_ ЕСТЕСТВЕННО-НАУЧНЫЕ МЕТОДЫ В ИЗУЧЕНИИ ____ ОБЪЕКТОВ КУЛЬТУРНОГО НАСЛЕДИЯ ____

УДК 739.5, 673.1, 903.05, 903.26, 620.187

ДРЕВНЕРУССКАЯ ЧЕРНЬ: ЭКСПЕРИМЕНТАЛЬНОЕ МОДЕЛИРОВАНИЕ И ИССЛЕДОВАНИЯ МИКРОСТРУКТУРЫ

© 2021 г. А. Ю. Лобода^{1,*}, А. В. Мандрыкина¹, И. Е. Зайцева², Е. Ю. Терещенко^{1, 3}, Е. Б. Яцишина¹

¹ Национальный исследовательский центр "Курчатовский институт", Москва, Россия ² Институт археологии РАН, Москва, Россия

³ Институт кристаллографии им. А.В. Шубникова ФНИЦ "Кристаллография и фотоника" РАН, Москва, Россия *E-mail: lobodaau@mail.ru

Поступила в редакцию 24.01.2021 г. После доработки 15.02.2021 г. Принята к публикации 15.02.2021 г.

Представлены результаты структурных исследований модельных черневых составов, воспроизводящих исторические составы черни крестов-энколпионов из Суздальского Ополья. Проанализированы особенности формирования фаз черневой массы на разных этапах ее расплавления. Сравнение результатов моделирования и исторической черни показало, что микроструктурные особенности археологических образцов соответствуют формированию черни расплавлением.

DOI: 10.1134/S1992722321050150

введение

Чернь (ит. *niello*) представляет собой сплав металлов с серой, наносимый на поверхность изделий из золота, серебра, меди, бронзы и латуни для их декоративной отделки [1–3].

Одни из самых ранних записей о черневом искусстве оставил Плиний Старший в I в. н.э. [4]. Технологические особенности создания и нанесения черни изложены в "Записке о разных искусствах" монаха Теофила (XII в.) и трактате о ювелирном искусстве Бенвенуто Челлини (XVI в.) [1, 2, 5].

Известно много способов приготовления черни, так как почти каждый крупный мастер вносил некоторые изменения в пропорции компонентов состава. От состава черни зависит как ее прочность, так и цвет, варьирующийся от светло-серого до бархатисто-черного [1]. Металлические компоненты составов могут немного различаться, но, как правило, в состав черни входят Си, Ад, Рь или Sn в различных пропорциях. Для лучшего ошлаковывания черни и предохранения ее от окисления в процессе варки в состав добавляют флюс [2]. В технологических указаниях к изготовлению черни отмечается, что полученный материал должен быть твердым и хрупким как стекло, если его куски по-прежнему можно сгибать, то чернь следует еще раз расплавить [2]. Полученный материал измельчают в порошок и наносят на подготовленную поверхность металла сухим

или мокрым способом. Края изделия и места пайки, а также участки поверхности, которые необходимо защитить от попадания черни, обмазывают огнеупорной глиной, размешанной в воде [2].

Чернение было одним из ярких феноменов древнерусского ювелирного ремесла. Чернью украшались серебряные и бронзовые створки крестов-энколпионов, содержавших священные реликвии, а также ювелирные украшения. Основные приемы декорирования древнерусских изделий черневой массой описаны в [6], детальный анализ предметов с чернью из древнерусских кладов представлен в [7]. Позднее в российской литературе обобщающие работы по древнерусской черни не публиковались. В научный оборот вводились отдельные предметы с чернью без анализа состава черневой массы [8]. Опубликован только состав черни металлической накладки на гребень из Старой Ладоги [9].

Проблемам технологии изготовления изделий с чернью посвящена довольно обширная зарубежная литература. В 1980—1990 гг. были развернуты специальные исследовательские программы, имевшие своей целью изучение археологических предметов с чернью разных эпох для определения технологии чернения и этапов ее эволюции [6—19]. В последующие годы с открытием доступа к новейшему научному оборудованию исследователи вновь обращаются к проблемам черни.

Рис. 1. Кресты-энколпионы С-34 (а) и С-12 (б), модельный образец 5 (в).

Цель данной работы — моделирование процесса изготовления и нанесения на медный сплав черни, состав которой близок к историческим образцам, для изучения изменений черневой массы в ходе плавления, а также выявление последовательности изменения элементного состава формирующихся фаз черни, наблюдаемых в готовом изделии.

ОБЪЕКТЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

В качестве "эталонов" для модельных образцов выбрали два энколпиона XI–XII вв. из Суздальского Ополья: с рисунками Распятия и Оранты из селища Федосьино (шифр С-34) (рис. 1а) и с изображениями крестов из селища Суворотское 8 (шифр С-12) (рис. 1б). Микропробы черни отбирали с участков с нарушениями черневого заполнения. Элементный состав металла и черневого декора данных крестов исследовали ранее в НИЦ "Курчатовский институт" [10]. На основании имеющихся данных изготовили два модельных состава черни:

- состав 1, основанный на данных о составе черни креста C-34 (Cu - 22.5, Pb - 53, Sn - 0.5, S - 11.5%).

Таблица 1. Параметры приготовления модельных образцов

Образец	Состав черни	Флюс	Способ нанесения
1	1	0.1	1
2	1	2	1
3	2	2	1
4	1	0.2	2
5	1	1	2
6	2	1	1
7	2	1	1
8	1	1	1

 – состав 2, основанный на данных о составе черни креста C-12 (Cu – 43, Pb – 35, Sn – 2, S – 14.5%).

Оба состава использовали для создания модельных образцов черни на медном сплаве.

Для получения металлической основы модельных образцов изготовили сплав меди с добавлением Zn, Pb и Sn (Cu 84.3%, Pb 3.5%, Sn 1.2%, Zn 10.8%), близкий по составу к медному сплаву крестов C-12 и C-34 [10]. Слиток отливали в изложницу в той же печи, что и чернь, откатывали в вальцах для уплощения и разделяли на мелкие пластины. На пластины гравировкой наносили канавки для черни, поверхность зашлифовывали.

Получаемые в ходе эксперимента образцы черни изучали на разных стадиях плавления. Таким образом, фазовый состав черневой массы исследовали на десяти образцах, два из которых были извлечены из археологических объектов (образцы С-12 и С-34), а восемь получены в ходе экспериментов по моделированию процесса создания черневого состава и нанесения его на металл (образцы 1–8, табл. 1).

Из-за малого размера исторические образцы черни фиксировали в эпоксидной смоле и зашлифовывали. Шесть модельных образцов, представляющих собой пластины из медного сплава с нанесенными на них экспериментальными черневыми составами, также зашлифовывали.

Исследования объектов проводили методом растровой электронной микроскопии (**РЭМ**) с энергодисперсионным рентгеновским микроанализом (**ЭРМ**) на двухлучевом растровом электронно-ионном микроскопе с фокусированным ионным пучком Versa 3D (Thermo Fisher Scientific) с системой ЭРМ (EDAX) при ускоряющем напряжении 30 кВ в режиме высокого вакуума (2×10^{-3} Па). Изображения образцов получали регистрацией обратно рассеянных электронов.

	С-12 (рис. 2)			С-34 (рис. 3)									
	Обл. 1	Обл. 2	Обл. 3	Обл. 4	Обл. 1	Обл. 2		Обл. 3		Обл. 4		Обл. 5	
S	19.1	20.1	9.5	6.9	15.7	13.7	14.3	14.1	12.8	12.4			18.1
Pb	15.0	4.3	47.3	83.5	17.7				23.9	23.2	90.4	86.9	21.1
Cu	26.4	75.1	35.2	8.3	35.5	80.6	83.6	81.1	62.5	63.5	7.9	10.7	60.2
Sn			5.4		1.1	0.2			0.2	0.1		0.5	0.1
Zn	38.9		1.3		29.9	0.6		0.9			0.2		
Fe	0.6	0.4	0.8	0.9		0.2	0.3	0.2	0.4	0.5	1.0	1.3	0.3
Ni		0.2	0.5	0.4		0.2	0.2	0.1	0.2	0.3	0.6	0.7	0.2

Таблица 2. Элементный состав исторических образцов черни

ЭКСПЕРИМЕНТ ПО МОДЕЛЬНОМУ ИЗГОТОВЛЕНИЮ ЧЕРНИ

Эксперимент по изготовлению и наложению черни состоял из двух основных этапов:

 изготовление первичной черневой массы (два состава) в литьевой печи при температуре ~750°С.

Состав 1. Навеска компонентов перед плавкой составила: Cu – 4.4, Pb – 10.6, Sn – 1.1, S – 23.1 г.

Состав 2. Навеска компонентов перед плавкой составила: Cu - 8.4, Pb - 7.0, Sn - 4.0, S - 30 г;

– нанесение черни на металлические пластины.

Полученные черневые составы измельчали в порошок перетиранием между полированными кусками мрамора.

В качестве флюса использовали порошок буры (натриевая соль тетраборной кислоты), вскипяченный в воде. Измельченный порошок черни смешивали с флюсом в разных пропорциях и закладывали в канавки на пластинах двумя способами:

 – способ 1 (Сп 1) – закладывание порошка в канавки "с горкой" и расплавление на открытом огне.

- способ 2 (**Сп 2**) - заливание расплавленной в тигле черни на пластину с канавками.

Все полученные модельные пластины с черневой массой запиливали напильником, затем шлифовали наждачной бумагой в порядке уменьшения фракции абразивного зерна. В результате получили заполированные модельные образцы черни на пластинах (рис. 1в).

Количество флюса, добавленное в состав образца, оказало значительное влияние на скорость его расплавления:

 $-\Phi$ **0.1**. Черневой состав 2 без добавления буры расплавился на пластине не до конца (образец 1);

 – Ф 0.2. Черневой состав 2 без добавления буры, плавка которого проходила в тигле, расплавился полностью, после чего расплавленный состав налили на пластину (образец 4);

 $-\Phi$ 1. Добавление малого количества буры (один к десяти по весу черневой массы) значительно ускорило расплавление черневого состава (образцы 5–8);

 $-\Phi 2$. Дальнейшее увеличение количества буры (четыре к десяти по весу черневой массы) в черневом составе (образцы 2 и 3) привело к уменьшению времени его расплавления по сравнению с экспериментом $\Phi 1$.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Исследование исторических образцов черневых составов методом РЭМ/ЭРМ позволило определить элементный состав и особенности микроструктур, сформировавшихся в процессе плавления черневой массы (табл. 2).

РЭМ/ЭРМ-исследование шлифа черни образца C-12 показало наличие четырех областей (рис. 2, табл. 2): мелких темных областей Cu–S– Pb–Zn (области 1), темных областей Cu–S–Pb (области 2), серых областей со светлыми дендритами Pb–Cu–S–Sn (области 3) и светлых конгломератов Pb–Cu–Sn (области 4).

В образце С-34 методом РЭМ/ЭРМ обнаружили пять различных областей (рис. 3, табл. 2): мелкие темные области Cu-Pb-S-Zn-Sn (области 1), темные области Cu-S (области 2), серые области со светлыми дендритами Cu-Pb-S-Sn (области 3), светлые конгломераты Cu-Pb-Sn (области 4), а также серые области Cu-Pb-S-Sn (области 5).

Исследования РЭМ/ЭРМ модельных образцов черни, изготовленных в ходе эксперимента, проводили дважды: после первичного переплавления черневых составов и после нанесения черни на металлические пластины.

После первого этапа эксперимента – переплавления всех компонентов черни – определили общий элементный состав черневой массы 1 и 2:

Рис. 2. РЭМ-изображение в обратно рассеянных электронах образца С-12.

Рис. 3. РЭМ-изображение в обратно рассеянных электронах образца С-34.

Рис. 4. РЭМ-изображение в обратно рассеянных электронах образца 1. Цифрами 1, 2 обозначены области различного состава.

- состав 1. Cu 18.8–31.7, Pb 53.2–62.3, Sn 3.2– 3.5, S 6.4–10.2%;

- состав 2. Cu 43.9–77.2, Pb 7.8–29.8, Sn 3.4– 12.3, S 7.5–12.2%.

После второго этапа эксперимента для модельных образцов 1–8 (табл. 1) методом РЭМ/ЭРМ уточняли элементный состав и распределение элементов по фазам.

Модельный образец 1 (порошок черни без добавления флюса) растекся слабо. РЭМ/ЭРМ-исследование шлифа черни данного образца показало наличие в нем двух фаз: основную массу – Cu–S–Pb–Zn–Sn (зона 1 на рис. 4, табл. 3) и светлые включения – Pb–Cu–S (зона 2 на рис. 4, табл. 3).

Остальные модельные образцы показали общее характерное фазовое разделение. Во всех случаях черневая масса хорошо растеклась. В образцах 2—8 зафиксировали образование пяти областей. Цвет области отражает контраст, обусловленный

Рис. 5. РЭМ-изображение в обратно рассеянных электронах образца 2.

средним значением электронной плотности (рис. 5–11, табл. 3): мелкие темные области – Cu–Pb–S–Zn (обл. 1, табл. 3), крупные темные области – Cu–Pb–S (обл. 2, табл. 3), серые области со светлыми дендритами – Cu–Pb–S–Sn (обл. 3, табл. 3), светлые конгломераты – Pb–Sn (обл. 4, табл. 3), серые области – Cu–Sn–Pb (обл. 5, табл. 3).

После нанесения модельной черни на металлические пластины в ее составе наблюдали заметное содержание цинка, хотя исходные составы 1 и 2 его не содержат. Видимо, при взаимодействии расплавленной черневой массы с металлической основой цинк, как наиболее легкоплавкая часть металла, переходит в состав черни и принимает участие в формировании фаз (табл. 3). Вероятно, аналогичный процесс происходил при создании исторических образцов.

Во всех образцах не обнаружили следов флюса, вероятно, в процессе переплавки флюс либо

образец 1 (состав 1, Сп 1, Ф 0.1, рис. 4)											
	S	Pb	Cu	Sn	Zn	Fe	Ni				
зона 1	11.4	3.5	83.2		1.5	0.3	0.1				
	11.8	2.9	83.4		1.5	0.3	0.1				
зона 2	1	89.3	8.4		0.3	0.8	0.3				
	1.2	84.2	12.9		0.4	0.7	0.5				
образец 2 (состав 1, Сп 1, Ф 2, рис. 5)											
	S	Pb	Cu	Sn	Zn	Fe	Ni				
обл. 1	20.7	9.4	10.5	2	57	0.4					
	19	14.4	8.1	1.9	56.2	0.4					
обл. 2	12.2	3.3	82.3		1.9	0.3	0.1				
	12	3.7	80.9		3.1	0.3	0.1				
обл. 3	13.1	38.2	41.5	6.2	0.3	0.5	0.2				
	13	36.9	42.4	6.7	0.4	0.5	0.2				
обл. 4		93.1	3.4	1.2	0.7	1	0.6				
обл. 5	12	25.4	60.8	0.7	0.6	0.4	0.1				
	12.1	24.6	61.8	0.5	0.6	0.4	0.1				
	T	образец	3 (состав 2, С	Сп 1, Ф 2, рис	. 6)						
	S	Pb	Cu	Sn	Zn	Fe	Ni				
обл. 1	19	9.8	17	3.3	50.4	0.3	0.2				
	18.4	11.7	20.7	3.3	45.3	0.4	0.2				
обл. 2	11.4	2	81.99	2.96	1.31	0.28	0.14				
	12.1	4.03	83.03	0.44		0.26	0.13				
обл. 3	13.2	28.4	49	8.5		0.6	0.3				
	12.8	29	47.6	9.3	0.5	0.6	0.3				
обл. 4		95.1	1.9	1.5	0.7	0.9	0.5				
оол. 5		/.1	62.4 67.5	29.1	0.7	0.5	0.4				
		образец <u>(</u>	07.5 4 (состав 1 Сі	$\pi^{2} \Phi^{02} pw$	2 7)	0.5	0.1				
	C	р		С., т 0.2, ри	7	Γ.	ΝΤ:				
	5	Pb	Cu	Sn	Zn	Fe	IN1				
обл. 1	18.6	9	10	1.6	60.1	0.4	0.2				
оол. 2	11.5	3.6	83.7		1	0.3	0.1				
<u>обт 2</u>	11.5	2.8	84.2 20.1	4.2	0.2	0.5	0.2				
обл. 3	15	94.1	26	4.2	0.3	0.3	0.2				
001. 4	1.0	94.1	17	0.4	0.5	1	0.4				
обл 5	11.7	25.1	61.7	0.5	0.5	0.4	0.1				
0011.0	11.7	25.1	61.7	0.5	0.6	0.3	0.2				
образец 5 (состав 1 Сп 2 Ф 1 рис 8)											
\mathbf{S} Ph Cu Sn Zn Fe Ni											
<u>обл 1</u>	18.1	16.3	14.8	19	48.4	0.3	0.2				
	17.4	15.4	15.4	2	49.3	0.3	0.2				
обл. 2	11.6	3.3	84.1		0.8	0.3	0.1				
				1							

Таблица 3. Элементный состав модельных образцов черни

обл 3	12.4	40.1	12.0	3 /	0.5	0.5	0.2				
00л. 5	12.4	40.1	42.9	2.1	0.3	0.5	0.2				
обл 4	12.1	93.3	3 3	0.5	0.1	1	0.2				
обл. 5	11.8	24.8	61.8	0.5	0.5	0.4	0.2				
	11.8	25.7	61	0.4	0.5	0.5	0.1				
образец 6 (состав 2, Сп 1, Ф 1, рис. 9)											
	S	Pb	Cu	Sn	Zn	Fe	Ni				
обл. 1	18.2	9	14.7	2.2	55.4	0.4	0.2				
обл. 2	10.4	3.2	84.9		1.2	0.3	0.2				
	9.8	7.1	80.9	0.1	1.8	0.3	0.1				
	10.2	3.1	84.8	0.2	1.3	0.3	0.1				
обл. 3	11.3		48.2	9.5	30.4	0.5	0.2				
	11.6		49.8	9.5	28.7	0.5					
обл. 4	0.9	91	3.5	2.8	0.3	1	0.5				
		89.9	3.8	4.7		1.1	0.6				
обл. 5	30.4		2	0.4		0.3	67				
	30.2		1.9	0.5		0.3	67.3				
образец 7 (состав 2, Сп 1, Ф 1, рис. 10)											
	S	Pb	Cu	Sn	Zn	Fe	Ni				
обл. 1	19.2	8.2	8.7	1.8	61.6	0.4	0.1				
обл. 2	10.9		1.2	0.3	3.4	0.1	84.1				
	11.6		1.2	0.3	2.6	0.1	84.2				
обл. 3	13.1	32.7	45.2	8	0.4	0.5	0.2				
	13.2	32	45.8	8	0.3	0.5	0.2				
обл. 4	1.1	91.1	2.4	4.3		0.8	0.4				
	0.2	88.8	3.6	5.2	0.5	1.1	0.6				
	0.7	92.1	2.7	3.2	0.2	0.7	0.5				
обл. 5	31.2		1.6	0.4		0.2	66.6				
		образец	8 (состав 1, С	Сп 1, Ф 1, рис.	11)						
	S	Pb	Cu	Sn	Zn	Fe	Ni				
обл. 1	19.7	9.7	15.8	1.8	52.4	0.4	0.2				
	18.7	11.6	16.6	1.5	51.3	0.3	0.2				
обл. 2	12		2.7	0.3		0.1	84.9				
	11.6		3.8	0.3		0.2	84.1				
обл. 3	12.1		45.3	6.5	34.9	0.7	0.5				
	12.4	36.9	43.8	5.8	0.4	0.5	0.3				
обл. 4	4.5	67.4	26.1	0.5	0.3	0.9	0.4				
	3.2	83.2	10.5	1.2	0.4	0.9	0.6				
обл. 5	12.3	21	64.8	0.4	0.9	0.5	0.2				
	12.7	22.9	63.2	0.4		0.5	0.3				

Таблица 3. Окончание

выгорает, либо выходит на поверхность и удаляется при шлифовании образца.

Зона контакта металла и черневой вставки имеет структуру, отличную от основной черневой

массы, характеризующуюся более высокой пористостью, а также распределенными непосредственно вдоль края металла менее расплавленными областями черневой массы, которые образу-

РОССИЙСКИЕ НАНОТЕХНОЛОГИИ том 16 № 5 2021

Рис. 6. РЭМ-изображение в обратно рассеянных электронах образца 3.

Рис. 7. РЭМ-изображение в обратно рассеянных электронах образца 4. Цифрами 1–5 обозначены области различного состава.

Рис. 8. РЭМ-изображение в обратно рассеянных электронах образца 5.

ются в процессе диффузионного сцепления расплавляемого порошка черни с поверхностью металла (рис. 12).

Сопоставление модельных образцов показало, что все экземпляры, кроме образца 1, представляют собой набор фаз, схожих по составу, но различающихся количественным соотношением элементов. Систематических различий в структуре черни, расплавленной на металлической пластине (Сп 1) и залитой на металл в расплавленном виде (Сп 2), не обнаружили.

Образец 1 представляет собой спекшуюся, но слабо расплавившуюся массу (рис. 4). Чернь данного образца характеризуется выделением конгломератов Pb—Cu—S и сформированной областью Cu—S—Pb—Zn—Sn. Изучение и сравнение данной микроструктуры с другими объектами (образцы 2—8) позволили проследить последовательность образования фаз при расплавлении черневой массы.

Рис. 9. РЭМ-изображение в обратно рассеянных электронах образца 6.

Дальнейшее расплавление черневого состава исследовали на примере микроструктур образцов 2-8. Установлено, что расплавление черни приводит к развитию двух первичных зон, которые затем постепенно исчезают, приводя к формированию новых фаз. Из области Cu-S-Pb-Zn-Sn (зона 1) (рис. 4) и конгломератов, преимущественно содержащих свинец Pb-Cu-S (зона 2 и области 4) (рис. 4), постепенно формируются серые зоны со светлыми дендритами Cu-Pb-S-Sn (области 3). В некоторых образцах дендриты частично сохраняют форму конгломератов (рис. 7, 8). Из серого поля Cu-Sn-Pb (области 5) также постепенно начинают формироваться мелкие дендриты. Таким образом, идеально растворенная черневая масса должна представлять собой серую область с достаточно равномерными светлыми дендритами (области 3) и отдельными свинцовыми конгломератами (области 5), которые можно условно назвать "финальными" фазами. Однако такой идеальной картины не наблюдали ни в од-

во икм

Рис. 10. РЭМ-изображение в обратно рассеянных электронах образца 7.

Рис. 11. РЭМ-изображение в обратно рассеянных электронах образца 8.

Рис. 12. РЭМ-изображение в обратно рассеянных электронах образца 6. Зона контакта черневой массы с металлом.

ном модельном образце, все они представляют собой массу разной степени расплавления.

Весь массив исследованных образцов разделяется на три категории:

 – образец со слабо расплавившимся составом (образец 1);

образцы с хорошо расплавившимся составом, быстро нагретые до расплавления черни (образцы 2–5);

 образцы с хорошо расплавившимся составом, медленно нагретые до расплавления черни (образцы 6–8).

Между образцами второй и третьей группы наблюдается значительная разница.

Быстрое расплавление черни на образцах 2 и 3 (рис. 5 и 6 соответственно) достигалось за счет увеличения количества добавленного в порошок черни флюса. Черневые составы образцов 4 и 5 (рис. 7 и 8 соответственно), содержащие меньшее количество флюса, подвергались интенсивному нагреву в тигле, а уже затем наливались на пластину. Микроструктура всех образцов второй группы крайне неоднородна, в ней в полной мере представлены все описанные выше фазы: первичные (зоны 1 и 2), переходные (области 1, 2, 5) и финальные (области 3 и 4).

Чернь образцов третьей группы (образцы 6–8, рис. 9–11 соответственно) готовили при продолжительном равномерном нагреве с малым количеством флюса. В микроструктурах данных образцов наблюдаются более равномерный рост дендритов в финальных фазах (область 3) и меньшее количество переходных областей (области 1, 2, 5).

Следовательно, образование однородной дендритной структуры в массе черни зависит не только от достижения определенной температуры, но и от времени расплавления. При этом образцы, приготовленные из состава 2 с меньшим содержанием свинца, быстрее образуют финальную область 3 с равномерными дендритами (образцы 3, 6, 7). Образцы с составом черни 1 при схожих условиях нагрева дольше сохраняют неоднородную структуру (образцы 2, 4, 5, 8).

Определить температуру, достигнутую мастером при изготовлении древних изделий с чернью, по количеству и соотношениям фаз в расплавленной черневой массе сложно, так как экспериментальное моделирование показало, что добавление даже малого количества флюса при плавке значительно понижает температуру плавления черни. Большое количество флюса в черневой массе позволяет ей расплавиться быстрее, однако ее структура остается неоднородной. При этом исследование образцов методами РЭМ/ЭРМ позволило установить, что после расплавления в изделии не остается следов флюса, а значит его количество, использованное при плавке, определить невозможно.

ЗАКЛЮЧЕНИЕ

В результате исследования различных по степени и условиям расплавления образцов черневых масс, моделирующих два состава исторической черни с крестов-энколпионов, найденных в Суздальском Ополье, определен элементный состав образовавшихся в черневой массе фаз, а также выявлена последовательность фазообразования в процессе расплавления черни на изделиях.

Сопоставление модельных и исторических образцов выявило наличие одинакового набора фаз во всех черневых массах (кроме образца 1) как в модельных образцах 2—8, так и в исторических C-12 и C-34. Однако в каждом образце количественное соотношение фаз было индивидуальным и зависело как от степени расплавления черни, так и от особенностей ее элементного состава.

При интерпретации микроструктур исторических образцов черни необходимо учитывать ряд фактов, выявленных в результате проведенных в данной работе модельных экспериментов:

 – способ нанесения черни на пластину не повлиял на итоговую микроструктуру массы;

 хрупкость исследованных черневых составов не позволяет создавать черневой узор на изделии вбиванием полос черни в канавки, как предполагали некоторые исследователи [10, 11];

 изменения в составе черни оказывают значительное влияние как на время расплавления черневой массы, так и на итоговую микроструктуру состава, что приводит к необходимости индивидуального исследования каждого изделия с чернью;

 наличие и количество использованного при плавке черни флюса не детектируется в составе получаемого образца, но оказывает значительное влияние на температуру плавления черневой массы и, как выяснилось в ходе модельного эксперимента, на ее микроструктуру;

 – цинк, обнаруженный в составе черни, может попадать в нее при нагреве цинксодержащей металлической основы;

— более пористая и зернистая структура зоны контакта черни и металла может отличаться по своим физическим свойствам от основной черневой массы. В перспективе именно более быстрое разрушение этой зоны может приводить к образованию пустот между черневой вставкой и металлической канавкой, которые наблюдаются на многих археологических объектах.

Согласно результатам проведенной работы можно предположить, что чернь на крестах C-12 и C-34 была создана расплавлением черневой массы. Оба образца демонстрируют хорошее расплавление черни и высокую фазовую неоднородность, что может указывать на недолговременное температурное воздействие. Более детальное определение условий расплавления черни в исторических образцах на данном этапе работы невозможно и требует дальнейшего изучения.

СПИСОК ЛИТЕРАТУРЫ

- 1. Постникова-Лосева М.М., Платонова Н.Г. Русское черневое искусство. М.: Искусство, 1972. 144 с.
- 2. Флеров А.В. Материаловедение и технология художественной обработки металлов. М.: Высшая школа, 1981. 288 с.
- 3. Макаров Н.А., Зайцева И.Е., Грешников Э.А. // Археологические вести. 2017. № 23. С. 291.
- 4. *Плиний Старший*. Естественная история / Пер. Тароняна Г.А. М.: Ладомир, 1994. Книга XXXIII.XX.
- 5. Теофил Пресвитер // Сообщения Центральной научно-исследовательской лаборатории по консервированию и реставрации музейных художественных ценностей. 1963. Вып. 7. Кн. 23–24.
- Рыбаков Б.А. Ремесло Древней Руси. М.: Наука, 1948. 803 с.
- 7. *Макарова Т.И.* Черневое дело Древней Руси. М.: Наука, 1986. 166 с.
- Ениосова Н.В. // Древнерусский некрополь Пскова Х-начала XI века. Т. П. СПб.: Нестор-История, 2016. С. 518.
- 9. Горлов К.В., Григорьева Н.В. // Археологические вести. Вып. 23. СПб.: ИИМК РАН, 2017. С. 285.
- 10. Зайцева И.Е., Грешников Э.А., Велигжанин А.А. и др. // Российская археология. 2019. № 3. С. 51.
- Грешников Э.А., Терещенко Е.Ю., Велигжанин А.А. и др. Труды V (XXI) Всероссийского археологического съезда в Барнауле – Белокурихе: сборник научных статей: в 3 т. / отв. ред. Деревянко А.П., Тишкин А.А. Т. III. Барнаул: Изд-во Алт. ун-та, 2017. С. 23.
- 12. Колобылина Н.Н., Грешников Э.А., Васильев А.Л. и др. // Кристаллография. Т. 62. № 4. 2017. С. 543.
- 13. La Niece S. // Antiquaries J. 1983. V. 63. № 2. P. 279.
- 14. *Moss A.A.* // Studies in Conservation. V. 1. № 2. The international Institute for the Concervation of Museum Objects. L. 1953. P. 49.
- Northover P., La Niece S. // From Mine to Microscope Advances in the Study of Ancient Technology / Eds. Shortland A.J. et al. Oxford: Oxbow, 2009. P. 2060.
- Nors N.A., MacLeod I.D. // Conservation of Marine Archaeological Objects / Ed. Colin Pearson. L.: Butterworths, 1987. P. 68.
- Petersen K. S. // J. Danish Archaeology. 1994–1995.
 № 12. P. 133.
- Petersen K.S. Metalhandvsrk og handvsrkspladser frayngre germansk jernalder, vikingetid og tidlig middelalder Rapport fra et seminar pa Hollufgard den 22. Oktober 2001 Re-digeret af Mogens Bo Henriksen // Skrifter fra Odense Bys Museer V. 9 Odense. 2002. P. 63.
- Wolters J. // Europäische Technik im Mittelalter 800– 1200. Berlin. 1996. S. 169.