= ПОЛИМЕРНЫЕ, БИООРГАНИЧЕСКИЕ И ГИБРИДНЫЕ НАНОМАТЕРИАЛЫ

УДК 582.263; 661.72; 547.458; 546.824-31

ПОВЫШЕНИЕ ПРОДУКТИВНОСТИ МИКРОВОДОРОСЛЕЙ Chlorella vulgaris ЗА СЧЕТ ИСПОЛЬЗОВАНИЯ ГИДРОГЕЛЯ С НАНОЧАСТИЦАМИ

© 2023 г. К. В. Горин^{1,*}, В. М. Пожидаев¹, С. А. Тихомиров¹, О. А. Кондратьев¹, М. Г. Петрова^{1,2}, Р. Г. Василов¹

¹Национальный исследовательский центр "Курчатовский институт", Москва, Россия ²Московский политехнический университет, Москва, Россия

**E-mail: gkvbio@gmail.com* Поступила в редакцию 05.10.2022 г. После доработки 05.10.2022 г. Принята к публикации 17.10.2022 г.

Фототрофные микроорганизмы считаются одним из перспективных источников возобновляемого сырья, которое может использоваться для получения энергии и различных ценных продуктов. Проведены исследования по культивированию микроводоросли *Chlorella vulgaris* GKV 1 в фотобиореакторах горизонтального типа с использованием гидрогеля с наночастицами диоксида титана размером 84 ± 20 нм и адаптивного освещения. Продуктивность микроводоросли *C. vulgaris* с использованием гидрогеля с наночастицами диоксида титана размером 84 ± 20 нм и адаптивного освещения. Продуктивность микроводоросли *C. vulgaris* с использованием гидрогеля с наночастицами диоксида титана размером 84 ± 20 нм и адаптивного освещения. Продуктивность микроводоросли *C. vulgaris* с использованием гидрогеля с наночастицами и адаптивного освещения превышает контроль на 53.4%. Проведен анализ липидов полученной биомассы на качественный состав метиловых эфиров жирных кислот. Полимерный материал исследован на Курчатовском специализированном источнике синхротронного излучения ("КИСИ-Курчатов").

DOI: 10.56304/S1992722323010028

введение

Развитие глобальной биоэкономики создает потребность в новых видах сырья и процессах, направленных на получение топлива и сырья. Использование микроводорослей может играть значительную роль в этих процессах. Попытки повысить ценность биомассы направлены на увеличение содержания липидов и углеводов, как предпочтительные исходные компоненты для конверсии в топливо и другие более ценные продукты. В последнее время внимание сосредоточено на получении микроводорослей с повышенным содержанием белка [1].

Отметим, что фототрофные микроорганизмы широко используются в различных технологиях: по очистке сточных вод, обессоливанию воды, утилизации дымовых газов, образующихся при сжигании ископаемого топлива [2].

При проектировании фотобиореакторов (ФБР) решаются такие задачи, как перемешивание и массоперенос в растущей культуре, создание необходимых температуры и pH, но доминирующим фактором по-прежнему остаются проникающая способность и распределение света. Естественный солнечный свет часто используют для уменьшения себестоимости выращивания, однако падающий свет неизбежно изменяется в зависимости от погоды, суточного цикла и времени года. Плотность светового потока фотонов солнечного света составляет более 2000 мкмоль м²·с⁻¹. Однако оксигенные фотомикроорганизмы могут достичь теоретически максимальной эффективности преобразования солнечной энергии в 8-10%. Также важным параметром являются спектральные характеристики света, так как только солнечная радиация в диапазоне 400-700 нм — фотосинтетически активная радиация (**ФАР**) — может использоваться, составляя 50% от всего солнечного света. Излучение, выходящее за пределы **ФАР**, является основной причиной повышения температуры при выращивании [3].

Кроме того, УФ-диапазон солнечного света смертелен для клеток. Распределение интенсивности света неравномерно внутри ФБР из-за поглощения и рассеяния в растущей культуре [4], а ослабление излучения зависит от длины волны света, концентрации клеток, геометрии ФБР и проникающей способности. В некоторых случаях свет может проникать только на несколько миллиметров, когда плотность культуры микроводорослей достигает более 10 г \cdot л⁻¹ в ФБР [3].

В лабораторной практике для культивирования фототрофных микроорганизмов используют ФБР различных конструкций.

Цилиндрические колонные ФБР бывают с барботажем и без. Обычно неподвижные распы-

лители различной конструкции (в виде кольца или дисков, снабженных отверстиями и форсунками или с равномерно расположенными диффузорами из кремнезема, которые работают как пористые твердые тела) для газовой фазы расположены в нижней части ФБР. Расход подаваемого газа составляет от 0.1 до 1.0 объема газа на объем культивируемой среды в минуту. Диаметр таких систем для культивирования, как правило, составляет от 7 до 24 см, а для освещения используют флуоресцентные или светодиодные лампы.

Плоские ФБР – это распространенный тип реакторов для исследования микроводорослей. Они состоят из двух параллельных пластин с небольшим расстоянием между ними, большой поверхности для светового излучения и поэтому обладают высокой эффективностью использования света, а также позволяют избежать "темновых зон". При разных подходах плоские ФБР размещают вертикально, горизонтально или под определенным углом. Подобно цилиндрическим ФБР с барботажем плоские ФБР могут эксплуатироваться как эрлифтные ФБР с разделенными зонами, одна из которых аэрируемая, подаваемый воздух может распределяться через барботеры, трубки или мембраны для перемешивания растущей культуры и подачи воздушной смеси с диоксидом углерода. В ФБР такого типа часто используются различные перегородки для улучшения перемешивания и распределения света, светодиодное освешение, а также натриевые лампы, люминесцентные, галогенные, неоновые лампы. Освещение может быть как с одной, так и с двух сторон, в некоторых конструкциях второй источник света заменяют на зеркальную поверхность. Освещенность в ФБР такого типа поддерживается на уровне от 80 до 400 мкмоль $M^2 \cdot c^{-1}$ [5].

В [6] для увеличения массообмена и исключения застойных зон и осаждения биомассы микроводорослей представлен инновационный лабораторный плоский ФБР вертикального эирлифтного типа с уникальной асимметричной U-образной формой объемом 7.2 л. Его эффективность была подтверждена культивированием *Chlorella sorokiniana* ATCC 22521 — в течение пяти суток выход по оптической плотности при 750 нм составил пять единиц.

Лабораторные ФБР с мешалкой изготавливают из стекла с освещением с внешней стороны. Иногда дополнительный источник освещения помещают внутрь ФБР. Также нередко в таких типах ФБР для освещения используют оптическое волокно, погруженное внутрь растущей культуры.

Трубчатые ФБР состоят из двух частей, соединенных между собой насосами: "солнечного ресивера" и эрлифтной системы. Большая часть фотосинтетических реакций происходит в "солнечном ресивере", состоящем из прозрачных труб из полимерного материала или стекла различного диаметра и длины, установленных в различных положениях, для обеспечения минимизации занимаемой площади. Вторая часть — "пузырьковая колонна" служит для интенсификации газового обмена между растущей культурой и атмосферой для более полного удаления накопившегося в процессе роста кислорода. Как правило, диоксид углерода подается в конце "пузырьковой колонны"—начале "солнечного ресивера" для увеличения времени его пребывания в системе. Трубчатые ФБР лабораторного масштаба также могут быть упрощенной версии — иметь только часть солнечного приемника с упрощенной насосной системой, что снижает затраты.

Другим типом ФБР является использование для их изготовления полимерных материалов, из которых можно получать ФБР различной конструкции: в виде мешков, подвешивающихся вертикально, под углом, размещающихся непосредственно на поверхности моря для перемешивания с помощью волнового движения. Но, как правило, такие системы имеют недостаточное перемешивание, что может привести к снижению выхода.

Тонкослойные ФБР каскадного типа представляют собой открытые ФБР, в которых растущая суспензия микроводорослей направляется вниз самотеком под действием силы тяжести по каналам, расположенным под определенным регулируемым углом. Суспензия собирается в рециркуляционную емкость и насосом заново подается наверх канала. Регуляция объемного расхода и угла установки каналов позволяет регулировать толщину слоя растущей культуры, который составляет 0.5-1 см. ФБР такого типа могут иметь один или несколько каналов и располагаются, как правило, в теплицах [5].

Для увеличения поглощения диоксида углерода разрабатываются лабораторные ФБР с мембранной системой [7].

В последнее время стали культивировать микроводоросли, иммобилизованные в гидрогелях, что позволяет сократить потребление воды во время выращивания и обеспечить потенциальный физический барьер против бактериальной микрофлоры. Также используется 3D-биопечать для создания различных гидрогелевых структур для выращивания ряда штаммов микроводорослей. Для оптимизации распространения света в гидрогелях их выполняют в форме кораллов. Однако выращивание микроводорослей в системах на основе гидрогелей все еще требует развития в отношении газового обмена и метаболитов, необходимых для жизнедеятельности микроводорослей [8].

В [9] было показано положительное влияние гидрогелей на рост микроводорослей с наночастицами оксида алюминия и оксида циркония при культивировании в колбах, тогда увеличение продуктивности достигло 20%. В настоящей работе для увеличения продуктивности микроводоросли *Chlorella vulgaris* в плоском ФБР горизонтального типа использовали гидрогель с наночастицами диоксида титана, а также адаптивную систему освещения.

МАТЕРИАЛЫ И МЕТОДЫ

Материалы. В работе использовали йота-каррагинан (Special Ingredients, Великобритания), поливиниловый спирт (**ПВС**) 22000 г/моль (Авилон-КомпаниХим, Россия), диоксид титана чистотой 99.5% (BDT, Россия).

Культура и условия выращивания. В качестве культуры выбран штамм микроводоросли Chlorella vulgaris GKV 1 из коллекции НИЦ "Курчатовский институт", широко используемый для различных исследовательских задач.

Культивирование осуществляли в горизонтальном плоском ФБР общим объемом 5 л, выполненном из прозрачного органического стекла толщиной 5 мм. Объем культивируемой среды вместе с посевным материалом составлял 4.3 л. Перемешивание осуществлялось за счет прокачивания среды с помощью водяного насоса с расходом 1000 мл/мин. Температура при культивировании – $24 \pm 1^{\circ}$ С. В качестве питательной среды использовали модифицированную среду Bold's Basal Media (BBM) следующего состава г/л: $KNO_3 - 1.25, KH_2PO_4 - 1.25, MgSO_4 \cdot 7H_2O - 1,$ CaCl₂ – 0.0835. Добавляли 1 мл стокового раствора микроэлементов. Его состав по Пфеннигу мг/л: $EDTA - 5000, FeSO_4 \cdot 7H_2O - 2000, ZnSO_4 \cdot 7H_2O -$ 100, $MnCl_2 - 30$, $H_3BO_3 - 300$, $CaCl_2 \cdot 6H_2O - 200$, $CuCl_2 - 10$, $NiCl_2 \cdot 2H_2O - 20$, $Na_2MoO_4 \cdot 2H_2O - 20$ [9]. рН питательной среды доводили до 7.0. В качестве источника освешения использовали флуоресцентную лампу мощностью 108 Вт. Ее устанавливали на таком расстоянии, чтобы обеспечивался световой поток в 100 мкмоль фотонов м⁻² · c⁻¹ на освещаемой поверхности ФБР. Барботаж атмосферным воздухом осуществлялся с помощью компрессора с расходом 250 мл/мин. Для первого ФБР (с гелем) организовали адаптивное освещение, внизу ФБР был помещен измеритель ФАР Almemo 2450 с датчиком FLA 623 PS (Ahlborn, Германия), по которому осуществляли досветку до необходимого уровня освещенности растущей культуры с помощью светодиодов (smd 2835 IP 23).

При культивировании измеряли pH с помощью pH-метра Seven Compact (Mettler Toledo, Швейцария) и оптическую плотность при 750 нм на спектрофотометре Varioscan LUX (Thermo Fisher Scientific, США).

Приготовление гидрогеля. В качестве оптического материала синтезировали гель с содержанием диоксида титана (TiO₂) 0.25% (с кристаллической структурой рутил, размер частиц 84 ± 20 нм) по модифицированной методике [10]: ПВС (2.5%) и каррагинан (2.5%) гомогенизировали при 70°С и перемешивали на магнитной мешалке 400 об./мин 240 и 45 мин соответственно, затем смешивали на магнитной мешалке при 400 об./мин 60 мин, добавляли диоксид титана и гомогенизировали на магнитной мешалке при 400 об./мин 60 мин, затем заливали в чистую плоскую емкость для образования плоского геля, остужали при комнатной температуре, затем выполняли четыре шикла замораживание/оттаивание -24/+24°С в течение четырех суток, затем сушили при 35°С двое суток. Из полученного геля вырезали квадрат со стороной 200 мм, толщиной 5 мм и помещали в первый ФБР.

Определение плавучести гидрогеля. Плавучесть гидрогелей определяли путем помещения их в цилиндр на 100 мл со средой для культивирования микроводорослей и измерения глубины по-гружения. Измерения начинали проводить через 100 мин после помещения гидрогелей в цилиндр, давая им набухнуть.

Анализ состава метиловых эфиров жирных кислот (МЭЖК). Для анализа содержания МЭЖК необходима лиофильно высушенная биомасса. Сбор биомассы проводили центрифугированием при 7500 об./мин (центрифуга Awel MF 20, ротор AMF 20–8 RFID, Франция) в течение 10 мин при 20°С, дважды промывали дистиллированной водой для удаления адсорбированных солей. Собранную влажную биомассу лиофильно сушили на лиофильной сушилке FreeZone 2.5 (Labconco, США) в течение 12 ч.

Получение МЭЖК проводили прямым метанолизом согласно методу [11].

Анализ МЭЖК проводили методом газовой хроматографии на газовом хроматографе Bruker 430 GC (Varian Inc. США), снабженном пламенно-ионизационным детектором и кварцевой капиллярной колонкой Select TM Biodiesel (30 м ×

Таблица 1. Результаты измерений плавучести гидрогелей

Образец гидрогеля	Результаты измерения глубины погружения гидрогелей, см		
	100 мин	200 мин	300 мин
Каррагенан + ПВС + частицы ТіО ₂	0.2	0.3	0.3
Каррагенан + ПВС	0.2	0.3	0.3

Рис. 1. Микрофотографии гидрогеля в проходящем свете до и после культивирования, увеличение ×400: а – приготовленный высушенный гель, б – набухший гель до культивирования, в – гель после культивирования, г – высушенный гель после культивирования.

× 0.32 мм × 0.25 мкм). Количество вводимой пробы – 1 мкл [12].

МЭЖК идентифицировали по относительному времени удерживания на колонке компонентов смеси в сравнении со стандартом, количественное содержание индивидуальных жирных кислот (ЖК) определяли методом нормализации площадей.

Проведение рентгеновских исследований. Измерения проводили на Курчатовском специализи-

Рис. 2. Изменение концентрации биомассы *C. vulgaris* в фотобиореакторах со временем при культивировании: *I* – с гелем, *2* – без геля.

рованном источнике синхротронного излучения ("КИСИ-Курчатов"). Использовали методику записи кривых дифракционного отражения на

Рис. 3. Изменение выходного напряжения с датчика фотосинтетически активной радиации и управляющего напряжения на диоды при культивировании *C. vulgaris* в фотобиореакторе: *1* – выходное напряжение с ФАР-датчика, *2* – управляющее напряжение на диодах.

Рис. 4. Рост культуры в фотобиореакторах.

просвет. Длина волны используемого синхротронного излучения составляла 1.5 Å.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Плавучесть гидрогеля является одним из основных факторов, определяющих его положение в ФБР, результаты данного параметра представлены в табл. 1.

В ходе исследования выявлено, что гидрогель как без частиц, так и с частицами диоксида титана погружается на небольшую глубину до 0.3 см. При этом наличие наночастиц в геле концентрацией 0.25% не способствовало увеличению глубины погружения гидрогеля. Гидрогели изучали в высушенном и набухшем состоянии (рис. 1).

Продуктивность *C. vulgaris* при культивировании с использованием гидрогеля и адаптивного освещения была выше на 53.4% по сравнению с контролем (рис. 2).

Жирная кислота	Содержание ЖК, % (от суммы ЖК)	
	С гелем	Без геля
Пентадеценовая кислота (15:1)	15.34	14.15
Пальмитиновая кислота (16:0)	14.20	12.29
Пальмитолеиновая кислота (16:1)	4.86	5.83
Гептадеценовая кислота (17:1)	11.79	12.82
Стеариновая кислота (18:0)	11.23	10.03
Олеиновая кислота (18:1)	4.38	5.54
Линолевая кислота (18:2)	22.64	23.24
Линоленовая кислота (18:3)	15.56	16.10
Сумма насыщенных ЖК	25.43	22.32
Сумма ненасыщенных ЖК	74.57	77.68
Сумма мононенасыщенных ЖК	36.37	38.34
Сумма полиненасышенных ЖК	38.20	39.34

Талбица 2. Состав МЭЖК биомассы C. vulgaris

РОССИЙСКИЕ НАНОТЕХНОЛОГИИ том 18 № 1 2023

Это можно объяснить несколькими факторами: применением адаптивного освещения, позволяющего поддерживать необходимый уровень освещенности независимо от плотности культуры (рис. 3), и оптического материала (гидрогеля) с высоким альбедо, что создает еще две отражающих поверхности в толще растущей культуры, что в совокупности увеличивает освещенность (рис. 4).

Согласно приведенным на рис. 3 данным с ростом плотности растущей суспензии микроводорослей уменьшается проникающая способность света, что приводит к возрастанию управляющего напряжения на диодах и, соответственно, увеличению интенсивности освещения от светодиодов, расположенных в нижней камере ФБР.

Отметим, что при культивировании с гидрогелем он выступает в роли "механической мешалки", препятствующей образованию "застойных зон" и оседанию клеток, наблюдаемых в центре и углах ФБР без геля, и способствует лучшему перемешиванию растущей культуры в ФБР.

Изменение pH было не сильным, хотя в случае с гидрогелем, защелачивание выше из-за более интенсивного роста культуры (рис. 5).

В составе липидов выявлены восемь ЖК (табл. 2). Ненасыщенные ЖК составляли более 70% как при культивировании с гидрогелем, так и в его отсутствие, причем почти 40% составляли полиненасыщенные жирные кислоты (ПНЖК): линолевая и линоленовая. Интересен тот факт, что содержания как отдельных ЖК, так и насыщенных и ненасыщенных ЖК в обоих вариантах культивирования различаются незначительно.

В европейских стандартах на биодизель прописаны четкие ограничения на содержание ПНЖК, доля которых не должна превышать 12% для линоленовой кислоты, 1% для четырех и более двойных связей. В проведенном исследовании установлено, что содержание линоленовой кислоты в количестве ЖК в липидах биомассы *C. vulgaris* было на уровне 16%.

На рис. 6 виден характерный дифракционный пик при 1.4 $Å^{-1}$ для гидрогеля, состоящего из каррагинана, ПВС и наночастиц TiO₂ [5].

Рис. 5. Изменение рН в фотобиореакторах со временем при культивировании: *1* – с гелем, *2* – без геля.

Рис. 6. Дифракционная кривая сухого гидрогеля с наночастицами.

ЗАКЛЮЧЕНИЕ

Получены данные о возможности эффективного использования гидрогеля на основе каррагинана, ПВС и наночастиц диоксида титана и адаптивного освещения для увеличения продуктивности микроводоросли *C. vulgaris*, которая повысилась более чем на 50% по сравнению с контролем. Установлено, что содержание наночастиц диоксида титана в гидрогеле в количестве 0.25% не влияет на его плавучесть. Присутствие гидрогеля в культуральной среде при выращивании также дает положительный эффект с точки зрения создания более подходящего гидродинамического режима в фотобиореакторе. Состав ЖК биомассы, полученной при культивировании с гидрогелем, и контроля различался незначительно. С помощью специализированного источника синхротронного излучения подтверждено присутствие наночастиц диоксида титана в гидрогеле.

Работа выполнена при финансовой поддержке Министерства науки и высшего образования Российской Федерации в рамках соглашения № 075-15-2021-1357.

СПИСОК ЛИТЕРАТУРЫ

- Wiatrowski M., Klein B., Davis R. et al. // Biofuel. Bioprod. 2022. P. 1. https://doi.org/10.1186/s13068-021-02098-3
- Gotovtsev P., Komova A., Gorin K. et al. // Energy Technol. Assessm. 2019. V. 31. P. 132. https://doi.org/10.1016/J.SETA.2018.12.0
- Huang Q., Jiang F., Wang L. et al. // Engineer. 2017. V. 3. P. 318.
 - https://doi.org/10.1016/J.ENG.2017.03.020
- Quan Y., Pehkonen S., Ray M. // Ind. Eng. Chem. Res. 2004. V. 43. P. 948. https://doi.org/10.1021/ie0304210
- Benner P., Meier L., Pfeffer A. et al. // Bioproc. Biosyst. Eng. 2022. V. 45. P. 791. https://doi.org/10.1007/s00449-022-02711-1
- Fuchs T., Arnold N., Garbe D. et al. // Front. Bioeng. Biotechnol. 2021. V. 9. P. 1. https://doi.org/10.3389/fbioe.2021.697354
- Senatore V., Buonerba A., Zarra T. et al. // Chemosph. 2021. V. 273. P. 129682. https://doi.org/10.1016/j.chemosphere.2021.129682
- Martin N., Bernat T., Dinasquet J. et al. // J. Appl. Phycol. 2021. P. 2805. https://doi.org/10.1007/s10811-021-02528-7
- Gorin K., Badranova G., Gotovtsev P et al. // IOP Conf. Ser. Mater. Sci. Eng. 2018. P. 293. https://doi.org/10.1088/1757-899X/292/1/012051
- Badranova G., Gotovtsev P., Zubavichus Y. et al. // J. Mol. Liq. 2016. V. 223. P. 16. https://doi.org/10.1016/j.molliq.2016.07.135
- 11. *Liu J., Liu Y., Wang H. et al.* // Technol. 2015. V. 176. P. 284.
- https://doi.org/10.1016/j.biortech.2014.10.094
- 12. Сергеева Я.Э., Мостова Е.Б., Горин К.В. и др. // Биотехнология. 2017. Т. 33. № 1. С. 53.