_ НАНОЭЛЕКТРОНИКА И НЕЙРОМОРФНЫЕ ____ ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ

УДК 538.956

НЕЙРОМОРФНЫЕ СВОЙСТВА БЕСФОРМОВОЧНЫХ НЕФИЛАМЕНТАРНЫХ СТРУКТУР ТіN/Та₂O₅/Та С АСИММЕТРИЧНОЙ ВОЛЬТ-АМПЕРНОЙ ХАРАКТЕРИСТИКОЙ

© 2021 г. Д. С. Кузьмичев¹, А. М. Маркеев^{1,*}

¹ Московский физико-технический институт (Национальный исследовательский университет), Москва, Россия

**E-mail: markeev.am@mipt.ru* Поступила в редакцию 29.06.2021 г. После доработки 03.08.2021 г. Принята к публикации 03.08.2021 г.

Продемонстрирована возможность управления сопротивлением структуры за счет разных переключающих напряжений и длительности шага квазистатической развертки в бесформовочных нефиламентарных ячейках памяти TiN/Ta₂O₅/Ta с асимметричной вольт-амперной характеристикой. При импульсных измерениях структуры демонстрируют зависимость токового отклика от частоты подачи переключающих сигналов и плавное энергозависимое резистивное переключение, необходимое для реализации резервуарных вычислений.

DOI: 10.1134/S1992722321060133

ВВЕДЕНИЕ

В настоящее время вычислительные системы в основном построены на архитектуре фон Неймана, в которой хранение данных и операции над ними физически разделены [1]. При этом, несмотря на значительные успехи в реализации искусственных нейронных сетей и машинного обучения на существующих вычислительных системах, показано, что в актуальных задачах распознавания образов и речи на перемещение значительных объемов данных тратится больше энергии и времени, чем на вычисления [2, 3]. Для решения данной проблемы активно применяются параллельные вычисления с использованием графических процессоров [4], разработка специализированных процессоров под конкретную задачу [5, 6] или внедрение новых классов памяти в существующие архитектуры [7]. Однако в перечисленных подходах в той или иной степени остается необходимость перемещать большое количество информации между разными уровнями архитектуры, поэтому организация более эффективной работы с данными является актуальной задачей [8]. Становится все более очевидным, что необходима разработка новых архитектур, в которых хранение и обработка данных расположены в одном месте, и одним из возможных решений являются нейроморфные вычислительные системы, которые эмулируют работу мозга [9].

Несмотря на то что нейроморфные вычислительные системы могут быть реализованы на существующих типах флэш-памяти [10], использование ячеек памяти на основе резистивного переключения (ReRAM) [11–14], также известных как мемристоры [15], выглядит более перспективным благодаря низким напряжениям программирования, возможности высокой плотности ячеек [9] и реализации большого числа состояний сопротивления [7, 16, 17]. Более того, с помощью нейросетевых алгоритмов на массивах мемристоров было продемонстрировано решение задач распознавания лиц [18] и рукописного текста [19].

Среди многообразия нейронных сетей можно выделить резервуарные вычисления, позволяющие эффективно обрабатывать изменяющиеся во времени входные данные [20, 21]. Теоретический анализ нейросетей с резервуарными вычислениями показал, что подобные системы на основе мемристоров могут обеспечить отличную производительность в таких задачах, как распознавание образов, обработка сигналов и обнаружение болезней [22-25]. Отметим, что большинство исследований мемристоров сфокусировано на энергонезависимых свойствах и энергозависимость является нежелательной. Однако для резервуарных вычислений, напротив, энергозависимое поведение мемристоров (также называемое кратковременной памятью – short-term memory) является необходимым условием [20, 23].

Применение кроссбар-матриц мемристоров с эффектом кратковременной памяти в системах с резервуарными вычислениями продемонстрировано в [20, 26]. Размер используемой кроссбарматрицы составил 32 × 32 устройства [20], хотя для практических применений число элементов должно быть увеличено [9]. Отметим, что в кроссбар-массивах неизбежно возникает проблема скрытых токов утечки (sneak currents) [27-29], препятствующих корректному считыванию состояний, которая может быть решена как за счет внешних селектирующих устройств, например транзисторов [30], так и применением мемристоров с нелинейной [7] или асимметричной (выпрямляющей) вольт-амперной характеристикой (ВАХ) [28]. При этом использование транзисторов в кроссбар-массивах снижает плотность кроссбар-массивов, а применение мемристоров с филаментарным типом переключения приводит к разбросу параметров ячеек [31-34] внутри кроссбар-массива, что затрудняет реализацию высокоплотных нейроморфных вычислительных систем [35]. Таким образом, исследование и разработка нефиламентарных бесформовочных структур [28, 36] с эффектом кратковременной памяти и выпрямляющей ВАХ являются актуальной залачей.

В [36] были исследованы особенности транспорта заряда, асимметрии и время удержания в нефиламентарных структурах на основе оксида тантала, где было показано, что стеки $TiN/Ta_2O_5/Ta$ демонстрируют бесформовочный нефиламентарный характер резистивного переключения. В настоящей работе мы демонстрируем в $TiN/Ta_2O_5/Ta$ -резистивных элементах возможность реализации нескольких состояний сопротивления при сохранении асимметричных ВАХ и токовые отклики на различные импульсные воздействия напряжения.

МЕТОДЫ

Для создания структур металл-изолятор-металл (МИМ-структур) TiN/Ta₂O₅/Ta нижний электрод TiN толщиной 20 нм и диэлектрический слой Та₂О₅ толщиной 15 нм были выращены методом атомно-слоевого осаждения на пластинах Si с естественным оксидом. ТiN растили при температуре 400°С с использованием TiCl₄ и NH₃ в качестве прекурсора и реактанта соответственно. Та₂О₅ был выращен при температуре 240°С с использованием Та(ОС₂H₅)₅ и H₂O. Длительность импульса/продувки Та (ОС2H5)5 и H2O составляла 0.5с/8с и 0.1с/5с соответственно. Верхний электрод из тантала толщиной 100 нм наносили через теневую маску с диаметром отверстий 100 мкм методом магнетронного напыления. На верхний электрод Та напыляли слой Pt толщиной 30 нм для предотвращения окисления. Электрические свойства МИМ-структур исследованы с помощью анализатора параметров полупроводников Agilent B1500A с использованием двух его модулей: измерения ВАХ проводили с использованием источника/измерителя B1511A, а для импульсных измерений был применен модуль генератора сигналов и быстродействующего измерителя B1530A (WGFMU). Во всех измерениях напряжение подавали на верхний электрод, а нижний электрод был заземлен. Измерения проводили при комнатной температуре.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис. 1 показаны ВАХ структур TiN/Ta₂O₅/Ta при различных включающих (Vset) и выключающих (Vreset) напряжениях. Прежде всего отметим значительную асимметрию данных элементов для состояния с низким сопротивлением (LRS, развертка 2 на рис. 1а) на положительной и отрицательной (развертка 3 на рис. 1а) ветвях напряжений. Так, отношение токов при +0.5 В и при -0.5 В составляет величину ~ 0.75×10^4 при Vset = = -3 В. что позволяет говорить о выпрямительной ВАХ данных элементов памяти. Подобный характер резистивного переключения обусловлен различными энергетическими барьерами для границ TiN/Ta₂O₅ и Ta₂O₅/Ta – 1 и 0.7 эВ соответственно, а также наличием ловушек в дефектном слое TaO_r на границе Ta₂O₅/Ta, возникающим благодаря экстрагирующим свойствам тантала [36-38]. При инжекции электронов из тантала (развертки 1 и 2 на рис. 1а) токоперенос определяется пространственным зарядом, при этом наблюдаемый гистерезис ВАХ может быть вызван влиянием ловушек на токоперенос [39]. В частности, при увеличении отрицательного напряжения происходит заполнение ловушек (0 В...-З В, развертка 1 на рис. 1), а при уменьшении отрицательного напряжения (-3 В...0, развертка 2 на рис. 1) имеет место частичное опустошение ловушек [36, 39]. В случае положительного напряжения (развертки 3, 4 на рис. 1) транспорт заряда определяется границей TiN/Ta2O5, на которой при малых напряжениях (до +1 В) реализуются механизмы эмиссии Шоттки, а при высоком напряжении (более +2 В) – туннелирования Фаулера-Нордгейма [36].

Структуры демонстрируют возможность достижения различных уровней тока за счет управления Vset (рис. 1а) и Vreset (рис. 1б). Самое высокое значение **LRS** ~ 0.6 ГОм (измерено при напряжении -0.5 В) наблюдается при отрицательном напряжении Vset = -1 В, и может быть уменьшено за счет более высоких отрицательных напряжений Vset = -1.5/-2/-3B до 47, 2 МОм и 146 кОм соответственно (рис. 1а). Управление высокоомным сопротивлением (**HRS**, развертка 1 на рис. 1б) может быть реализовано за счет подачи различных положительных напряжений Vreset. HRS имеют значения, равные 1 ГОм, 536, 136 и

Рис. 1. ВАХ структуры TiN/Ta₂O₅/Та при различных включающих (Vset) (а) и выключающих (Vreset) (б) напряжениях. Порядок подачи напряжения указан цифрами.

18 МОм при Vreset = +3/+2/+1.5/+1 В соответственно.

Отметим, что помимо варьирования Vset LRS также может быть изменено за счет длительности удержания шага квазистатической развертки (рис. 2). При шаге 10 мс значение LRS составило 490 МОм, а более длительный шаг развертки (100 мс) приводит к меньшему значению LRS, равному ~2 МОм. Такие результаты могут быть связаны с разной динамикой заполнения и освобождения ловушек на границе Та₂O₅/Та [36] при различном времени воздействия и амплитуде переключаюших напряжений. что позволяет управлять значениями уровней тока в LRS и HRS и тем самым получать многоуровневый токовый отклик. С другой стороны, такой механизм переключения влечет за собой энергозависимость состояний сопротивления – ранее было показано, что с течением времени различные уровни LRS деградируют до HRS [36].

Продемонстрированный многоуровневый токовый отклик является важной характеристикой элементов нейроморфных вычислительных систем [40], при этом асимметрия в ВАХ сохраняется, что важно для интеграции структур $TiN/Ta_2O_5/Ta$ в кроссбар-массивы больших объемов.

Многоуровневый токовый отклик можно наблюдать и при импульсных измерениях. Так, был проанализирован отклик устройств на единичные импульсы Vset и Vreset с фронтами 5 мс и длительностью 20 мс. Изменения тока при однократных выключающих (Vreset) импульсах различного напряжения показаны на рис. За. Обнаружено, что ток устройства переключается со значения ~350 нА до значения ~150 нА во время импульса +3 В и от 40 до 15 нА при импульсе +2.5 В. Изменение тока для напряжений меньше +2 В близко к пределу чувствительности измерителя и не пре-

восходит детектируемых на фронтах импульса емкостных токов. При подаче отрицательных импульсов Vset емкостные токи также превосходят ток утечки при |Vset| < |-1.5B|, однако за время подачи импульса Vset = -2B наблюдается рост тока vтечки с ~70 нА до ~180 нА (рис. 3б). Дальнейшее увеличение Vset приводит к значительному повышению тока утечки в конце переключающего импульса до 6 мкА для -2.5 В и 55 мкА для -3 В (рис. 3в). Более высокий ток до и после подачи напряжения –3 В (рис. 3в) обусловлен необходимостью использования иного диапазона измерений, чувствительность которого не превышает 5 мкА. Плавное увеличение проводимости структуры за время удержания единичного импульса дополнительно подтверждает, что транспорт тока

Рис. 2. ВАХ структуры TiN/Ta₂O₅/Ta при различной длительности шага квазистатической развертки. Порядок подачи напряжения указан цифрами.

Рис. 3. Токовый отклик устройств на единичные импульсы Vreset (а) и Vset (б, в) длительностью 20 мс и фронтом 5 мс.

в структуре определяется пространственным зарядом [36], так как для данного механизма имеют место временные зависимости [41].

Зависимость проводимости структуры от частоты переключающих импульсов является ключевой при демонстрации эффекта кратковременной памяти [42]. Чтобы оценить влияние частоты подачи сигнала на динамику переключения, были использованы различные интервалы *t*_{инт} между включающими импульсами Vset амплитудой -1.5 В и длительностью 20 мс (рис. 4). На рис. 4a представлен токовый отклик структуры TiN/Ta₂O₅/Ta на пять последовательных включаюших импульсов с интервалом 10 мс. Вилно, что ток увеличивается с 12 нА в конце первого импульса до 24 нА в конце пятого импульса (заполненные точки на рис. 4а). После десяти последовательных импульсов разница между токами в первом и последнем импульсе составила 30 нА (рис. 4б). С увеличением интервала между импульсами t_{инт} разница токового отклика между первым и десятым импульсом уменьшается, достигая 10 нА при интервале 200 мс, что свидетельствует о возможноси реализации синаптического обучения [43] и кратковременной памяти [44, 45] в структурах $TiN/Ta_2O_5/Ta$.

Как отмечалось ранее, важной характеристикой мемристоров для резервуарных вычислений является их энергозависимость [20, 23, 26]. Для анализа изменения проводимости устройства в зависимости от времени хранения была использована схема измерения состояния структуры с читающим напряжением Vtest (рис. 5). На структуру подавалась серия из десяти последовательных импульсов Vset амплитудой -5 В длительностью 10 мс. Токовый отклик устройства измерялся до подачи включающих импульсов (круглая точка), между (квадратные заполненные точки) и после (квадратные пустые точки) читающим напряжением Vtest амплитудой -1 В и длительностью 20 мс. Интервал между подачей импульсов составил 10 мс. Из рис. 5 видно, что уровень тока увеличивается с ~0.3 до 35 нА за время подачи включающих импульсов (квадратные заполненные точки) и убывает до 10 нА без воздействия Vset (квадратные пустые точки), что свидетельствует об энергозависимом поведении структуры TiN/Ta2O5/Ta [45, 46] и может быть объяснено опустошением заполненных ловушек при отсутствии Vset [36].

Еще одним важным свойством искусственного синапса являются потенциация (Potentiation) и ослабление (Depression) [40], которое исследуется путем поочередной подачи серии включающих и выключающих напряжений. На устройство были поданы три серии, состоящие из десяти импульсов записи и двенадцати импульсов стирания (рис. 6). Амплитуда равнялась –5 В для Vset и +2 В для Vreset, длительностью 10 мс каждый. Состояние устройства контролировалось импульсом чтения (–1 В, 20 мс) после каждого импульса

Рис. 4. Токовый отклик структуры TiN/Ta₂O₅/Ta на серию из пяти включающих импульсов амплитудой –1.5 В (длительностью 20 мс и фронтом 5 мс) с интервалом 10 мс (а) и динамика изменения токового отклика для 10 импульсов в зависимости от интервала между включающими импульсами (б).

Рис. 5. Увеличение и спад проводимости структуры $TiN/Ta_2O_5/Ta$. Токовый отклик устройства измерялся до подачи включающих импульсов амплитудой –5 В и длительностью 10 мс (кружок), между (заполненный квадрат) и после (пустой квадрат) включающих импульсов тестовым напряжением Vtest –1 В длительностью 20 мс. Интервал между подачей импульсов составил 10 мс.

РОССИЙСКИЕ НАНОТЕХНОЛОГИИ том 16 № 6 2021

Рис. 6. Зависимость токового отклика структуры TiN/Ta₂O₅/Ta при постепенном включении (потенциации, кружки) и выключении (ослаблении, квадратики).

записи/стирания аналогично исследованию на энергозависимость (рис. 5). Из рис. 6 видно, что устройство обладает плавным (аналоговым) изменением тока на включающие и выключающие импульсы, однако за периоды подачи выключающих импульсов Vreset структура не полностью возвращается к исходному уровню тока 0.5 нА и демонстрирует рост в конце каждой серии — 1.2, 2.5 и 4 нА. Такое поведение свидетельствует о неполном переходе структуры в состояние с высоким сопротивлением и заметной асимметрией в динамике включения и выключения, которая может быть связана с различной скоростью процесса заполнения и опустошения ловушек.

ЗАКЛЮЧЕНИЕ

Показаны подходы по достижению нескольких значений сопротивления в структурах TiN/Ta₂O₅/Ta, заключающиеся в варьировании амплитулы включающих и выключающих напряжений, а также в изменении времени подачи напряжения. При этом сохраняется асимметричность ВАХ, что является важным аспектом для структурных элементов нейроморфных вычислительных систем. Импульсные измерения токового отклика демонстрируют то, что резистивное переключение в структурах TiN/Ta₂O₅/Ta имеет плавный аналоговый характер, зависит от частоты подачи переключающего сигнала и является энергозависимым, что позволяет считать данную структуру перспективной для создания кроссбар-массивов, в которых может быть реализована нейроморфная система для резервуарных вычислений.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 19-29-03038). Все эксперименты проведены с использованием оборудования Центра коллективного пользования уникальным научным оборудованием в области нанотехнологий Московского физико-технического института (Национального исследовательского университета).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Wan Q., Sharbati M.T., Erickson J.R. et al.* // Adv. Mater. Technol. 2019. V. 4. № 4. P. 1. https://doi.org/10.1002/admt.201900037
- Horowitz M. // Digest of Technical Papers IEEE International Solid-State Circuits Conference. 2014. V. 57. P. 10. https://doi.org/10.1109/ISSCC.2014.6757323
- Ielmini D., Wong H.S.P. // Nature Electronics. 2018.
 V. 1. № 6. P. 333. https://doi.org/10.1038/s41928-018-0092-2
- 4. *Keckler S.W., Dally W.J., Khailany B. et al.* // IEEE Micro. 2011. V. 31. № 5. P. 7. https://doi.org/10.1109/MM.2011.89

- 5. Sze V, Chen Y.H., Yang T.J., Emer J.S. // Proc. IEEE. 2017. V. 105. № 12. P. 2295. https://doi.org/10.1109/JPROC.2017.2761740
- Jouppi N.P., Young C., Patil N. et al. // Proceedings International Symposium on Computer Architecture. 2017. V. Part F128643. https://doi.org/10.1145/3079856.3080246
- Hsu C.W., Wang Y.F., Wan C.C. et al. // Nanotechnology. 2014. V. 25. P. 165202. https://doi.org/10.1088/0957-4484/25/16/165202
- Sebastian A., le Gallo M., Khaddam-Aljameh R., Eleftheriou E. // Nature Nanotechnol. 2020. V. 15. № 7. P. 529. https://doi.org/10.1038/s41565-020-0655-z
- Zhao M., Gao B., Tang J. et al. // Appl. Phys. Rev. 2020.
 V. 7. № 1. P. 011301. https://doi.org/10.1063/1.5124915
- 10. *Merrikh-Bayat F, Guo X., Klachko M. et al.* // IEEE Transactions on Neural Networks and Learning Systems. 2018. V. 29. № 10. P. 4782. https://doi.org/10.1109/TNNLS.2017.2778940
- 11. *Kuzmichev D.S., Lebedinskii Y.Y.* // Microelectron. Eng. 2017. V. 178. P. 150. https://doi.org/10.1016/j.mee.2017.04.041
- 12. Egorov K.V., Kuzmichev D.S., Chizhov P.S. et al. // ACS Appl. Mater. Interfaces. 2017. V. 9. № 15. P. 13286. https://doi.org/10.1021/acsami.7b00778
- Kuzmichev D.S., Lebedinskii Y.Y., Hwang C.S., Markeev A.M. // Phys. Status Solidi – Rapid Res. Lett. 2018. V. 12. № 12. P. 1800429. https://doi.org/10.1002/pssr.201800429
- 14. Egorov K.V., Lebedinskii Y.Y., Markeev A.M., Orlov O.M. // Appl. Surf. Sci. 2015. V. 356. P. 454. https://doi.org/10.1016/j.apsusc.2015.07.217
- Indiveri G., Linn E., Ambrogio S. // Resistive Switching. 2016. P. 715. https://doi.org/10.1002/9783527680870.ch25
- 16. *Markeev A., Chouprik A., Egorov K. et al.* // Russian Microelectronics. 2014. V. 43. № 5. P. 328. https://doi.org/10.1134/S1063739714050059
- Emelyanov A.V., Nikiruy K.E., Demin V.A. et al. // Microelectron. Eng. 2019. V. 215. P. 110988. https://doi.org/10.1016/j.mee.2019.110988
- Yao P., Wu H., Gao B. et al. // Nature Commun. 2017. V. 8. P. 1. https://doi.org/10.1038/ncomms15199
- Prezioso M., Kataeva I., Merrikh-Bayat F. et al. // Technical Digest International Electron Devices Meeting, IEDM. IEEE, 2015. V. 2016. P. 17.4.1. https://doi.org/10.1109/IEDM.2015.7409719
- 20. *Du C., Cai F., Zidan M.A. et al.* // Nature Commun. 2017. V. 8. № 1. P. 2204. https://doi.org/10.1038/s41467-017-02337-y
- Tanaka G., Yamane T., Héroux J.B. et al. // Neural Networks. 2019. V. 115. P. 100. https://doi.org/10.1016/j.neunet.2019.03.005
- Kulkarni M.S. // IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH) 2012. P. 226. https://doi.org/10.1145/2765491.2765531

- 23. Carbajal J.P., Dambre J., Hermans M., Schrauwen B. // Neural Computation. 2015. V. 27. № 3. P. 725. https://doi.org/10.1162/NECO_a_00694
- 24. *Merkel C., Saleh Q., Donahue C., Kudithipudi D. //* Procedia Computer Science. 2014. V. 41. P. 249. https://doi.org/10.1016/j.procs.2014.11.110
- Kudithipudi D., Saleh Q., Merkel C. et al. // Frontiers in Neuroscience. 2016. V. 9. https://doi.org/10.3389/fnins.2015.00502
- 26. Zhu X., Wang Q., Lu W.D. // Nature Commun. 2020. V. 11. № 1. P. 2439. https://doi.org/10.1038/s41467-020-16261-1
- 27. Chen H.Y., Brivio S., Chang C.C. et al. // J. Electroceramics. 2017. V. 39. № 1–4. P. 21. https://doi.org/10.1007/s10832-017-0095-9
- Ma H., Zhang X., Wu F. et al. // IEEE Transactions on Electron Devices. 2018. V. 66. № 2. P. 1. https://doi.org/10.1109/TED.2018.2883192
- 29. Seok J.Y., Song S.J., Yoon J.H. et al. // Adv. Funct. Mater. 2014. V. 24. № 34. P. 5316. https://doi.org/10.1002/adfm.201303520
- Aluguri R., Tseng T.Y. // IEEE J. Electron Devices Society. 2016. V. 4. № 5. P. 294. https://doi.org/10.1109/JEDS.2016.2594190
- Pouyan P., Amat E., Hamdioui S., Rubio A. // Proceedings – 2016 26th International Workshop on Power and Timing Modeling, Optimization and Simulation, PATMOS 2016. 2017. P. 141. https://doi.org/10.1109/PATMOS.2016.7833679
- 32. Raghavan N., Degraeve R., Fantini A. et al. // Technical Digest – International Electron Devices Meeting, IEDM. IEEE, 2013. P. 554. https://doi.org/10.1109/IEDM.2013.6724674
- 33. *Ambrogio S., Member S., Balatti S. et al.* // IEEE Transactions on Electron Devices. 2014. V. 61. № 8. P. 2912. https://doi.org/10.1109/TED.2014.2330200
- 34. Prakash A., Hwang H. // Phys. Sci. Rev. 2019. V. 1. № 6. P. 1. https://doi.org/10.1515/psr-2016-0010

- 35. Prezioso M., Merrikh-Bayat F., Hoskins B.D. et al. // Nature. 2015. V. 521. № 7550. P. 61. https://doi.org/10.1038/nature14441
- 36. Kuzmichev D.S., Chernikova A.G., Kozodaev M.G., Markeev A.M. // Phys. Status Solidi. A. 2020. V. 1900952. P. 2. https://doi.org/10.1002/pssa.201900952
- Goux L., Fantini A., Redolfi A. et al. // Digest of Technical Papers Symposium on VLSI Technology. 2014. P. 1. https://doi.org/10.1109/VLSIT.2014.6894401
- Chen C. Y., Goux L., Fantini A. et al. // Appl. Phys. Lett. 2015. V. 106. № 5. P. 2013. https://doi.org/10.1063/1.4907573
- Ding Y., Xu X., Bhalla A. et al. // RSC Adv. 2016. V. 6. № 65. P. 60074. https://doi.org/10.1039/c6ra05668g
- 40. *Hong X.L., Loy D.J.J., Dananjaya P.A. et al.* // J. Mater. Sci. 2018. V. 53. № 12. P. 8720. https://doi.org/10.1007/s10853-018-2134-6
- 41. *Chiu F.C.* // Adv. Mater. Sci. Eng. 2014. V. 2014. P. 1. https://doi.org/10.1155/2014/578168
- 42. *Ohno T., Hasegawa T., Tsuruoka T. et al.* // Nature Materials. 2011. V. 10. № 8. P. 591. https://doi.org/10.1038/nmat3054
- 43. Mikheev V., Chouprik A., Lebedinskii Y. et al. // ACS Appl. Mater. Interfaces. 2019. V. 11. № 35. P. 32108. https://doi.org/10.1021/acsami.9b08189
- 44. Chang T., Jo S.H., Lu W. // ACS Nano. 2011. V. 5. № 9. P. 7669. https://doi.org/10.1021/nn202983n
- 45. *Du C., Ma W., Chang T. et al.* // Adv. Funct. Mater. 2015. V. 25. № 27. P. 4290. https://doi.org/10.1002/adfm.201501427
- 46. *Matveyev Y., Egorov K., Markeev A., Zenkevich A. //* J. Appl. Phys. 2015. V. 117. № 4. P. 044901. https://doi.org/10.1063/1.4905792