— НАНОСТРУКТУРЫ, НАНОТРУБКИ ——

УДК 546.26+544.15+544.227

МЕМРИСТИВНЫЙ ЭФФЕКТ В ЛЕГИРОВАННЫХ АЗОТОМ УГЛЕРОДНЫХ НАНОТРУБКАХ

© 2021 г. М. В. Ильина^{1,*}, О. И. Ильин², О. И. Осотова², С. А. Хубежов^{2,3}, О. А. Агеев^{1,4}

¹ Южный федеральный университет, Институт нанотехнологий, электроники и приборостроения, Таганрог, Россия ² Южный федеральный университет, Лаборатория технологии функциональных наноматериалов, Таганрог, Россия ³ Национальный исследовательский университет ИТМО, Санкт-Петербург, Россия

⁴ Южный федеральный университет, Научно-образовательный центр "Нанотехнологии", Таганрог, Россия

**E-mail: mailina@sfedu.ru* Поступила в редакцию 10.06.2021 г. После доработки 07.07.2021 г. Принята к публикации 12.07.2021 г.

Разработка энергонезависимой памяти является одной из актуальных задач современной науки, что вызвано стремительным развитием носимой электроники. Перспективным направлением в этой области является разработка мемристорных структур, способных менять свое сопротивление в зависимости от величины протекающего через мемристор заряда. Исследован мемристивный эффект в легированных азотом углеродных нанотрубках (УНТ). Установлено, что отношение сопротивлений в высоко- и низкооомном состояниях возрастает с увеличением дефектности УНТ и достигает 4×10^5 . Показано, что в УНТ возможно многоуровневое переключение сопротивления, величина которого определяется напряжением записи или деформацией нанотрубки. Полученные результаты могут быть использованы при разработке энергонезависимой памяти на основе УНТ, отвечающей условиям высокой масштабируемости и многоуровневого переключения.

DOI: 10.1134/S199272232106008X

ВВЕДЕНИЕ

Носимая электроника является одной из стремительно развивающихся областей современной техники, что приводит к необходимости создания новых энергоэффективных запоминающих устройств, обладающих высокой плотностью записи информации и быстродействием, сравнимым с оперативной памятью [1-3]. Для решения данной задачи перспективным направлением является разработка мемристорных структур, способных менять свое сопротивление в зависимости от величины протекающего через мемристор заряда и обеспечивать многоуровневое переключение, необходимое для хранения большого объема информации и нейроморфных вычислений [4-6]. Первые мемристоры были реализованы на оксидах металлов (TiO₂, ZnO, HfO₂, NiO и др.), в связи с чем в этом направлении на данный момент достигнут наибольший прогресс [7-10]. Однако в последние годы большое внимание уделяется разработке мемристорных структур на основе углеродных наноструктур (оксиде графена, аморфном углероде и углеродных нанотрубках) [11-17], что вызвано высокими значениями масштабируемости и скорости переключения. При этом из всех углеродных наноструктур

стрируют многоуровневое переключение, что связано с различными механизмами резистивного переключения [15]. Так, в оксиде графена и аморфном углероде возможно формирование только двух состояний сопротивления, обусловленных либо обратимым процессом регибридизации sp3 и sp2 состояний атомов углерода, либо электрохимическими процессами восстановления-окисления углерода [11, 12]. В УНТ возможно формирование *п*-числа состояний сопротивления, величина которого будет определяться величиной деформации и соответствующего ему внутреннего электрического поля, связанного с проявлением аномальных пьезоэлектрических свойств [15, 16]. Основными трудностями при создании мемристорной структуры на основе УНТ являются формирование в ней контролируемой деформации и точное позиционирование между электродами [18]. Проблему позиционирования позволяет решить использование довольно хорошо отработанной технологии роста ориентированных УНТ на основе метода плазмохимического осаждения из газовой фазы (ПХОГФ) [19-21]. Однако, как показывают исследования, при выращивании ориентированных УНТ методом ПХОГФ в нанотрубках формируются бамбукооб-

только углеродные нанотрубки (УНТ) демон-

Рис. 1. РЭМ-изображения исследуемых массивов УНТ, выращенных при температуре и толщине каталитического слоя 615°C и 5 нм (а), 630°C и 10 нм (б), 645°C и 15 нм (в), 660°C и 20 нм (г).

разные дефекты, связанные с внедрением азота в структуру УНТ в процессе роста из технологической атмосферы NH₃ [22, 23]. При этом внедрение азота в структуру УНТ приводит к существенному изменению электрических параметров и влиянию на процесс резистивного переключения [24, 25]. В связи с этим актуальной задачей является проведение исследований влияния структуры и химического состава УНТ на ее мемристивный эффект.

Таблица 1. Геометрические параметры исследуемых УНТ

Режимы роста	Диаметр, нм	Длина, мкм
615°С, <i>t</i> = 5 нм	32	8.3
630°С, <i>t</i> = 10 нм	44	24.2
645°С, <i>t</i> = 15 нм	59	24.2
660°С, <i>t</i> = 20 нм	88	22.3

Цель данной работы — исследование влияния легирования азотом ориентированной УНТ на ее мемристивный эффект.

МЕТОДЫ

Экспериментальные исследования выполняли на серии образцов вертикально ориентированных УНТ, выращенных методом ПХОГФ на подслое TiN толщиной 100 нм. Температуру роста изменяли от 615 до 660°С. Толщину каталитического слоя никеля (t) изменяли от 5 до 20 нм. Мощность DC-плазмы составляла 40 Вт (400 В, 0.1 А). Потоки технологических газов C₂H₂ и NH₃ составляли 70 и 210 см³/мин соответственно. Влияние режимов роста УНТ на их геометрические параметры и структуру детально описано в [18– 21]. Изображения массивов УНТ представлены на рис. 1, геометрические параметры – в табл. 1.

Характеризацию УНТ осуществляли с помощью комплекса взаимодополняющих высокочув-

ствительных методов анализа — растровой электронной микроскопии (РЭМ) с использованием Nova NanoLab 600 (FEI, Нидерланды), просвечивающей электронной микроскопии (ПЭМ) с использованием Tecnai Osiris (FEI, Нидерланды), метода комбинационного рассеяния света (КРС) при длине волны лазерного возбуждения 514 нм с использованием Renishaw InVia Reflex (Renishaw plc. Великобритания) и рентгеновской фотоэлектронной спектроскопии (РФЭС) с использованием установки K-Alpha ThermoScientific с источником монохроматического рентгеновского излучения Al K_{α} ($h_{\nu} = 1486.6$ эВ). Совокупность данных методов позволила получить информацию о кристаллической и электронной структуре, морфологии и элементном составе УНТ.

Исследования мемристивного эффекта УНТ выполняли методами атомно-силовой микроскопии (АСМ) с использованием зондовой нанолаборатории (ЗНЛ) Ntegra (NTMDT-SI, Россия) [26]. Амплитуда пилообразных импульсов напряжения изменялась от ± 1 до ± 10 B, длительность импульса составляла 1 с. В качестве верхнего электрода использовали коммерческий зонд NSG10 с проводящим покрытием TiN. Сила прижима зонда АСМ к поверхности УНТ в процессе измерения вольтамперных характеристик (ВАХ) составляла 20 мкН. Силу прижима рассчитывали как произведение жесткости кантилевера АСМ на величину смещения зонда относительно точки подвода по направлению к нижнему электроду, на котором были выращены УНТ. В качестве нижнего электрода выступал проводящий подслой TiN. Материал TiN был выбран в качестве электрода, так как он формирует хороший электрический контакт с многослойными УНТ [27]. Отметим, что в ЗНЛ Ntegra при проведении токовой спектроскопии используется линейная шкала в диапазоне токов от 10 до -10 нА, для больших значений начинает использоваться логарифмическое преобразование. На ВАХ, представленных в работе, отражены значения тока, полученные непосредственно с амперметра ЗНЛ Ntegra. Однако значения отношений сопротивлений в высокоомном и низкоомном состояниях пересчитаны с учетом логарифмического преобразования.

Пьезоэлектрический модуль УНТ измеряли с использованием метода силовой микроскопии пьезоотклика (СМП) на основе зависимости амплитуды механических колебаний УНТ от величины прикладываемого переменного напряжения $U = U_{DC} + U_{AC}$ (sin ϕ t) при $U_{DC} = \pm 10$ В и $U_{AC} = \pm 1$ В с частотой 40 кГц. В качестве зонда использовали коммерческий зонд NSG10 с проводящим покрытием TiN. Значение пьезоэлектрического модуля d_{33} рассчитывали как отношение приращения смещения зонда A в результате деформации образца к приращению прикладывае

мого напряжения: $d_{33} = kdA/dU_{DC}$, где k — коэффициент пропорциональности, связывающий измеренное смещение зонда в наноамперах и смещение поверхности образца в пикометрах, составлял для данной измерительной системы 516 пм/нА.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Структура и дефектность УНТ. Результаты исследований массивов УНТ методом ПЭМ показали, что нанотрубки являются многослойными и содержат бамбукообразные дефекты (рис. 2а). Исследования методом КРС также подтвердили, что исследуемые наноструктуры являются многослойными нанотрубками. На спектрах КРС присутствовали G-мода на частоте 1580 см⁻¹ и *D*-мода на частоте 1350 см⁻¹ с достаточно высокой интенсивностью. вызванной дефектностью УНТ (рис. 2б). При этом анализ спектров показал, что дефектность УНТ уменьшалась с повышением температуры роста и толщины каталитического слоя: отношение интенсивностей D- и G-пиков (I_D/I_G) уменьшалось от 0.84 до 0.75, полуширина *D*-пика уменьшалась от 87 до 76 см⁻¹.

Исследования методом РФЭС позволили установить тип и концентрацию дефектов, присутствующих в исследуемых УНТ. Так, в зависимости от режимов роста концентрация углерода в образцах составляла 85-89 ат. %, азота - 3.5-4.5 ат. %, кислорода - 6.5-9.5 ат. % и никеля ~1 ат. %. Анализ химических связей атомов углерода показывал (рис. 3а), что концентрация С=Ссвязи (284.58-284.64 эВ), характерной для структуры графена и свидетельствующей о гексагональной структуре исследуемых образцов, увеличивается от 65 до 70 ат. % с увеличением температуры роста. При этом концентрация С-С-связи (284.86-285.01 эВ), характерной для взаимодействия атомов между отдельными стенками УНТ или нарушения двумерной структуры графенового листа, уменьшается от 16 до 12 ат. %. Данная зависимость согласуется с результатами исследований, полученных методом КРС, и указывает на уменьшение дефектности УНТ при увеличении температуры роста и толщины каталитического слоя никеля. Наиболее вероятным источником связи C-O (286.2 эВ) и C=O (288.8 эВ) является адсорбат на поверхности УНТ из атмосферных кислорода и воды ввиду того, что спектры РФЭС отражают химическое состояние образца на глубине до 2-3 нм в силу малой длины свободного пробега фотоэлектронов.

Атомы азота, напротив, встраивались в гексагональную решетку УНТ и образовывали три вида дефектов замещения атомов углерода (рис. 36): с образованием С–N-связи, с формированием

Рис. 2. ПЭМ-изображение (а) и спектр КРС (б) легированных азотом УНТ, выращенных при 645°С и 15 нм.

вакансии и образованием C=N-связи со структурой пиридина и формированием дефекта – пятиугольника и образованием C=N-связи со структурой пиррола.

Пьезоэлектрические свойства УНТ. Исследования пьезоэлектрических свойств УНТ методом СМП подтвердили, что с увеличением дефектности УНТ наблюдается увеличение их пьезоэлектрического модуля (рис. 4а). Так, для УНТ, выращенных при температуре 615° С и толщине каталитического слоя 5 нм, величина пьезоэлектрического модуля (d_{33}) составила 287 ± 17 пм/В. Для УНТ, выращенных при температуре 660° С и толщине каталитического слоя 20 нм, величина d_{33} уменьшилась до 77 ± 4 пм/В. Зависимость пьезоэлектрического модуля УНТ от ее степени де-

Рис. 3. Спектры РФЭС высокого разрешения легированных азотом УНТ, выращенных при 645°С и 15 нм: а – С1*s*-линия, б – N1*s*-линия.

фектности, определяемой как отношение интенсивностей D- и G-пиков спектров КРС, представлена на рис. 4б. Установлено, что для исследуемых УНТ пьезоэлектрические свойства линейно зависят от их дефектности, которая, в свою очередь, зависит от режимов роста УНТ. Это вызвано тем, что внедрение атомов азота в гексагональную решетку УНТ приводит к нарушению ее центросимметричной структуры, в частности в виде бамбукообразных дефектов, и, как следствие, возникновению аномально большого пьезоэлектрического эффекта [28]. Кроме того, увеличение диаметра УНТ с увеличением температуры роста и толщины каталитического слоя (табл. 1) также может приводить к уменьшению величины поляризации, возникающей в результате асимметричного перераспределения плотности электронов за счет уменьшения кривизны поверхности графеновой плоскости, образующей УНТ [29, 30].

Мемристивный эффект в УНТ. Исследования УНТ методом АСМ показали, что мемристивный эффект с наибольшим значением отношения сопротивлений в высокоомном и низкоомном состояниях (HRS/LRS) наблюдается для массива УНТ, выращенного при температуре 615°С и толщине каталитического слоя 5 нм (рис. 56), что обусловлено высоким значением пьезоэлектрического модуля данных нанотрубок ($d_{33} = 287 \pm$ \pm 17 пм/В). Кроме того, существенное увеличение значения HRS/LRS данного массива по сравнению с остальными образцами может быть вызвано уменьшением длины УНТ почти в 3 раза (табл. 1). Уменьшение длины УНТ при заданной нагрузке приводит к увеличению ее относительной деформации, что вызывает большие значения механического напряжения и соответствующего ему внутреннего электрического поля УНТ, являющегося источником мемристивного поведения [15]. Отношение HRS/LRS при напряжении чтения (напряжении, при котором рассчитывали значение HRS/LRS) 1 В и напряжении записи (максимальное напряжение. которое прикладывалось к УНТ в процессе измерения ВАХ) 4 В составило 4×10^5 , а при напряжении записи 8 В составило 4.4×10^3 . Уменьшение отношения HRS/LRS с ростом напряжения записи связано с увеличением величины деформации УНТ в результате проявления обратного пьезоэлектрического эффекта и, как следствие, с увеличением внутреннего электрического поля, противоположно направленного внешнему электрическому полю. В результате при увеличении напряжения записи наблюдается увеличение сопротивления УНТ как в LRS-, так и в HRS-состояниях (рис. 5), а при напряжении записи 10 В деформированная УНТ полностью переключается в HRS-состояние. Интересным является наличие областей со скачкообразным изменением проводимости с ростом напряжения на ВАХ, полученных при напряжении 10 В. Наличие данных областей связано с дрейфом носителей заряда, сформированных на дополнительных донорных уровнях в легированной азотом нанотрубке, в поперечном направлении нанотрубки [24], в то время как дрейф носителей заряда вдоль нанотрубки был незначительным. Аналогичный эффект наблюдался для УНТ, выращенных при 630°С и толщине каталитического слоя 10 нм (рис. 5в). При этом для данного массива УНТ наибольшее отношение HRS/LRS = 20 наблюдалось при напряжении записи 8 В. Повышение напряжения записи связано с уменьшением пьезоэлектрического модуля до 237 ± 6 пм/В. Для УНТ, выращенных при температуре 645°С и толщине каталитического слоя 15 нм, переключение при 4 и 8 В было незначительное (рис. 5г), что связано с уменьшением величины внутреннего электрического поля в результате уменьшения пьезоэлектрического модуля УНТ

Рис. 4. Исследование пьезоэлектрического модуля легированных азотом УНТ: а – зависимость амплитуды нормального пьезоотклика от амплитуды прикладываемого напряжения для УНТ, выращенных при 615° С и 5 нм (*I*), 630° С и 10 нм (*2*), 645° С и 15 нм (*3*), 660° С и 20 нм (*4*); б – зависимость пьезоэлектрического модуля УНТ от ее дефектности.

до 212 ± 5 пм/В. Резистивное переключение наблюдалось только в области высоких напряжений: при напряжении записи 10 В и напряжении чтения 8 В отношение HRS/LRS составило 573. Для УНТ, обладающих наименьшей дефектностью и малым значением пьезоэлектрического модуля $(77 \pm 4 \text{ пм/B})$, резистивное переключение также наблюдалось только при напряжении записи 10 В, и HRS/LRS составило 332 (рис. 5д). При этом скачкообразных всплесков тока не наблюдалось, что также связано с уменьшением дефектности УНТ, вызванной внедрением атомов азота. Отметим, что ВАХ всех исследуемых УНТ были асимметричны. что обусловлено наличием потенциала на поверхности УНТ в результате прижима зонда АСМ в процессе измерения [15, 31].

Рис. 5. Схема измерения (а) и результаты исследования мемристивного эффекта при различном напряжении записи для легированных азотом УНТ, выращенных при 615°С и 5 нм (б), 630°С и 10 нм (в), 645°С и 15 нм (г), 660°С и 20 нм (д).

Таким образом, мемристивный эффект в УНТ возрастает с увеличением их дефектности и пьезоэлектрических свойств. Установленная закономерность согласуется с ранее предложенным механизмом мемристивного переключения УНТ, обусловленного процессами формирования и последующего перераспределения неравномерной упругой деформации и пьезоэлектрического потенциала под действием внешнего электрического поля [15, 32]. Согласно данному механизму со-

863

противление нанотрубки определяется суммой ее удельного сопротивления и дополнительного сопротивления, связанного с образованием внутреннего электрического поля в результате деформации УНТ [15, 32]. При этом при приложении пилообразного импульса напряжения U(t) на участках ВАХ, соответствующих условию dU(t)/dt < 0, в деформированной нанотрубке будет формироваться дополнительное сжимающее напряжение, компенсирующее начальное напряжение растяжения, и внутреннее электрическое поле УНТ будет постепенно уменьшаться. На участках ВАХ, соответствующих условию dU(t)/dt > 0, напротив, будет формироваться дополнительное растягивающее напряжение, приводящее к росту внутреннего электрического поля УНТ. При этом в момент времени, соответствующий смене знака dU(t)/dt с положительного на отрицательный (либо с отрицательного на положительный), будут наблюдаться смена типа деформации и релаксация избыточного сжимающего (либо растягивающего) напряжения, что приведет к переключению сопротивления УНТ из LRS в HRS (либо из HRS в LRS). Таким образом, разница в высокоомном и низкоомном состояниях УНТ физически обусловлена изменением величины внутреннего электрического поля УНТ в результате перераспределения исходной деформации под действием пилообразного импульса напряжения.

Таким образом, многоуровневое переключение в УНТ можно обеспечить либо путем изменения напряжения переключения, как показано на рис. 5, либо путем изменения величины исходной деформации УНТ. На рис. 6 представлены результаты исследований мемристивного эффекта в УНТ, выращенных при температуре 615°С и толщине каталитического слоя 5 нм, в зависимости от силы прижима зонда АСМ (F) к поверхности нанотрубки. Видно, что при минимальном прижиме зонда ACM к поверхности УНТ ($F \sim 0$) BAX является линейной (насыщение при токе более ±20 нА связано с применением логарифмического преобразования во встроенном амперметре ЗНЛ Ntegra) и гистерезис отсутствует. При приложении силы более 9 мкН наблюдается гистерезис ВАХ, площадь которого увеличивается с увеличением силы (рис. 6), и при приложении 20 мкН наблюдается вид ВАХ, близкий к прямоугольному, что соответствует HRS/LRS ~ 4×10^5 . Полученные результаты подтверждают возможность многоуровневого переключения УНТ, что делает их одними из наиболее перспективных углеродных наноструктур для создания мемристоров.

Рис. 6. ВАХ легированной азотом УНТ, выращенной при 615° С и 5 нм, в зависимости от силы прижима зонда АСМ к ее поверхности *F*.

ЗАКЛЮЧЕНИЕ

Впервые продемонстрировано влияние дефектности углеродных нанотрубок, связанной с внедрением атомов азота в их гексагональную структуру, на мемристивный эффект. Показано, что отношение сопротивлений УНТ в высокоомном и низкоомном состояниях достигает 4×10^5 , что сопоставимо с переключением в оксидах металлов. Продемонстрирована возможность многоуровневого переключения в УНТ путем изменения напряжения переключения или величины их деформации, что является существенным преимуществом УНТ при создании мемристорных структур. Кроме того, высокая масштабируемость УНТ и хорошая совместимость метода ПХОГФ с кремниевой технологией открывают широкие перспективы для использования УНТ для создания элементов памяти с высокой плотностью информации. Однако работы в этом направлении находятся на начальном этапе. Требуются дальнейшие исследования технологических особенностей формирования верхнего электрода к ориентированным УНТ и проведение исследований времени хранения информации в мемристорах на основе легированных азотом УНТ.

Работа выполнена при финансовой поддержке Министерства науки и высшего образования Российской Федерации; государственное задание в области научной деятельности № 0852-2020-0015.

СПИСОК ЛИТЕРАТУРЫ

 Meena J., Sze S., Chand U. et al. // Nanoscale Res. Lett. 2014. V. 9. P. 526. https://doi.org/10.1186/1556-276X-9-526

- Sun K., Chen J., Yan X. // Adv. Funct. Mater. 2020. P. 2006773. https://doi.org/10.1002/adfm.202006773
- Jeong D.S., Hwang C.S. // Adv. Mater. 2018. V. 30 (42). P. 1704729. https://doi.org/10.1002/adma.201704729
- Wang L., Yang C.H., Wen J. et al. // J. Mater. Sci. Mater. Electron. 2015. V. 26. P. 4618. https://doi.org/10.1007/s10854-015-2848-z
- Huh W., Lee D., Lee C.H. // Adv. Mater. 2020. P. 2002092. https://doi.org/10.1002/adma.202002092
- Pan F., Gao S., Chen C. et al. // Mater. Sci. Eng. R. 2014. V. 83. P. 1. https://doi.org/10.1016/j.mser.2014.06.002
- Wang H., Hu L., Han W. // J. Alloys Compd. 2021. V. 854. P. 157200. https://doi.org/10.1016/j.jallcom.2020.157200
- Lee S., Park J.-B., Lee M.-J. et al. // AIP Adv. 2016. V. 6. P. 125010. https://doi.org/10.1063/1.4971820
- Singh R., Kumar M., Iqbal S. et al. // Appl. Surf. Sci. 2021. V. 536. P. 147738. https://doi.org/10.1016/j.apsusc.2020.147738
- Tominov R.V., Vakulov Z.E., Avilov V.I. // Nanomaterials. 2020. V. 10. P. 1007. https://doi.org/10.3390/nano10051007
- 11. Bachmann T.A., Koelmans W.W., Jonnalagadda V.P. et al. // Nanotechnology. 2018. V. 29. P. 035201. https://doi.org/10.1088/1361-6528/aa9a18
- Viswanath P., De Silva K.K.H., Huang H.H. et al. // Appl. Surf. Sci. 2020. V. 532 P. 147188. https://doi.org/10.1016/j.apsusc.2020.147188
- Brzhezinskaya M., Kapitanova O.O., Kononenko O.V. et al. // J. Alloys Compd. 2020. V. 849. P. 156699. https://doi.org/10.1016/j.jallcom.2020.156699
- Raeber T.J., Zhao Z.C., Murdoch B.J. et al. // Carbon. 2018. V. 136. P. 280. https://doi.org/10.1016/i.carbon.2018.04.045
- 15. Il'ina M.V., Il'in O.I., Blinov Y.F. et al. // Carbon. 2017. V. 123. P. 514.
- https://doi.org/10.1016/j.carbon.2017.07.090
- Il'ina M.V., Il'in O.I., Guryanov A.V. et al. // Fullerenes Nanotub. Carbon Nanostructures. 2020. V. 28. P. 78. https://doi.org/10.1080/1536383X.2019.1671370
- 17. Ильина М.В., Ильин О.И., Блинов Ю.Ф. и др. // ЖТФ. 2018. Т. 88. № 11. С. 1726.

- Нанотехнологии в микроэлектронике / Ред. Агеев О.А., Коноплёв Б.Г. М.: Наука, 2019. 511 с.
- 19. *Il'in O.I., Il'ina M.V., Rudyk N.N. et al.* Vertically Aligned Carbon Nanotubes Production by PECVD // Perspect. Carbon Nanotub. IntechOpen. 2019. P. 13. https://doi.org/10.5772/intechopen.84732
- Il'in O.I., Il'ina M.V., Rudyk N.N. et al. // Nanosyst. Phys. Chem. Math. 2018. V. 9. P. 92. https://doi.org/10.17586/2220-8054-2018-9-1-92-94
- Il'in O., Rudyk N., Fedotov A. et al. // Nanomaterials. 2020. V. 10. P. 554. https://doi.org/10.3390/nano10030554
- 22. Bulyarskiy S.V., Bogdanova D.A., Gusarov G.G. et al. // Diam. Relat. Mater. 2020. V. 109. P. 108042. https://doi.org/10.1016/j.diamond.2020.108042
- 23. Sharifi T., Nitze F., Barzegar H.R. // Carbon. 2012. V. 50. P. 3535. https://doi.org/10.1016/j.carbon.2012.03.022
- 24. Lee S.U., Mizuseki H., Kawazoe Y. // Nanoscale. 2010. V. 2. P. 2758. https://doi.org/10.1039/c0nr00411a
- Lim S.H., Elim H.I., Gao X.Y. // Phys. Rev. B. 2006. V. 73. P. 045402. https://doi.org/10.1103/PhysRevB.73.045402
- Il'ina M.V., Il'in O.I., Smirnov V.A. et al. Scanning Probe Techniques for Characterization of Vertically Aligned Carbon Nanotubes // At. Microsc. Its Appl. IntechOpen. 2019. Ch. 13. https://doi.org/10.5772/intechopen.78061
- 27. *Rao A.M., Jacques D., Haddon R.C. et al.* // Appl. Phys. Lett. 2000. V. 76. P. 3813. https://doi.org/10.1063/1.126790
- Il'ina M.V., Il'in O.I., Guryanov A.V. et al. // J. Mater. Chem. C. 2021. V. 9. P. 6014. https://doi.org/10.1039/D1TC00356A
- 29. *Рудык Н.Н., Ильин О.И., Ильина М.В. и др. //* ЖТФ. 2021. Т. 91. Вып. 10. С. 1517.
- Kundalwal S.I., Meguid S.A., Weng G.J. // Carbon. 2017. V. 117. P. 462. https://doi.org/10.1016/j.carbon.2017.03.013
- Il'ina M., Il'in O., Blinov Y. et al. // Materials. 2018.
 V. 11. P. 638. https://doi.org/10.3390/ma11040638
- 32. Ильина М.В., Блинов Ю.Ф., Ильин О.И. и др. // Изв. РАН. Сер. физ. 2017. Т. 81. № 12. С. 1681.