РОССИЙСКИЕ НАНОТЕХНОЛОГИИ, 2022, том 17, № 6, с. 753-764

НАНОМАТЕРИАЛЫ ФУНКЦИОНАЛЬНОГО И КОНСТРУКЦИОННОГО НАЗНАЧЕНИЯ

УДК (546.742+547-32):546.05

СИНТЕЗ И ТЕРМИЧЕСКИЕ ПРЕВРАЩЕНИЯ СОЛЕЙ НАСЫЩЕННЫХ МОНОКАРБОНОВЫХ КИСЛОТ НИКЕЛЯ(II) – ПРЕКУРСОРОВ МЕТАЛЛОСОДЕРЖАЩИХ НАНОКОМПОЗИТОВ

© 2022 г. Р. В. Сапрыкин¹, С. А. Семенов^{1,*}, Д. В. Дробот¹, Е. В. Волчкова¹, Г. И. Джардималиева², А. И. Иванова¹, А. Б. Голованов¹, В. И. Попенко³

¹ МИРЭА — Российский технологический университет (Институт тонких химических технологий им. М.В. Ломоносова), Москва, Россия

² Институт проблем химической физики РАН, Черноголовка, Россия

³ Институт молекулярной биологии им. В.А. Энгельгардта РАН, Москва, Россия

**E-mail: srg.semenov@gmail.com* Поступила в редакцию 23.12.2021 г. После доработки 25.01.2022 г. Принята к публикации 25.01.2022 г.

Синтезированы соли никеля(II) с насыщенными монокарбоновыми кислотами: масляной, валериановой, капроновой, энантовой и каприловой. Полученные соединения охарактеризованы методами элементного анализа, ИК-спектроскопии, дифференциальной сканирующей калориметрии. В результате термического разложения синтезированных карбоксилатов получены никельсодержащие нанокомпозиты, которые были исследованы методами сканирующей и просвечивающей электронной микроскопии, элементного анализа, ИК-спектроскопии, энергодисперсионной рентгеновской спектроскопии и рентгенофазового анализа. Изучены магнитные свойства полученных нанокомпозитов.

DOI: 10.56304/S1992722322030153

введение

Уникальность химических и физических свойств композитов, содержащих наночастицы (**HY**), обусловливает их использование в различных областях науки и техники [1–3].

На основе макромолекулярных карбоксилатов металлов возможно получение перспективных нанокомпозитных материалов. Это послужило причиной большого интереса исследователей к этому классу соединений [4–7].

Карбоксилаты никеля имеют большой спектр применения. Например, никелевые нанотрубки получают путем восстановления формиата никеля в среде этиленгликоля. Одномерные наноструктурированные материалы, к классу которых относятся нанотрубки, широко применяются в магнитных, оптических и электрических приборах [8].

Производство никелевых катализаторов с использованием формиата никеля в качестве прекурсора обусловлено его сравнительно большей экологичностью, чем при использовании других реагентов [9].

Ацетат никеля может быть использован в смеси реагентов вместе с поливинилацетатом при получении НЧ никеля. НЧ оксида никеля (NiO) с однородным размером ~40–50 нм были синтезированы с использованием смеси ацетата никеля и поливинилацетата в качестве предшественника с последующей термообработкой при 723 К [10].

Молекулы высокоспиновых полиядерных комплексов металлов, включающие в себя лиганды карбоксилатной группы, обладают уникальными магнитными свойствами. Такие соединения могут проявлять свойства молекулярных магнитов [11]. Исследование и синтез карбоксилатов металлов, которые могут быть основой для материалов, обладающих одновременно магнитными и оптическими свойствами, в настоящее время вызывают большой интерес [12]. Такое сочетание позволит использовать данные соединения для создания молекулярных электронных устройств будущего [13].

Ранее были получены валерат [14], капроат [15], энантат [16] и каприлат никеля [16–18]. Цель настоящей работы — синтез карбоксилатов никеля в гомологическом ряду карбоновых кислот: масляной $CH_3-(CH_2)_2-COOH$, валериановой $CH_3-(CH_2)_3-COOH$, капроновой $CH_3-(CH_2)_4$ -СООН, энантовой $CH_3-(CH_2)_5-COOH$ и капри-

САПРЫКИН и др.

				-	
Соединение	$v_{OH}(H_2O)$	v(COOH)	v _s (COO [−])	v _{as} (COO ⁻)	$\Delta(\mathbf{v}_{as}-\mathbf{v}_{s})$
Масляная кислота		1690			
Бутират никеля	3300		1410	1562	152
Валериановая кислота		1706			
Валерат никеля	3340		1417	1571	154
Капроновая кислота		1730			
Капроат никеля	3300		1417	1564	147
Энантовая кислота		1740			
Энантат никеля	3391		1415	1565	150
Каприловая кислота		1708			
Каприлат никеля	3364		1418	1568	150

Таблица 1. Характеристические частоты (v, см⁻¹) в ИК-спектрах насыщенных карбоксилатов никеля

Таблица 2. Данные элементного анализа карбоксилатов никеля

Соль никеля	С, % найдено/вычислено	Н, % найдено/вычислено	Ni, % найдено/вычислено	Выход, %
Бутират никеля Ni(C ₄ H ₇ O ₂)OH · 0.5H ₂ O	27.76/27.96	5.15/5.24	32.57/34.18	84.1
Валерат никеля Ni(C ₅ H ₉ O ₂)OH · 0.5H ₂ O	32.31/32.26	5.92/5.91	31.21/31.56	71.2
Капроат никеля Ni(C ₆ H ₁₁ O ₂) ₂ · H ₂ O	44.29/46.95	7.34/7.83	21.61/19.14	51.6
Энантат никеля Ni(C ₇ H ₁₃ O ₂) ₂ · H ₂ O	48.70/50.19	8.26/8.37	20.63/17.54	53.9
Каприлат никеля Ni(C $_8$ H $_{15}$ O_2)OH \cdot 0.5H $_2$ O (55.8%) + Ni(C $_8$ H $_{15}$ O_2) $_2 \cdot \cdot 0.5$ H $_2$ O (44.2%)	47.47/47.47	8.04/8.76	24.53/21.79	52.8

Таблина З 1	Процесс леги	пратании ка	пбоксилатов	никеля (энлоте	пмическая	ппи	поля т	пансф	onwa	(пии)
таолица 5. 1	процесс деги	дратации ка	рооксилатов	никсля (эндоте	рмическая	при	рода т	рансц	юрма	ции)

Соетицение	t °C	Потеря массы, %		
Соединские	t, °С П 123 5.24 80 4.84 230 5.87 200 5.38	Вычислено	Найдено	
Бутират никеля	123	5.24	7.94	
$Ni(C_4H_7O_2)OH \cdot 0.5H_2O = Ni(C_4H_7O_2)OH + 0.5H_2O$				
Валерат никеля Ni($C_5H_9O_2$)OH · 0.5H ₂ O = Ni($C_5H_9O_2$)OH + 0.5H ₂ O	80	4.84	6.85	
Капроат никеля Ni($C_6H_{11}O_2$) ₂ · H ₂ O = Ni($C_6H_{11}O_2$) ₂ + H ₂ O	230	5.87	8.62	
Энантат никеля Ni $(C_7H_{13}O_2)_2 \cdot H_2O = Ni(C_7H_{13}O_2)_2 + H_2O$	200	5.38	12.36	
Каприлат никеля Ni(C ₈ H ₁₅ O ₂)OH \cdot 0.5H ₂ O = Ni(C ₈ H ₁₅ O ₂)OH + 0.5H ₂ O; Ni(C ₈ H ₁₅ O ₂) ₂ \cdot 0.5H ₂ O = Ni(C ₈ H ₁₅ O ₂) ₂ + 0.5H ₂ O	82	1.75	2.24	

ловой CH₃-(CH₂)₆-СООН, исследование их термических свойств, а также получение на их основе никельсодержащих нанокомпозитов методом контролируемого термолиза и изучение состава и строения получаемых продуктов.

методы

В работе использовали кристаллогидраты сульфата $NiSO_4 \cdot 7H_2O$ (ч) и ацетата никеля $Ni(CH_3COO)_2 \cdot 4H_2O$ (ч), гидроксид натрия NaOH

Рис. 1. ДСК/ТГ – кривые термолиза бутирата никеля. Скорость нагрева 10 град/мин, среда – аргон. Экзо вверх.

(чда), формиат никеля двухводный (ч), а также масляную (99%, Sigma-Aldrich), валериановую (99%, Sigma-Aldrich), капроновую (98%, Sigma-Aldrich), энантовую (99%, Sigma-Aldrich) и каприловую (98%, Sigma-Aldrich) кислоты.

Синтез бутирата и валерата никеля проводили по методике, описанной в [19]. В связи с тем, что капроновая, энантовая и каприловая кислоты плохо растворимы в воде, синтез карбоксилатов проводили с использованием их натриевых солей [20]. Элементный анализ синтезированных карбоксилатов и продуктов их термического разложения проводили в лаборатории органического анализа ЦКП РТУ МИРЭА.

ИК-спектры образцов регистрировали на ИКфурье-спектрометре Equinox 55 фирмы Bruker (Германия) в ЦКП РТУ МИРЭА [19]. Содержание никеля определяли по методике, описанной в [19, 21].

Термоаналитические исследования карбоксилатов никеля проводили на дифференциальном сканирующем калориметре SDT Q600 V20.9 Build 20 со скоростью нагрева 10 град/мин в среде аргона в интервале от 20 до 500°C.

Таблица 4	. Процесс	разложения карбоксилатов	никеля (эндотермичес	кая природа трансформации)
-----------	-----------	--------------------------	----------------------	----------------------------

Карбоксилат	Декарбоксилирование,	Остаток, %			
Карооксилат	°C	Вычислено	Найдено		
Бутират никеля $Ni(C_4H_7O_2)OH \rightarrow Ni + NiO + Ni_3C$	339–383 cp. 361	37.7	34.0		
Валерат никеля Ni(C ₅ H ₉ O ₂)OH \rightarrow Ni + NiO + Ni ₃ C + C	336–395 cp. 366	39.4	37.4		
Капроат никеля Ni $(C_6H_{11}O_2)_2 \rightarrow Ni + NiO$	327–408 cp. 367	37.8	34.5		
Энантат никеля Ni $(C_7H_{13}O_2)_2 \rightarrow Ni + NiO$	340-421 cp. 380	22.9	30.1		
Каприлат никеля Ni($C_8H_{15}O_2$)OH \rightarrow Ni + NiO Ni($C_8H_{15}O_2$) ₂ \rightarrow Ni + NiO	345–408 cp. 377	27.9	22.0		

Композиты никеля получали при температуре $320 \pm 1^{\circ}$ С в течение 9 ч в атмосфере азота.

Синтезированные нанокомпозиты исследовали методами просвечивающей электронной микроскопии (ПЭМ) на электронном микроскопе JEM 100CX (Jeol, Япония) в ЦКП "Коллекция UNIQEM" ФИЦ Биотехнологии РАН, сканирующей электронной микроскопии (СЭМ) на электронном микроскопе JSM-6700F (JEOL, Япония). Рентгенофазовый анализ (РФА) проводили на рентгеновском дифрактометре ДРОН-4.0. Для интерпретации дифракционного спектра использовали программу количественного фазового анализа PHAN% [22].

Для автоматической обработки электронных фотографий использовали программу LabVIEW 8.5.1 [23]. Магнитные свойства нанокомпозитов измеряли посредством вибрационного магнитометра (VSM) M4500 EG&G PARC.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Состав и термический анализ карбоксилатов никеля. Идентификацию синтезированных карбоксилатов проводили с использованием элементного анализа и ИК-спектроскопии. Результаты ИК-спектроскопии (табл. 1) свидетельствуют о наличии в синтезированных соединениях карбоксилат-ионов и координационной воды [24].

Известно, что для монодентатных комплексов характерны значения $\Delta v (v_{as}(COO^{-}) - v_s(COO^{-}))$, заметно большие, чем для ионных соединений (164–171 см⁻¹). В то же время бидентатные соединения характеризуются меньшими значениями Δv [6]. В рассматриваемых карбоксилатах значения Δv составляют 147–154 см⁻¹, что указывает на преимущественно бидентатно-мостиковую координацию карбоксилатной группы с ионом никеля.

Данные элементного анализа подтверждают наличие координационной воды в синтезированных карбоксилатах никеля (табл. 2).

Термическое разложение карбоксилатов никеля характеризуется выделением газообразных продуктов и потерей массы образцов (рис. 1). Это связано с протеканием эндотермических реакций с выделением молекул воды (табл. 3) и эндотермических реакций разложения с выделением углекислого газа и других газообразных продуктов (табл. 4) [24].

Несоответствие потери массы, вычисленной и найденной в случае дегидратации капроата и энантата никеля (табл. 3), объясняется тем, что при температурах $200-230^{\circ}$ С процессу дегидратации сопутствует частичное декарбоксилирование с выделением CO₂. Далее происходят эндотермические реакции декарбоксилирования с разрушением органического аниона (рис. 1). Согласно

Таблица 5.	Данные	РΦА	продуктов	термолиза	насы-
щенных кар	рбоксила	тов н	икеля		

ценных к	арооксилатов	никеля	
Фаза	Структурный тип	мас. %	Параметры решетки, Å
Г	Іродукт термол	иза форм	ииата никеля
Ni	$Fm\overline{3}m$	88.9	<i>a</i> = 3.5247
NiO	$Fm\overline{3}m$	11.1	<i>a</i> = 4.1770
	Продукт термо	олиза аце	і гата никеля
Ni	$Fm\overline{3}m$	35.9	<i>a</i> = 3.5242
NiO	Fm3m	64.1	<i>a</i> = 4.1812
]	Продукт термо	лиза бути	рата никеля
Ni	$Fm\overline{3}m$	80.7	<i>a</i> = 3.5248
NiO	Fm3m	16.1	<i>a</i> = 4.1780
Ni ₃ C	$R\overline{3}c$	3.2	a = 4.6874, c = 13.2364
]	Продукт термо	лиза вале	рата никеля
Ni	$Fm\overline{3}m$	28.7	a = 3.5238
NiO	$R\overline{3}m$	67.8	<i>a</i> = 4.1786
Графит	P63/mmc	3.0	a = 2.463, c = 6.854
Ni ₃ C	$R\overline{3}c$	0.52	a = 4.5910, c = 13.027
]	Продукт термо.	лиза капр	оата никеля
Ni	$Fm\overline{3}m$	16.1	a = 3.5232
NiO	$Fm\overline{3}m$	83.9	<i>a</i> = 4.1849
1	Продукт термо	лиза энан	тата никеля
Ni	$Fm\overline{3}m$	14.4	a = 3.5247
NiO	$Fm\overline{3}m$	85.6	<i>a</i> = 4.1819
Г	Іродукт термол	иза капр	илата никеля
Ni	Fm3m	15.8	a = 3.5244
NiO	$Fm\overline{3}m$	83.6	<i>a</i> = 4.1857
Ni(CO) ₄	Pa3	0.2	a = 10.790
Ni ₃ C	R3c	0.4	a = 4.5873, c = 12.986

Таблица 6. Элементный состав продуктов термического разложения карбоксилатов никеля (ат. %)

Продукт термолиза карбоксилата	С	Н	Ni	0	Выход, %
Формиат никеля	2.07	1.88	51.87	44.16	31.3
Ацетат никеля	12.72	4.47	40.05	42.76	27.3
Бутират никеля	21.48	3.31	43.09	32.12	32.2
Валерат никеля	17.66	6.95	48.05	27.33	35.6
Капроат никеля	9.17	19.21	38.31	33.31	31.5
Энантат никеля	2.41	14.88	31.36	51.35	28.45
Каприлат никеля	11.99	22.29	32.16	33.56	21.32

РОССИЙСКИЕ НАНОТЕХНОЛОГИИ том 17 № 6 2022

Рис. 2. Дифрактограммы композитов, полученных из карбоксилатов никеля: дифрактограмма композита, полученного из бутирата (а), капроата (б) и каприлата никеля (в).

РФА в результате термолиза образуются металлический никель и оксид никеля [19]. Разложение безводных комплексов следует за процессом дегидратации (табл. 4). В большинстве карбоксилатов наблюдается превышение вычисленной массы остатка после термолиза над найденной. Это можно объяснить потерей твердых продуктов термолиза карбоксилатов с газовой фазой.

При росте числа атомов углерода в анионе карбоновой кислоты средняя температура декарбоксилирования увеличивается, что указывает на повышение устойчивости карбоксилатов никеля к термическому разложению (табл. 4).

Микроструктура нанокомпозитов. Изучено термическое разложение полученных карбоксилатов никеля, а также коммерческих формиата и ацетата никеля при постоянной температуре (593 K) тов никеля, представляют собой продукт черного цвета, включающий в себя органическую карбонизованную матрицу, содержащую на основании данных ПЭМ и СЭМ никельсодержащие наночастицы. РФА показывает, что при термическом разложении формиата и бутирата никеля образуется в основном Ni с ГЦК-решеткой, пр. гр. $Fm\overline{3}m$, $a = 3.5243 \pm 0.0004$ Å, с примесью NiO с ГЦК-решеткой, пр. гр. $Fm\overline{3}m$, $a = 4.1810 \pm 0.0025$ Å. В случае термолиза ацетата, валерата, капроата, энантата и каприлата никеля преобладает NiO с ГЦК-решеткой ($Fm\overline{3}m$) с примесью Ni с ГЦК-решеткой ($Fm\overline{3}m$). Также в образцах бутирата, валерата и каприлата обнаружены примеси гексаго-

в течение 9 ч в атмосфере азота. Нанокомпозиты,

синтезированные в ходе термолиза карбоксила-

САПРЫКИН и др.

Продукт термолиза карбоксилата	V _{as(-CH=CH-)}	v _(Ni-O)
Формиат	1589	437
Ацетат	1542	432
Бутират		468
Валерат		439
Капроат	1611	478
Энантат	1554	449
Каприлат	1598	491

Таблица	7. Характеристические	частоты (ν, δ, см ⁻¹) в ИК	-спектрах продуктов	в термолиза ка	рбоксилатов никеля
---------	-----------------------	---------------------------------	--------	---------------------	----------------	--------------------

Примечание. В случае формиата в продукте термолиза также найдены $v_{as(-CH=C=CH-)} = 1097 \text{ см}^{-1}$ и $\delta_{(-CH=C=CH-)} = 867 \text{ см}^{-1}$, а в случае каприлата $v_{as(-CH=C=CH-)} = 1088 \text{ см}^{-1}$.

Таблица 8.	Результаты	обработки	ПЭМ-изображений	продуктов	термолиза	карбоксилатов	никеля
------------	------------	-----------	-----------------	-----------	-----------	---------------	--------

Предшественник нанокомпозита	Количество частиц в исследованном фрагменте	Средний диаметр наночастиц, нм ¹		
Формиат никеля	1329	4.2 ± 0.1		
Ацетат никеля	2632	3.6 ± 0.1		
Бутират никеля	2619	3.6 ± 0.1		
Валерат никеля	3582	3.1 ± 0.1		
Капроат никеля	1808	3.1 ± 0.1		
Энантат никеля	2948	2.9 ± 0.1		
Каприлат никеля	3617	3.3 ± 0.1		

¹ Среднее из двух значений; доверительный интервал рассчитан при уровне значимости $\alpha = 0.1$.

Предшественник нанокомпозита	Диаметр ядра наночастиц Ni, <i>d</i> _{Ni} , нм	Намагниченность насыщения, σ _s , А м ² /кг	Остаточная намагниченность σ _r , А м ² /кг	Коэрцитивная сила <i>H_c</i> , кА/м
Формиат никеля	3.9	50.3	12.8	16.3
Ацетат никеля	2.0	26.6	6.10	18.7
Бутират никеля	3.2	39.9	9.15	17.6
Валерат никеля	1.5	26.4	6.08	20.7
Капроат никеля	1.1	13.6	4.55	25.5
Энантат никеля	1.0	6.5	2.44	29.6
Каприлат никеля	1.2	20.2	5.60	20.8

T. C	D					~	
таолина у	. Результаты	магнитных	исспеловании	пролуктов	термолиза	карооксилато	вникеля
таотпіца >	• 1 00991010101	meet mini mon	песледовании	продуктов	repinouniou	napoonennaio	Dimiterini

нального карбида никеля ($R\overline{3}c$, $a = 4.6219 \pm 0.0642$, $c = 13.083 \pm 0.152$ Å). В случае каприлата присутствует тетракарбонил никеля кубической сингонии ($Pa\overline{3}$, a = 10.790 Å), а в случае валерата — графит (P63/mmc, a = 2.463, c = 6.854 Å) гексагональной сингонии (табл. 5). Дифрактограммы синтезированных продуктов представлены на рис. 2.

Черный цвет композитов объясняется присутствием аморфного углерода [25]. Исследования полученных композитов (табл. 6 и 7) позволили сделать вывод о наличии в синтезированных продуктах карбонизованной полимерной матрицы, включающей в себя фрагменты –CH=C=CH– и –CH=CH–.

При использовании в качестве предшественников бутирата и валерата никеля ИК-спектроскопия не подтвердила наличия полимерной матрицы. В этих случаях никельсодержащие НЧ распределены в углеродной матрице. Обращают на себя внимание рост содержания водорода в полученных композитах с увеличением количества

Рис. 3. СЭМ-изображения продуктов термолиза карбоксилатов никеля: ацетат (а), никеля валерат (б) и каприлат никеля (в).

атомов углерода в анионе карбоновой кислоты и одновременное снижение содержания никеля (табл. 6).

Таким образом, на основании данных ИК-спектроскопии можно сделать вывод о протекании термического разложения карбоксила-

Рис. 4. Стадии обработки ПЭМ-изображения композита, полученного разложением формиата никеля при помощи ПП LabVIEW 8.5.1.

тов никеля, о чем свидетельствуют исчезновение полос поглощения, отвечающих за карбоксилатную группу и воду, а также появление полосы поглощения, соответствующей валентным колебаниям Ni–O в оксиде никеля [26, 27] (табл. 7).

По данным СЭМ выявлено, что полученные нанокомпозиты являются агрегатами размером от 20 до 500 нм (рис. 3).

Этапы обработки результатов ПЭМ нанокомпозита, синтезированного в ходе термолиза формиата никеля, представлены на рис. 4. На первом этапе для отделения изображения агрегата от фона последний помечается черным цветом, в то время как агрегат — красным. На втором этапе сферические НЧ помечаются зеленым цветом.

В табл. 8 представлены средние диаметры НЧ, содержащихся в продуктах, синтезированных в результате термолиза карбоксилатов никеля. На рис. 5 приведено распределение НЧ по размерам.

Из результатов, приведенных в табл. 8 и на рис. 6, следует, что средний диаметр НЧ d_{cp} линейно зависит от числа атомов углерода в анионе карбоновой кислоты n_C (за исключением $n_C = 8$) и описывается уравнением $d_{cp} = 4.23 - 0.194 n_C$ с коэффициентом детерминированности $r^2 = 0.883$.

Проверка коэффициента детерминированности по критерию Стьюдента показала, что с доверительной вероятностью 0.99 данный коэффициент значим. Также расчет критерия Фишера свидетельствует, что с доверительной вероятностью 0.99 между d_{cp} и n_C действительно существует линейная зависимость, и полученное уравнение можно использовать для прогнозирования среднего диаметра частиц нанокомпозитов, образующихся при термическом разложении карбоксилатов никеля с большей молекулярной массой. Проверка коэффициентов полученного уравнения по критерию Стьюдента показала, что с доверительной вероятностью 0.99 оба коэффициента значимы. Найденную зависимость можно объяснить повышением устойчивости карбоксилатов никеля с ростом молекулярной массы карбоновой кислоты. Об этом же свидетельствует упомянутая выше зависимость средней температуры декарбоксилирования карбоксилатов никеля при термолизе от количества атомов углерода в анионе кислотного остатка (табл. 4).

Магнитные свойства нанокомпозитов. Коэрцитивная сила, остаточная намагниченность и намагниченность насыщения синтезированных композитов представлены в табл. 9.

Рис. 5. Распределение частиц по размерам в нанокомпозитах никеля, полученных при термолизе предшественников: а – бутирата, б – валерата, в – капроата никеля. Точки – экспериментальные данные, линии – сглаживающие кривые. Для сглаживания использована линейная фильтрация.

Для ряда магнитных материалов НЧ должны обладать большой коэрцитивной силой [28, 29]. Ранее было отмечено [30, 31], что НЧ, содержащие β-Ni, являются ферромагнитными. Для NiO характерны антиферромагнитные свойства [5]. При уменьшении размера НЧ магнитного материала он становится суперпарамагнитным [32], поэтому наночастицам NiO присущи суперпарамагнитные свойства [5, 19, 33]. В синтезированных нанокомпозитах частицы состоят в основном из Ni и NiO в разных пропорциях (табл. 5). С учетом того, что частицы имеют строение ядро-оболочка [34], был рассчитан диаметр ферромагнитного ядра (d_{Ni}) и построена зависимость коэрцитивной силы от $d_{\rm Ni}$ (рис. 7), которая с достоверностью аппроксимации $R^2 = 0.796$ и коэффициентом корреляции r = 0.892 описывается уравнением

$$H_c = 25.4 d_{\rm Ni}^{-0.35}.$$
 (1)

Установленная зависимость является правой частью зависимости коэрцитивной силы от размера ферромагнитных НЧ [28, 35, 36].

РОССИЙСКИЕ НАНОТЕХНОЛОГИИ том 17 № 6 2022

Полученные данные свидетельствуют, что наивысшая коэрцитивная сила (29.6 кА/м) характерна для композита, синтезированного при тер-

Рис. 6. Зависимость среднего диаметра наночастиц от количества атомов углерода в анионе карбоновой кислоты.

Рис. 7. Зависимость коэрцитивной силы H_c от среднего диаметра ферромагнитного ядра наночастиц.

Рис. 8. Зависимости намагниченности композитов, полученных из карбоксилатов никеля, от величины магнитного поля: $1 - \phi$ ормиат, 2 - бутират, 3 - аце-тат, 4 - каприлат никеля.

Рис. 9. Зависимости намагниченности композитов, полученных из карбоксилатов никеля, от величины магнитного поля: *1* – валерат, *2* – капроат, *3* – энантат никеля.

мическом разложении энантата никеля, что соответствует наименьшему диаметру ферромагнитного ядра НЧ (1.0 нм). Наименьшей коэрцитивной силой (16.3 кА/м) обладает нанокомпозит, синтезированный при термолизе формиата никеля. Это соответствует максимальному из полученных диаметру ферромагнитного ядра НЧ (3.9 нм).

Композит, полученный в результате термолиза формиата никеля, характеризуется высокими значениями намагниченности насыщения – 50.3 А м²/кг и остаточной намагниченности – 12.8 А м²/кг. Этому нанокомпозиту соответствует максимальное из изученных содержание Ni с ГЦК-решеткой – 88.9%, являющегося жестким ферромагнетиком.

В [18] при использовании в качестве прекурсора ненасышенных монокарбоксилатов никеля были получены композиты с максимальным значением намагниченности насыщения 18 А м²/кг, остаточной намагниченности 6.9 А м²/кг и коэрцитивной силы 21.3 кА/м (прекурсор – олеат никеля). При использовании в качестве прекурсора ненасыщенных дикарбоксилатов никеля были получены композиты с максимальным значением намагниченности насыщения 23 А м²/кг (прекурсор – кислый глютаконат никеля), остаточной намагниченности 3.9 А м²/кг и коэрцитивной силы 10.4 кА/м (прекурсор – кислый аллилмалонат никеля) [2]. Таким образом, значения основных магнитных характеристик композитов, полученных при термическом разложении солей никеля насыщенных монокарбоновых кислот, выше, чем при использовании в качестве прекурсора солей ненасыщенных моно- и дикарбоновых кислот.

На рис. 8 и 9 представлены зависимости намагниченности нанокомпозитов, синтезированных из карбоксилатов никеля, от величины магнитного поля.

ЗАКЛЮЧЕНИЕ

Синтезированы и охарактеризованы карбоксилаты никеля(II) с анионами насыщенных монокарбоновых кислот с числом атомов углерода 4-8. Установлено, что количество кристаллогидратной воды варьируется от 0.5 для бутирата, валерата и каприлата никеля до 1 для капроата и энантата. В результате термолиза синтезированных карбоксилатов, а также коммерческих формиата и ацетата при температуре 593 К в течение 9 ч в атмосфере азота получены нанокомпозиты, включающие в свой состав никельсодержащие НЧ, в основном Ni и NiO с ГЦК-решеткой, пр. гр. $Fm\overline{3}m$ со средним диаметром 2.9–4.2 нм, и карбонизованную полимерную матрицу, включающую в себя фрагменты -CH=C=CH-и -CH=CH-. При использовании в качестве предшественников бутирата и валерата никеля никельсодержащие НЧ распределены в углеродной матрице. Установлено, средний диаметр НЧ d_{cp} линейно зависит от числа атомов углерода в анионе карбоновой кислоты $n_{\rm C}$: с увеличением $n_{\rm C} d_{\rm cp}$ уменьшается. Также при росте количества атомов углерода в анионе карбоновой кислоты средняя температура декарбоксилирования увеличивается. Рассчитан диаметр ферромагнитного ядра НЧ (d_{Ni}) и построена зависимость коэрцитивной силы (H_c) от d_{Ni} . Установлено, что с ростом d_{Ni} H_c убывает. Выявлено, что композит, полученный в результате термолиза формиата никеля, характеризуется высокими значениями намагниченности насыщения — 50.3 А м²/кг и остаточной намагниченности – 12.8 А м²/кг. Этому нанокомпозиту соответствует максимальное из изученных содержание Ni с ГЦК-решеткой — 88.9%. Установлено, что значения основных магнитных характеристик композитов, полученных при термическом разложении солей никеля насыщенных монокарбоновых кислот, выше, чем при использовании в качестве прекурсора солей ненасыщенных монои дикарбоновых кислот.

Авторы выражают благодарность ЦКП РТУ МИРЭА, выполнившему элементный анализ синтезированных карбоксилатов и продуктов их термического разложения и регистрацию ИКспектров образцов при поддержке Минобрнауки России, а также ЦКП "Коллекция UNIQEM" ФИЦ биотехнологии РАН, исследовавшему синтезированные нанокомпозиты методами ПЭМ.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 19-03-00237).

СПИСОК ЛИТЕРАТУРЫ

- 1. Металлополимеры "ЛЕО". М.: "ЗАО Металлополимерные материалы ЛЕО", 2013. 33 с.
- Мусатова В.Ю., Семенов С.А., Дробот Д.В. и др. // Журн. неорган. химии. 2016. Т. 61. № 9. С. 1168. https://doi.org/10.7868/S0044457X16090166
- 3. *Карпушенкова Л.С., Кабо Г.Я., Блохин А.В.* // Тонк. хим. технол. 2020. Т. 15. № 2. С. 38. https://doi.org/10.32362/2410-6593-2020-15-2-38-46
- Помогайло А.Д., Джардималиева Г.И. Мономерные и полимерные карбоксилаты металлов. М.: Физматлит, 2009. 400 с.
- Mahendraprabhu K., Elumalai P. // J. Sol-Gel Sci. Technol. 2015. V. 73. P. 428. https://doi.org/10.1007/s10971-014-3554-7
- Schelter M., Zosel J., Oelßnera W. et al. // Sens. Actuators. B. Chem. 2013. V. 187. P. 209. https://doi.org/10.1016/j.snb.2012.10.111
- Lee I., Choi S.J., Park K.M. et al. // Sens. Actuators. B. Chem. 2014. V. 197. P. 300. https://doi.org/10.1016/j.snb.2014.02.043
- 8. Logutenko O.A., Titkov A.I., Yukhin Yu.M., Lyakhov N.Z. // Proceedings of IFOST-2016. 11th International Forum

on Strategic Technology IFOST-2016. 2016. P. 220. https://doi.org/10.1109/IFOST.2016.7884090

- Zhitnevy N., Lunin B.S., Tveritinova E.A., Lunin V.V. // Mendeleev Commun. 2018. V. 28. № 2. P. 150. https://doi.org/10.1016/j.mencom.2018.03.013
- 10. *Dharmaraj N., Prabu P., Nagarajan S. et al.* // Mater. Sci. Eng. B. 2006. V. 128. № 1–3. P. 111. https://doi.org/10.1016/j.mseb.2005.11.021
- 11. *Ruiz-Perez C., Rodrýguez-Martýn Y., Hernandez-Molina M. et al.* // Polyhedron. 2003. V. 22. P. 22. P. 2111. https://doi.org/10.1016/S0277-5387(03)00303-6
- 12. Шилов Г.В., Ованесян Н.С., Санина Н.А. // Координац. химия. 2001. Т. 27. № 8. С. 605.
- 13. *Кискин М.А., Еременко И.Л. //* Успехи химии. 2006. Т. 75. № 7. С. 627.
- Кокшарова Т.В., Мандзий Т.В., Стоянова И.В. и др. // Журн. общей химии. 2016. Т. 86. Вып. 10. С. 1714.
- El-Sayed M.Y., El-Megharbel S.M. // Life Sci. J. 2012.
 V. 9. № 3. P. 1143. https://doi.org/10.7537/marslsj090312.159
- Mauchauffee S., Meux E., Schneider M. // Ind. Eng. Chem. Res. 2008. V. 47. № 20. P. 7533. https://doi.org/10.1021/ie071595a
- Fereshteh Z., Salavati-Niasari M., Saberyan K. et al. // J. Clust. Sci. 2012. V. 23. P. 577. https://doi.org/10.1007/s10876-012-0477-8
- Ляхов Н.З., Юхин Ю.М., Тухтаев Р.К. и др. // Химия в интересах устойчивого развития. 2014. № 4. С. 409.
- Пронин А.С., Семенов С.А., Дробот Д.В. и др. // Журн. неорган. химии. 2020. Т. 65. № 8. С. 1061. https://doi.org/10.31857/S0044457X20080139
- 20. Юданова Л.И., Логвиненко В.А., Шелудякова Л.А. и др. // Журн. неорган. химии. 2008. Т. 53. № 9. С. 1559.
- Шварценбах Г., Флашка Г. Комплексонометрическое титрование / Пер. с нем. Вайнштейн Ю.И. М.: Химия, 1970. 360 с.
- 22. Шелехов Е.В., Свиридова Т.А. // Металловедение и термическая обработка металлов. 2000. № 8. С. 16.
- Визильтер Ю.В., Желтов С.Ю., Князь В.А. и др. Обработка и анализ цифровых изображений с примерами на LabVIEW IMAQ Vision. М.: ДМК Пресс, 2009. 464 с.
- 24. *Семенов С.А., Пронин А.С., Дробот Д.В. и др.* // Российские нанотехнологии. 2019. Т. 14. № 11–12. С. 28.

https://doi.org/10.21517/1992-7223-2019-11-12-28-34

- 25. Юданова Л.И., Логвиненко В.А., Юданов Н.Ф. и др. // Неорган. материалы. 2013. Т. 49. № 10. С. 1138. https://doi.org/10.7868/S0002337X1310014X
- Taylor T.J., Dollimore D., Gamlen G.A. et al. // Thermochim. Acta. 1986. V. 101. P. 291. https://doi.org/10.1016/0040-6031(86)80060-0
- 27. Maneva M., Petroff N., Pankova M. // J. Therm. Anal. 1990. V. 36. № 2. P. 577.
- Губин С.П., Кокшаров Ю.А., Хомутов Г.Б., Юрков Г.Ю. // Успехи химии. 2005. Т. 74. № 6. С. 539.

РОССИЙСКИЕ НАНОТЕХНОЛОГИИ том 17 № 6 2022

764

- 29. O'Grady K., Laidler H. // J. Magn. Magn. Mater. 1999. V. 200. P. 616. https://doi.org/10.1016/S0304-8853(99)00499-0
- 30. Багмут А.Г., Шипкова И.Г., Жучков В.А. // Журн. техн. физики. 2011. Т. 81. Вып. 4. С. 102.
- Yoon Tae Jeon, Je Yong Moon, Gang Ho Lee et al. // J. Phys. Chem. B. 2006. V. 110. P. 1187. https://doi.org/10.1021/jp054608b
- Proenca M.P., Sousa C.T., Pereira A.M. et al. // Phys. Chem. Chem. Phys. 2011. V. 13. P. 9561. https://doi.org/10.1039/C1CP00036E
- Thota S., Kumar J. // J. Phys. Chem. Solids. 2007. V. 68. P. 1951. https://doi.org/10.1016/j.jpcs.2007.06.010
- 34. *Помогайло А.Д., Джардималиева Г.И.* Металлополимерные гибридные нанокомпозиты. М.: Наука, 2015. 494 с.
- Martin J.I., Nogues J., Liu K. et al. // J. Magn. Magn. Mater. 2003. V. 256. P. 449. https://doi.org/10.1016/S0304-8853(02)00898-3
- Sowka E., Leonowicz M., Kazmierczak J. et al. // Physica. B 2006. V. 384. P. 282. https://doi.org/10.1016/j.physb.2006.06.011