10.1134/S0010508213060014
- 5. Zakharova O.V., Gusev A.A. // Nanotechnologies in Russia. 2019. V. 14. P. 311. https://doi.org/10.1134/S1995078019040141
- Olenin A.Y., Lisichkin G.V. // Russ. J. Appl. Chem. 2018. V. 91. P. 1393. https://doi.org/10.1134/S1070427220010012
- Golovin Yu.I., Klyachko N.L., Majouga A.G. et al. // Nanotechnologies in Russia. 2018. V. 13. P. 215. https://doi.org/10.1134/S1995078018030060
- Alloyeau D., Mottet C., Ricolleau C. Nanoalloys: Synthesis, Structure and Properties. London: Springer-Verlag, 2012. 411 p. https://doi.org/10.1007/978-1-4471-4014-6
- Zhang Y.-W. Bimetallic Nanostructures: Shape-Controlled Synthesis for Catalysis, Plasmonics, and Sensing Applications. John Wiley & Sons Ltd, Southern Gate, Chichester, West Sussex. 2018. 504 p. https://doi.org/10.1002/9781119214618
- Romanova V.M., Ivanenkov G.V., Mingaleev A.R. et al. // Plasma Phys. Rep. 2015. V. 41. P. 617. https://doi.org/10.1134/S1063780X15080085
- Tkachenko S.I., Mingaleev A.R., Romanova V.M. et al. // Plasma Phys. Rep. 2009. V. 35. P. 734. https://doi.org/10.1134/S1063780X09090037
- Baksht R.B., Tkachenko S.I., Romanova V.M. et al. // Tech. Phys. 2013. V. 58. P. 1129. https://doi.org/10.1134/S1063784213080021
- Romanova V.M., Mingaleev A.R., Ter-Oganesyan A.E. et al. // Matter Radiat. Extremes. 2019. V. 4. P. 026401. https://doi.org/10.1063/1.5085487
- 14. Oreshkin V.I., Baksht R.B. // IEEE T. Plasma Sci. 2020. V. 48. P. 1214. https://doi.org/10.1109/TPS.2020.2985100
- Mesyats G.A., Shelkovenko T.A., Ivanenkov G.V. et al. // J. Exp. Theor. Phys. 2010. V. 111. P. 363. https://doi.org/10.1134/S1063776110090049
- 16. Pikuz S.A., Shelkovenko T.A., Hammer D.A. // Plasma Phys. Rep. 2015. V. 41. P. 291. https://doi.org/10.1134/S1063780X15040054
- Pikuz S.A., Shelkovenko T.A., Hammer D.A. // Plasma Phys. Rep. 2015. V. 41. P. 445. https://doi.org/10.1134/S1063780X15060045
- Rososhek A., Efimov S., Maler D. et al. // Appl. Phys. Lett. 2020. V. 116. P. 243702. https://doi.org/10.1063/5.0011226

- 19. Li L., Qian D., Zou X. et al. // Phys. Plasmas. 2018. V. 25. P. 053502. https://doi.org/10.1063/1.5028507
- 20. Yudin A.S., Voitenko N.V., Kuznetsova N.S. // IEEE Trans. Plasma Sci. 2017. V. 45. P. 3042. https://doi.org/10.1109/TPS.2017.2761441
- 21. Peng J., Zhang F., Yang X. // Powder Technol. 2020.
 V. 367. P. 517. https://doi.org/10.1016/j.powtec.2020.04.012
- 22. Kotov Y.A. // Nanotechnologies in Russia. 2009. V. 4. P. 415. https://doi.org/10.1134/S1995078009070039
- 23. Lerner M.I., Svarovskaya N.V., Psakhie S.G. et al. // Nanotechnologies in Russia. 2009. V. 4. P. 741. https://doi.org/10.1134/S1995078009110019
- 24. Sindhu T.K., Sarathi R., Chakravarthy S.R. // Nanotechnology. 2008. V. 19. P. 025703. https://doi.org/10.1088/0957-4484/19/02/025703
- Feagin T.A., Heatwole E.M., Rae P.J. et al. // Sci. Rep. 2021. V. 11. P. 7467. https://doi.org/10.1038/s41598-021-86584-6
- 26. Romanova V.M., Ivanenkov G.V., Mingaleev A.R. et al. // Phys. Plasmas. 2018. V. 25. P. 112704. https://doi.org/10.1063/1.5052549
- Shi H., Wu J., Li X. et al. // Plasma Sources Sci. Technol. 2019. V. 28. P. 085010. https://doi.org/10.1088/1361-6595/ab216f
- 28. Bai J., Shi Z., Jia S. // J. Phys. D. Appl. Phys. 2017. V. 50. P. 075301. https://doi.org/10.1088/1361-6463/aa5615
- 29. Lv F, Liu P, Qi H. et al. // Comp. Mater. Sci. 2019. V. 170. P. 109142. https://doi.org/10.1016/j.commatsci.2019.109142
- 30. Lv F., Liu P., Qi H. et al. // Comp. Mater. Sci. 2019. V. 162. P. 88.
 - https://doi.org/10.1016/j.commatsci.2019.02.026
- Romanova V.M., Ivanenkov G.V., Parkevich E.V. et al. // J. Phys. D. Appl. Phys. 2021. V. 54. P. 175201. https://doi.org/10.1088/1361-6463/abdce5
- 32. Volkov N.B., Mayer A.E., Sedoi V.S. et al. // Tech. Phys. 2010. V. 55. P. 509. https://doi.org/10.1134/S1063784210040122
- 33. *Pervikov A.V.* // Phys. Plasmas. 2016. V. 23. P. 060701. https://doi.org/10.1063/1.4953418
- 34. Pervikov A.V., Lerner M.I., Krukovskii K.V. // Curr. Appl. Phys. 2017. V. 17. P. 201. https://doi.org/10.1016/j.cap.2016.11.026
- Pervikov A.V., Lerner M.I. // Curr. Appl. Phys. 2017.
 V. 17. P. 1494. https://doi.org/10.1016/j.cap.2017.08.017
- Turdukozhaeva A.M. // Russ. J. Phys. Chem. A. 2013. V. 87. P. 1595.

https://doi.org/10.1134/S0036024413090252

- 37. Oreshkin V.I., Khishchenko K.V., Levashov P.R. et al. // High Temp. 2012. V. 50. P. 584. https://doi.org/10.1134/S0018151X12050148
- Kun Wang, Zongqian Shi, Hongfei Xu et al. // Phys. Plasmas. 2020. V. 27. P.112102. https://doi.org/10.1063/5.0018965
- 39. Лев М.Л., Перегуд Б.П. // ЖТФ. 1981. Т. 51. № 6. С. 1211.

- 40. Bora B., Kausik S.S., Wong C.S. et al. // Appl. Phys. Lett. 2014. V. 106. P. 223108. https://doi.org/10.1063/1.4881838
- 41. *Ilott A.J., Chandrashekar S., Klöckner A. et al.* // J. Magn. Reson. 2014. V. 245. P. 143. https://doi.org/10.1016/j.jmr.2014.06.013
- 42. Vorozhtsov A.B., Lerner M.I., Radkevich N.G. et al. // Mater. Res. Soc. Symp. P. 2015. V. 1758. P. 44. https://doi.org/10.1557/opl.2015.362
- 43. Sossi A., Duranti E., Paravan C. et al. // Appl. Surf. Sci. 2013. V. 271. P. 337. https://doi.org/10.1016/j.apsusc.2013.01.197
- 44. Beketov I.V., Safronov A.P., Medvedev A.I. et al. // AIP Adv. 2012. V. 2. P. 022154. https://doi.org/10.1063/1.4730405
- 45. Cho C., Ha Y.-C., Kang C. et al. // J. Korean Phys. Soc. 2010. V. 57. P. 1807. https://doi.org/10.3938/jkps.57.1807
- 46. *Abdelkader E.M., Jelliss P.A., Buckner S.W.* // Inorg. Chem. 2015. V. 54. P. 5897. https://doi.org/10.1021/acs.inorgchem.5b00697
- 47. Jankauskas V., Padgurskas J., Zunda A. et al. // Surf. Eng. Appl. Elect. 2011. V. 47. P. 170. https://doi.org/10.3103/S1068375511020074
- 48. Kim C.K., Lee G.-J., Lee M.K. et al. // Powder Technol. 2014. V. 263. P. 1. https://doi.org/10.1016/j.powtec.2014.04.064
- 49. Parkevich E.V., Tilikin I.N., Agafonov A.V. et al. // JETP Lett. 2016 V. 103. P. 357. https://doi.org/10.1134/S0021364016050118
- 50. Wong C.S., Bora B., Yap S.L. et al. // Curr. Appl. Phys. 2012 V. 12. P. 1345. https://doi.org/10.1016/j.cap.2012.03.024
- 51. Lee Y.S., Bora B., Yap S.L. et al. // Curr. Appl. Phys. 2012. V. 12. P. 199. https://doi.org/10.1016/j.cap.2011.06.001
- Yang S., Yoon J.-C., Yun J.-Y. et al. // Res. Chem. Intermediat. 2014. V. 40. P. 2457. https://doi.org/10.1007/s11164-014-1654-1
- 53. Peng C., Wang J., Zhou N. et al. // Curr. Appl. Phys. 2016. V. 16. P. 284. https://doi.org/10.1016/j.cap.2015.12.009
- 54. Lee D.-J., Jin F.-L., Park S.-J. // J. Mater. Sci. 2019. V. 42. P. 49. https://doi.org/10.1007/s12034-018-1725-9
- Bien T.N., Gu W.H., Bac L.H. et al. // J. Nanosci. Nanotechnol. 2014. V. 14. P. 8750. https://doi.org/10.1166/jnn.2014.9995
- 56. *Uhm Y.R., Rhee C.K., Park J.-J. et al.* // Res. Chem. Intermediat. 2013. V. 39. P. 3387. https://doi.org/10.1007/s11164-012-0851-z
- Bai J., Shi Z., Huang C. et al. // J. Phys. D Appl. Phys. 2019. V. 52. P. 425201. https://doi.org/10.1088/1361-6463/ab3362
- Neelmani, Rengaswamy J., Raghuraman C.S. et al. // IEEJ Trans. Electr. Electron. Eng. 2019. V. 14. P. 810. https://doi.org/10.1002/tee.22869
- 59. Yun G.S., Bac L.H., Kim J.S. et al. // J. Alloys. Compd. 2011. V. 509S. P. S348. https://doi.org/10.1016/j.jallcom.2011.01.142

РОССИЙСКИЕ НАНОТЕХНОЛОГИИ том 16 № 4 2021

- 60. Murzakaev A.M. // Phys. Metals Metallogr. 2017. V.118. P. 459. https://doi.org/10.1134/S0031918X1705009X
- Bac L.H., Kim J.S., Kim J.C. // Rev. Adv. Mater. Sci. 2011. V. 28. P. 117. http://www.ipme.ru/e-journals/RAMS/no_22811/26_paper.pdf
- 62. Goo W.H., Bac L.H., Park E.J. et al. // Mod. Phys. Lett. B. 2009 V. 23. P. 3903. https://doi.org/10.1142/S0217984909021983
- 63. Abdelkader E.M., Jelliss P.A., Buckner S.W. et al. // Mater. Chem. Phys. 2015. V. 149–150. P. 238. https://doi.org/10.1016/j.matchemphys.2014.10.012
- 64. Berasategi J., Ainara Gomez A., Mounir Bou-Ali M. et al. // Smart Mater. Struct. 2018. V. 27. P. 045011. https://doi.org/10.1088/1361-665X/aaaded
- 65. Omelyanchik A., Varvaro G., Gorshenkov M. et al. // J. Magn. Magn. Mater. 2019. V. 484. P. 196. https://doi.org/10.1016/j.jmmm.2019.03.109
- 66. Beketov I.V., Safronov A.P., Bagazeev A.V. et al. // J. Alloys Compd. 2014. V. 586. P. S483. https://doi.org/10.1016/j.jallcom.2013.01.152
- Eom G.S., Kwon H.J., Cho Y.S. et al. // J. Korean Phys. Soc. 2014. V. 65. P. 1054. https://doi.org/10.3938/jkps.65.1054
- 68. Sato Y., Suematsu H., Sarathi R. et al. // Jpn. J. Appl. Phys. 2015. V. 54. P. 045002. https://doi.org/10.7567/JJAP.54.045002
- 69. Sarathi R., Sindhu T.K., Chakravarthy S.R. et al. // J. Alloys Compd. 2009. V. 475. P. 658. https://doi.org/10.1016/j.jallcom.2008.07.092
- 70. Korshunov A.V., Pustovalov A.V., Morozova T.P. et al. // Oxid. Met. 2020. V. 93. P. 301. https://doi.org/10.1007/s11085-020-09957-8
- 71. *Fikret Yılmaz, Dong-Jin Lee, Joon-Woo Song et al.* // Powder Technol. 2013. V. 235. P. 1047. https://doi.org/10.1016/j.powtec.2012.10.024
- 72. Gao X., Xu C., Yin H. et al. // Nanoscale. 2017. V. 9. P. 10639. https://doi.org/10.1039/C7NR01647F
- 73. Song J.S., Cho G.B., Ahn J.H. et al. // Appl. Surf. Sci. 2017. V. 415. P.14. https://doi.org/10.1016/j.apsusc.2016.12.157
- 74. Jinxiang W., Fujia L., Chucai P. et al. // Rare Metal Mat. Eng. 2018. V. 47. P. 1749. https://doi.org/10.1016/S1875-5372(18)30161-9
- 75. *Kim W., Park J.-s., Suh C.-y. et al.* // Mater. Trans. 2009. V. 50. P. 2344. https://doi.org/10.2320/matertrans.M2009190
- 76. Bac L.H., Kwon Y.S., Kim J.S. et al. // Mater. Res. Bull. 2010. V. 45. P. 352. https://doi.org/10.1016/j.materresbull.2009.12.008
- 77. *Tokoi Y., Suzuki T., Nakayama T. et al.* // Jpn. J. Appl. Phys. 2008. V. 47. P. 760. https://doi.org/10.1143/JJAP.47.760
- 78. Ranjan P., Nguyen D.H., Tanaka K. et al. // Appl. Nanosci. 2019. V. 9. P. 341. https://doi.org/10.1007/s13204-018-0910-x
- 79. Kawamura G., Alvarez S., Stewart I.E. et al. // Sci. Rep. 2015. V. 5. P. 18333. https://doi.org/10.1038/srep18333

- Pervikov A.V., Lerner M.I., Glazkova E.A. et al. // AIP Conf. Proc. 2014. V. 1623. P. 483. https://doi.org/10.1063/1.4898987
- 81. Kumar L.S., Chakravarthy S.R., Verma R. et al. // J. Alloys Compd. 2020. V. 838. P. 155630. https://doi.org/10.1016/j.jallcom.2020.155630
- Lazar K., Varga L. K., Kis V.C. et al. // J. Alloys Compd. 2018. V. 763. P. 759. https://doi.org/10.1016/j.jallcom.2018.05.326
- 83. Bigelmayr M., Pieterse P., Uhrlandt D. // J. Phys. D. Appl. Phys. 2020. V. 54. P. 045202. https://doi.org/10.1088/1361-6463/abbe4c
- 84. Oh J.W., Lee W.S., Park S.J. // Metall. Mater. Trans. A. 2018. V. 49. P. 5535. https://doi.org/10.1007/s11661-018-4851-5
- 85. Pervikov A.V., Rodkevich N.G., Glazkova E.A. et al. // AIP Conf. Proc. 2017. V. 1915. P. 040045. https://doi.org/10.1063/1.5017393
- 86. Lerner M.I., Pervikov A.V., Rodkevich N.G. et al. // Mater. Res. Express. 2019. V. 6. P. 126524. https://doi.org/10.1088/2053-1591/ab5329
- Filimonov A.M., Rogozin O.A., Firsov D.G. et al. // Materials. 2021. V. 14. P. 115. https://doi.org/10.3390/ma14010115
- 88. Tokoi Y., Suzuki T., Nakayama T. et al. // Jpn. J. Appl. Phys. 2008. V. 47. P. 760. https://doi.org/10.1143/JJAP.47.760
- Wada N., Akiyoshi K., Morita K. et al. // Ceram. Int. 2013. V. 39. P. 7927. https://doi.org/10.1016/j.ceramint.2013.03.056
- 90. Mansurov R.R., Safronov A.P., Samatov O.M. et al. // Russ. J. Appl. Chem. 2017. V. 90. P. 179. https://doi.org/10.1134/S1070427217020033
- 91. Ranjan P., Selvam E., Jayaganthan R. et al. // Mater. Today. 2018. V. 5. P. 17304. https://doi.org/10.1016/j.matpr.2018.04.142
- 92. Gao X., Xu C., Yin H. et al. // Adv. Powder Technol. 2020. V. 31. P. 986. https://doi.org/10.1016/j.apt.2019.12.021
- 93. Song K., Sujeong Lee S., Suh C.-Y. et al. // Mater. Trans. 2012. V. 53. P. 2056. https://doi.org/10.2320/matertrans.M2012186
- 94. Song K., Suh C.-Y., Ko K.-S. et al. // Mater. Trans. 2012. V. 53. P. 739. https://doi.org/10.2320/matertrans.M2011381
- 95. Gao X., Yokota N., Oda H. et al. // Crystals. 2018. V. 8. P. 104. https://doi.org/10.3390/cryst8020104
- 96. Kim Y.-W., Park H.S. // Electron. Mater. Lett. 2019. V. 15. P. 665. https://doi.org/10.1007/s13391-019-00164-5
- 97. Park E., Park H.W., Lee J. // Colloid. Surface. A. 2015. V. 482. P. 710. https://doi.org/10.1016/j.colsurfa.2015.07.029
- 98. Aravinth S., Sankar B., Chakravarthi S.R. et al. // Mater. Charact. 2011. V. 62. P. 248. https://doi.org/10.1016/j.matchar.2010.12.005
- 99. Yazdani D., Zinatizadeh A.A., Joshaghani M. // Water Environ. J. 2019. V. 33. P. 167. https://doi.org/10.1111/wej.12387

- 100. Chu N.M., Hieu N.D., Dung Do T.M. et al. // Jpn. J. Appl. Phys. 2020 V. 59. P. SCCC02. https://doi.org/10.7567/1347-4065/ab48b8
- 101. Park E., Park H.W. // Colloid. Surface. A. 2014. V. 459. P. 100. https://doi.org/10.1016/j.colsurfa.2014.06.047
- 102. Lerner M.I., Lozhkomoev A.S., Pervikov A.V. et al. // Russ. Phys. J. 2016. V. 59. P. 422. https://doi.org/10.1007/s11182-016-0789-5
- 103. Ranjan P., Singh R.K., Suematsu H. et al. // J. Environ. Chem. Eng. 2017. V. 5. P. 1676. https://doi.org/10.1016/j.jece.2017.02.036
- 104. Bagazeev A.V., Kotov Yu.A., Medvedev A.I. et al. // Nanotechnologies in Russia. 2010. V. 5. P. 656. https://doi.org/10.1134/S1995078010090107
- 105. Ranjan P., Kurosaki T., Suematsu H. et al. // Int. J. Appl. Ceram. Tec. 2020. V. 17. P. 304. https://doi.org/10.1111/ijac.13350
- 106. Debalina B., Kamaraj M., Murthy B.S. et al. // J. Alloys. Compd. 2010. V. 496. P. 122. https://doi.org/10.1016/j.jallcom.2010.01.140
- 107. Tanaka S., Bataev I., Oda H. et al. // Adv. Powder Technol. 2018. V. 29. P. 2447. https://doi.org/10.1016/j.apt.2018.06.025
- 108. Sarathi R., Reddy R.S., Tavarmani R.S. et al. // IEEE Trans. Plasma Sci. 2015. V. 43. P. 3470. https://doi.org/10.1109/TPS.2015.2426019
- 109. Chu N.M., Hieu N.D., Do D.T.M. et al. // J. Am. Ceram. Soc. 2019. V. 102. P. 7108. https://doi.org/10.1111/jace.16621
- 110. Reddy R.S., Kamaraj M., Mudali U.K. et al. // Mater. Trans. 2012. V. 53. P. 1420. https://doi.org/10.2320/matertrans.M2012021
- 111. Ghosh S., Ranjan P., Kumaar A. et al. // J. Alloys. Compd. 2019. V. 794. P. 645. https://doi.org/10.1016/j.jallcom.2019.04.299
- 112. Hokamoto K., Wada N., Tomoshige R. et al. // J. Alloys. Compd. 2009. V. 485. P. 573. https://doi.org/10.1016/j.jallcom.2009.06.061
- 113. Kim W., Park J.-s., Suh C.-y. et al. // Mater. Trans. 2009. V. 50. P. 2897. https://doi.org/10.2320/matertrans.M2009297
- 114. Reddy R.S., Kamaraj M., Mudali U.K. et al. // Ceram. Int. 2012. V. 38. P. 5507. https://doi.org/10.1016/j.ceramint.2012.03.065
- 115. Pervikov A., Glazkova E., Lerner M. // Phys. Plasmas. 2018. V. 25. P. 070701. https://doi.org/10.1063/1.5034184
- 116. Kun Wang, Yue Zhang, Lincun Jiang et al. // J. Phys. D. Appl. Phys. 2020. V. 53. P. 335201. https://doi.org/10.1088/1361-6463/ab8b06
- 117. Скрябин А.С., Павлов А.В., Телех В.Д. и др. // Прикладная физика. 2020. № 6. С. 40. http://applphys.orion-ir.ru/appl-20/20-6/PF-20-6-40.pdf
- 118. Ruoyu Han, Wanying Zhu, Jiawei Wu et al. // J. Phys. D. Appl. Phys. 2020. V. 53. P. 345201. https://doi.org/10.1088/1361-6463/ab8b07
- 119. Первиков А.В., Глазкова Е.А., Мужецкая С.Ю. и др. // Патент РФ № 2709304. Зарегистрирован 17.12.2019. Заявка № 2019118604 от 15.06.2019.

- https://doi.org/10.1007/s11182-020-01879-x
 129. Pervikov A.V., Suliz K.V., Lerner M.I. et al. // Powder Technol. 2020. V. 360. P. 855. https://doi.org/10.1016/j.powtec.2019.11.003
- 130. Pervikov A.V., Kazantsev S.O., Lozhkomoev A.S. et al. // Powder Technol. 2020. V. 372. P. 136. https://doi.org/10.1016/j.powtec.2020.05.088

120. Suwa K., Nakavama T., Suzuki T. et al. // Jpn. J. Appl.

https://doi.org/10.1007/s11182-021-02206-8

https://doi.org/10.1143/JJAP.50.01BJ06

122. Tokoi Y., Orikawa T., Suzuki T. et al. // Jpn. J. Appl.

123. Ishihara S., Koishi T., Orikawa T. et al. // Intermetal-

124. Lerner M.I., Bakina O.V., Pervikov A.V. et al. // Russ.

125. Sharipova A.F., Bakina O.V., Lozhkomoev A.S. et al. //

126. Pervikov A.V., Lerner M.I., Bakina O.V. et al. // Inorg. Mater. Appl. Res. 2019. V. 10. P. 699.

127. Khrustalev A.P., Pervikov A.V., Chumaevskii A.V. et al. //

128. Svarovskaya N.V., Bakina O.V., Pervikov A.V. et al. //

https://doi.org/10.1016/j.intermet.2011.12.026

https://doi.org/10.1007/s11182-018-1359-9

Inorg. Mater. Appl. Res. 2019. V. 10. P. 691.

https://doi.org/10.1134/S2075113319030389

https://doi.org/10.1134/S2075113319030328

https://doi.org/10.1007/s11182-020-01912-z

Russ. Phys. J. 2020. V. 62. P. 1822.

Russ. Phys. J. 2020. V. 62. P. 1580.

Phys. 2008. V. 47. P. 775.

Phys. 2011. V. 50. P. 01BJ06.

lics. 2012. V. 23. P. 134.

Phys. J. 2018. V. 61. P. 14.

- 131. Won-Tae Koo, Jill E.Millstone, Paul S. Weiss et al. // ACS Nano. 2020. V. 14. P. 6407. https://doi.org/10.1021/acsnano.0c03993
- 132. Thi Xuyen Nguyen, Jagabandhu Patra, Jeng-Kuei Chang et al. // J. Mater. Chem. A. 2020. V. 8. P. 18963. https://doi.org/10.1039/D0TA04844E

- https://doi.org/10.1143/JJAP.47.775
 https://doi.org/10.1111/jace.17173

 121. Pervikov A.V., Lozhkomoev A.S., Bakina O.V. et al. // Russ. Phys. J. 2021. V. 63. P. 1557.
 134. Tiwari K., Manolata Devi M., Biswas K. et al. // Prog. Mater. Sci. 2021.
 - https://doi.org/10.1016/j.pmatsci.2021.100794

Soc. 2020. V. 103. P. 4733.

135. Grammatikopoulos P., Sowwan M., Kioseoglou J. // Adv. Theory Simul. 2019. V. 2. P. 1900013. https://doi.org/10.1002/adts.201900013

133. Qinglong Zhao, Jie Mei, Wei Jin et al. // J. Am. Ceram.

- 136. Sdobnyakov N.Yu., Myasnichenko V.S., San C.-H. et al. // Mater. Chem. Phys. 2019. V. 238. P. 121895. https://doi.org/10.1016/j.matchemphys.2019.121895
- Lerner M.I., Pervikov A.V., Glazkova E.A. et al. // Powder Technol. 2016. V. 288. P. 371. https://doi.org/10.1016/j.powtec.2015.11.037
- 138. Вахрушев А.В., Федотов А.Ю., Вахрушев А.А. и др. // Химическая физика и мезоскопия. 2010. № 4. С. 486. eLIBRARY ID: 18254060
- 139. Bochicchio D., Ferrando R. // Phys. Rev. B. 2013. V. 87. P. 165435. https://doi.org/10.1103/PhysRevB.87.165435
- 140. Lozhkomoev A.S., Kazantsev S.O., Kondranova A.M. et al. // Mater. Design. 2019. V. 183. P. 108099. https://doi.org/10.1016/j.matdes.2019.108099
- 141. Fomenko A.N., Kondranova A.M., Kazantsev S.O. et al. // AIP Conf. Proc. 2019. V. 2167. P. 020106. https://doi.org/10.1063/1.5131973
- 142. Lozhkomoev A.S., Lerner M.I., Pervikov A.V. et al. // Nanotechnologies in Russia. 2018. V. 13. P. 18. https://doi.org/10.1134/S1995078018010081
- 143. Pervikov A., Khrustalyov A., Filippov A. et al. // Metals. 2019. V. 9. P. 1287. https://doi.org/10.3390/met9121287
- 144. Pervikov A.V., Lozhkomoev A.S., Kalashnikov M.P. et al. // Mater. Res. Express. 2019. V. 6. P. 126519. https://doi.org/10.1088/2053-1591/ab715b