НАНОБИОМЕДИЦИНА И НАНОФАРМАЦЕВТИКА

УДК 621.039+ 544.582.22

ИСПОЛЬЗОВАНИЕ УСКОРЕННЫХ ИОНОВ ГЕЛИЯ ДЛЯ ПРОИЗВОДСТВА РАДИОНУКЛИДОВ: НУЖНЫ ЛИ НАМ ПУЧКИ АЛЬФА-ЧАСТИЦ?

© 2023 г. Р. А. Алиев^{1,*}, А. Н. Моисеева¹, К. А. Сергунова¹, Е. С. Кормазева¹

¹Национальный исследовательский центр "Курчатовский институт", Москва, Россия *E-mail: Aliev_RA@nrcki.ru Поступила в релакцию 14.06.2023 г.

Поступила в редакцию 14.06.2023 г. После доработки 30.06.2023 г. Принята к публикации 30.06.2023 г.

Проведен анализ использования пучков α-частиц для производства радионуклидов. Рассмотрены преимущества и недостатки этого подхода в сравнении с традиционными пучками протонов и дейтронов. Показано, что в некоторых случаях ускоренные пучки ионов гелия являются единственным способом наработки важных медицинских радионуклидов, а в ряде случаев конкурентоспособны с пучками ионов водорода.

DOI: 10.56304/S1992722323040027

введение

Первая ядерная реакция была осуществлена в 1919 г. Э. Резерфордом [1] с помощью пучка α-частиц. Пучки α-частиц использовались и в других экспериментах, заложивших основу ядерной физики — они дали возможность постичь структуру атома, обнаружить нейтрон и провести первое в истории получение искусственного радионуклида [2]. Реакции под действием заряженных частиц и сейчас являются важным способом получения радионуклидов, в первую очередь для ядерной медицины. Однако постепенно пучки α-частиц были в значительной мере вытеснены протонами и дейтронами. Вновь создаваемые циклотроны, как правило, не имеют опции ускорения α-частиц. Это неудивительно – несмотря на сопоставимые сечения реакций под действием протонов и α-частиц, пробег последних существенно меньше, что в итоге приводит к значительно более низкому выходу продукта на толстой мишени. Однако более детальный анализ проблемы показывает, что в отдельных случаях пучки α-частиц являются более эффективным способом получения радиоизотопов, чем протонов и дейтронов, а иногда и единственной возможностью. Настоящая работа посвящена анализу тенденций и перспектив применения пучков ионов гелия.

СРАВНИТЕЛЬНЫЙ АНАЛИЗ ВЫХОДОВ РЕАКЦИЙ (α, xn) VS (p, xn) И (d, xn)

Для получения радионуклидов обычно используют реакции под действием α-частиц, сопровождающиеся отщеплением одного или нескольких нуклонов, протекающие в диапазоне энергий, соответствующем десяткам МэВ. Как правило, один и тот же радионуклид может быть получен с использованием протонов, дейтронов или α-частиц, поэтому уместно провести сравнение методов. В настоящей работе в качестве примера выбран тулий-167. Это один из перспективных радионуклидов для медицины. Он может быть получен по разным реакциям (табл. 1). Все результаты, приведенные в табл. 1, представляют собой результаты моделирования. Сечения были взяты из библиотеки TENDL-2021 [3], на их основе рассчитаны выходы на толстой мишени с помощью программы RYC [4]. Также в расчетах использовали пробеги, рассчитанные с помощью SRIM-2008.04 [5]. Диапазон энергий выбирали по следующему принципу: минимальной принимали энергию, ближайшую к порогу реакции с отличным от нуля сечением, а максимальная энергия соответствовала величине сечения, равной ~10% от максимального сечения реакции. На рис. 1 приведены моделированные сечения, а на рис. 2 – выходы на толстой мишени для указанных реакций.

В рассмотренном случае одна из наиболее распространенных реакций (α , 2*n*) сопоставлена с различными реакциями под действием протонов, дейтронов и α -частиц. Видно, что путь (α , 2*n*) существенно уступает по выходу таким реакциям, как (*d*, 3*n*), (*d*, 2*n*), (*p*, 2*n*), и сопоставим с (*p*, *n*) и (*d*, *n*).

Поскольку ядро ³Не является слабосвязанным (энергия связи на нуклон для ³Не равна 2.573 МэВ против 7.074 для ⁴Не), механизмы ядерных реак-

ИСПОЛЬЗОВАНИЕ УСКОРЕННЫХ ИОНОВ ГЕЛИЯ

Реакция	Сечение σ_{max} , мб	Энергия σ _{max} , МэВ	Диапазон энергий, МэВ	Толщина мишени, мкм	Выход, МБк/мкАч
$^{167}\mathrm{Er}(p,n)$	362	11	$15 \rightarrow 8$	427	5.398
168 Er($p, 2n$)	1027	19	$28 \rightarrow 10$	1565	53.73
$^{166}\mathrm{Er}(d,n)$	1010	10	$24 \rightarrow 6$	824	2.362
$^{167}{\rm Er}(d, 2n)$	954	14	$30 \rightarrow 7$	1217	31.1
$^{168}{\rm Er}(d, 3n)$	1290	22	$50 \rightarrow 12$	2871	101.2
165 Ho(α , 2 <i>n</i>)	773	26	$40 \rightarrow 17$	228	2.46
165 Ho(3 He, <i>n</i>)	1.48	22	$45 \rightarrow 13$	337	0.01

Таблица 1. Некоторые ядерные реакции, приводящие к ¹⁶⁷Tm и их характеристики

ций под действием ³Не и ⁴Не средней энергии существенно различаются. В реакциях на тяжелых ядрах (A = 180–210) ~90% от полного сечения для α -частиц составляют реакции (α , *xn*), тогда как для ³Не эта доля менее 60%. Этот факт говорит о существенном вкладе (~40%) прямых процессов [6]. На рис. 3, 4 приведены экспериментальные сечения реакций под действием α -частиц и ³Не на ядре ¹⁵¹Eu.

Сечения реакций (α , *n*), как правило, значительно ниже, чем реакций с испусканием большего числа нейтронов. Это связано с высоким кулоновским барьером для α -частиц, влияние которого в первую очередь сказывается на реакции, наиболее важной в области низких энергий. В качестве примера на рис. 5 приведены оцененные экспериментальные сечения реакций под действием α -частиц на ¹⁶⁵Но [7].

Сечения, приведенные на рис. 3, характерны не только для ¹⁶⁵Но, но и для значительной части тяжелых ядер. Видно, что по мере роста энергии налетающей частицы график функции возбужде-

Рис. 1. Теоретические значения сечений реакций образования ¹⁶⁷Tm согласно базе данных TENDL-2021 [3].

ния становится более широким, к тому же пробег α -частиц растет. Оба эти фактора приводят к увеличению выхода ядерных реакций, выраженного в числе событий в мишени на единицу прошедшего заряда. Соответствующие выходы на толстой мишени для реакций ¹⁶⁵Но(α , *xn*) приведены на рис. 6.

ПУЧКИ ИОНОВ ГЕЛИЯ КАК ОСНОВНОЙ МЕТОД ПОЛУЧЕНИЯ: НЕКОТОРЫЕ ОСОБЫЕ СЛУЧАИ

Иногда реакции под действием ионов гелия являются практически единственной возможностью. Это касается тех случаев, когда подходящие мишени для наработки целевого радионуклида под действием протонов или дейтронов отсутствуют. Так, отсутствие стабильных изотопов у Tc, Pm и Po не позволяет использовать реакции (p, xn) или (d, xn) для получения таких радионуклидов, как ⁹⁷Ru, ¹⁵³Sm и ²¹¹At. Реакции под действием протонов и дейтронов иногда не удается

Рис. 2. Выходы на толстой мишени, рассчитанные на основе модельных сечений для различных реакций, приводящих к ¹⁶⁷Tm.

Рис. 3. Экспериментальные сечения реакций 151 Eu(α , *xn*) [45], сглаженные с помощью программы RYC.

Рис. 5. Сечения реакций ¹⁶⁵Но(α , *xn*), полученные в результате сравнительного анализа имеющихся экспериментальных данных [7].

использовать для получения некоторых нейтроноизбыточных ядер из-за отсутствия подходящих мишеней, тогда как в случае α -частиц такие мишени есть. Примерами могут служить реакции ⁹⁶Zr(α , *n*)⁹⁹Mo или ¹⁹²Os(α , *n*)^{195m}Pt (табл. 2). Рассмотрим их более подробно.

Астат-211 является одним из крайне немногочисленных α -излучателей, потенциально применимых для медицины. Впервые он был получен в 1940 г. в Калифорнии (США) [8] по реакции ²⁰⁹Ві $(\alpha, 2n)^{211}$ Аt облучением металлического висмута 32 МэВ α -частицами. Этот метод и сейчас является основным с той лишь разницей, что энергию пучка ограничивают 28–29 МэВ. Так можно избежать образования ²¹⁰Аt по ($\alpha, 3n$)каналу, поскольку этот изотоп распадается в осо-

Рис. 4. Экспериментальные сечения реакций 151 Eu(³He, *xn*) [43], сглаженные с помощью программы RYC.

Рис. 6. Выходы реакций 165 Но(α , *xn*) на толстой мишени. Единицы измерения выбраны так, чтобы выход не зависел от периода полураспада продукта реакции.

бо токсичный ²¹⁰Ро. Из-за этого ограничения на толстой мишени удается получить лишь 24.5 МБк/мкАч при 28 МэВ и 32.9 МБк/мкАч при 29 МэВ. Однако, несмотря на отличные ядерно-физические свойства ($T_{1/2} = 7.2$ ч, 100% α -распад, мягкое фотонное излучение энергией 79.3 кэВ, 21.07%) ²¹¹At пока не нашел применения в клинической практике. Его медицинские применения ограничиваются немногочисленными клиническими исследованиями. Залутский и Пружинский связывают это с низкой доступностью астата, вызванной нехваткой ускорителей α-частиц. В их обзоре 2011 г. [9] перечислены 36 установок, позволяющие получать астат в количестве хотя бы одной терапевтической дозы, из которых используются лишь 13, расположенные в США, Китае, Японии, Дании и Франции [10]. Однако бо-

Радионуклид	Тип распада	$T_{1/2}$	Путь получения с α-частицами	Альтернативные пути
⁹⁷ Ru	ε	2.83 сут	^{nat} Mo(α , <i>xn</i>) ⁹⁷ Ru	99 Tc(<i>p</i> , 3 <i>n</i>) 97 Ru
⁹⁹ Mo	β^{-}	65.92 ч	96 Zr(α , n) 99 Mo	235 U(<i>n</i> , <i>f</i>)
¹⁵³ Sm	β-	46.28 ч	150 Nd(α , <i>n</i>) 153 Sm	152 Sm (n, γ)
^{195m} Pt	IT	4.01 сут	¹⁹² Os(α , n) ^{195m} Pt	193 Ir (n, γ) 194 Ir (n, γ) 195 Ir \rightarrow 195m Pt
²¹¹ At	ε, α	7.2 ч	209 Bi(α , 2 <i>n</i>) ²¹¹ At	209 Bi(6 Li, $4n$) 211 Rn \rightarrow 211 At
²³⁷ Pu	ε	45.64 сут	235 U(α , 2 <i>n</i>) 237 Pu	237 Np(p, n)

Таблица 2. Варианты получения радионуклидов, для которых отсутствует или затруднена возможность использования протонов/дейтронов

лее вероятной причиной медленного прогресса работ с астатом представляются слабое понимание химии этого элемента из-за отсутствия стабильных или долгоживуших изотопов и низкая устойчивость используемых соединений in vivo. Такое же мнение было высказано в [11]. Отметим, что в последнее время интерес к химии астата резко возрос, что дает надежду на его успешное применение в эндорадиотерапии рака. Альтернативой α-частицам является использование косвенного пути получения астата через промежуточное образование ²¹¹Rn. Этот радионуклид может быть получен облучением висмута ионами лития по реакциям ²⁰⁹Bi(⁶Li, 4*n*)²¹¹Rn [12] или ²⁰⁹Bi(⁷Li, $(5n)^{211}$ Rn [13]. Метод удобен тем, что можно организовать непрерывное удаление образующегося радона и тем самым избежать переработки облученной мишени. На установке ISAC TRIUMPH было реализовано получение астата онлайн масссепарацией продуктов расщепления урана протонами энергией 480 МэВ [14]. Однако эти подходы вряд ли найдут широкое применение из-за малого количества соответствующих ускорителей.

Самарий-153 сочетает в себе удобный для применения период полураспада, низкую энергию β-частиц ($E_{\beta av} = 225 \text{ кэB}$) и возможность визуализации с использованием мягкого ү-излучения (103.2 кэВ, 29.1%). Но, к сожалению, ¹⁵³Sm может быть получен лишь со стабильным носителем по реакции 152 Sm(n, γ) 153 Sm (σ_{th} = 206 барн). Из-за низкой удельной активности ¹⁵³Sm не рассматривается как радионуклид для таргетной терапии. В [15] предложено обогащать ¹⁵³Sm, полученный по (*n*, *γ*)-реакции, путем офлайн масс-сепарации, при этом эффективность процедуры достигала 12.7%. Отношение ¹⁵²Sm:¹⁵³Sm после обогащения составляло 8:1, что вполне приемлемо для создания таргетных радиофармпрепаратов (РФП). Циклотронный путь 150 Nd(α , x) 153 Sm позволяет получить ¹⁵³Sm без носителя. При этом образование целевого продукта происходит по двум каналам: ¹⁵⁰Nd(α , *n*)¹⁵³Sm и ¹⁵⁰Nd(α , *p*)¹⁵³Pm \rightarrow ¹⁵³Sm. Сечения реакции были исследованы в [16], согласно полученным результатам максимальное сечение составляет ~50 мбарн при $E_{\alpha} = 21$ МэВ. Однако выход продукта, равный 1.1 МБк/мкАч ($25 \rightarrow 15$ МэВ), оставляет желать лучшего. Работы [17, 18] привели к еще более низким (примерно в 2.5 раза) величинам сечения. Новая оценка выхода на толстой мишени 0.408 МБк/мкАч при 30 МэВ [18].

Рутений-97 (T_{1/2} = 2.83 сут, є, Еү 215.7 кэВ, 85.8%; 324.5 кэВ 10.8%) интересен и как потенциальный агент для ОФЭКТ, и как эмиттер ожеэлектронов. Разнообразие химических свойств рутения открывает широкие перспективы для дизайна РФП различного строения. Однако этот радионуклид остается обделенным вниманием и радиохимиков, и медиков. Причина этого – отсутствие полхоляшей мишени для наработки под действием протонов. Реакции на молибдене естественного изотопного состава были исследованы многими научными группами [4, 19-23].При этом образование продукта происходит по (*α*, *xn*)-каналам на изотопах ^{94,95,96,97,98,100} Мо. Наиболее важным побочным продуктом является ¹⁰³Ru ($T_{1/2}$ = 39.25 сут), образующийся по реакции ¹⁰⁰ Ru(α , *n*). Однако сечение этой реакции невелико ($\sigma_{\text{max}} = 15.6$ мб при $E_{\alpha} = 13.8$ МэВ [21]) и быстро снижается с ростом энергии налетающих частиц. Поэтому добиться высокой радиоизотопной чистоты можно без обогащения материала мишени. В диапазоне энергий 67 → 15 МэВ можно наработать 20 МБк/мкАч целевого продукта, при этом доля ¹⁰³Ru составит всего лишь 0.02% по активности [4]. Альтернативой α-частицам может служить облучение протонами долгоживущего изотопа технеция ⁹⁹Tc по реакции ⁹⁹Tc $(p, 3n)^{97}$ Ru. Сечения этой реакции изучены в [24], в [25] был предложен метод выделения из мишени. Несмотря на высокий выход (~390 МБк/мкАч при 99 \rightarrow 20 МэВ), метод не нашел практического применения, видимо, из-за неудобства работы с радиоактивной мишенью. Исследовались также реакции под действием тяжелых ионов, в частности по реакциям ⁸⁹Y(¹²C, $(4n)^{97,97m}$ Rh $\rightarrow {}^{97}$ Ru $\mu {}^{89}$ Y(12 C, $p3n)^{97}$ Ru [26], a также ⁹³Nb(⁷Li, 3*n*) [27]. Однако выходы этих реакций ниже, чем соответствующие величины для α -частиц, а пучки менее доступны.

Плутоний-237. Ралионуклил ²³⁷Ри чаше всего используют как у-излучающий трассер для исследования поведения плутония, также он рассматривался как эмиттер оже-электронов [28]. Предложено несколько методов получения этого радионуклида, в частности ²³⁵U(³He, *n*)²³⁷Pu [29] и ²³⁵U(α, 2*n*)²³⁷Pu [30, 31]. В этом случае мишенью служит ²³⁵U, входящий в природную смесь и в целом более доступный, чем искусственный ²³⁷Np, из которого можно получать ²³⁷Pu по (*p*, *n*)- или (d, 2n)-реакции. Сечения реакции ²³⁵U $(\alpha, 2n)^{237}$ Pu исследованы в [32], максимальное значение ~ 21 мб достигается при $E_{\alpha} = 25.5$ МэВ. Сечение реакций под действием ³Не значительно ниже $(\sigma_{\text{max}} \sim 2 \text{ мб при } E_{\alpha} = 25.5 \text{ МэВ})$ [33]. Возможно также получение из более распространенного изотопа урана ²³⁸U по реакциям ²³⁸U(³He, 4*n*)²³⁷Pu и 238 U(α , 5n) 237 Pu, однако информация о сечениях этих реакций в базе EXFOR отсутствует. Можно ожидать, что при использовании многочастичных реакций будет получаться значительно больше соседних изотопов ²³⁶Ри и ²³⁸Ри в сравнении с (³He, n) и (α , 2n).

Платина-195m. Большой интерес представляет радионуклид ^{195m}Pt, поскольку испускает в среднем 36 оже-электронов на акт распада [34]. Однако его получение сопряжено с серьезными сложностями. Облучение платины нейтронами приводит к образованию продукта с носителем. Получение с использованием протонных или дейтронных пучков невозможно, поскольку самый тяжелый из стабильных изотопов иридия имеет массовое число 193. Поэтому возможным путем будет реакция под действием α -частиц. Реакция ¹⁹²Os(α , n)^{195m}Pt имеет весьма низкое сечение $\sigma_{max} \sim 2-4$ мб при $E_{\alpha} =$ = 22 МэВ по данным [35] и ~5–10 мб по данным [36], поэтому непригодна для наработки терапевтических доз ^{195m}Pt. Небольшие количества ^{195m}Pt (~0.05 МБк/мкАч) можно наработать, используя диапазон энергий 24 → 9 МэВ, в котором побочные процессы не протекают, и чистота продукта определяется лишь степенью обогащения материала мишени. Альтернативой α-частицам для получения ^{195m}Pt без носителя может быть облучение ¹⁹³Ir в высокопоточном реакторе по схеме ¹⁹³Ir(n, γ)¹⁹⁴Ir(n, γ)^{194m}Ir \rightarrow ^{195m}Pt [37] или облучение золота высокоэнергетическими фотонами по реакции ¹⁹⁷Au(γ, *np*)^{195m}Pt [38].

Молибден-99 является сырьем для генераторов ^{99m}Tc — наиболее широко используемого медицинского радионуклида. Хотя ⁹⁹Мо производится давно и в больших масштабах, сложности, связанные с его получением, по-прежнему существуют [39]. Обычно ⁹⁹Мо выделяют из смеси

осколков деления ²³⁵U. Однако эта технология критически зависит от работы относительно небольшого числа исследовательских реакторов. В настоящее время рассматривается ряд альтернативных путей получения ⁹⁹Мо, например по реакциям ¹⁰⁰ Mo(γ , n)⁹⁹ Mo, ¹⁰⁰ Mo(n, 2n)⁹⁹ Mo, ⁹⁸ Mo(n, $\gamma)^{99}$ Mo, 100 Mo $(p, pn)^{99}$ Mo и др., их развернутое сравнение приведено в [40]. Недостатком перечисленных выше методов является относительно невысокая удельная активность продукта из-за присутствия стабильного носителя. В то время как большинство существующих колоночных генераторов ⁹⁹Мо/^{99т}Тс рассчитано на небольшую массу молибдена. Молибден-99 без носителя может быть получен облучением ⁹⁶Zr α-частицами по реакции 96 Zr(α , n) 99 Mo. Реакция идет без какихлибо побочных продуктов, однако сечение ее относительно невелико ($\sigma_{max} \sim 160$ мб при 17 МэВ), доля 96 Zr в природной смеси всего лишь 2.8%.

ДРУГИЕ СЛУЧАИ ИСПОЛЬЗОВАНИЯ

В некоторых случаях наработка продукта возможна в реакциях под действием протонов и ионов гелия, но мишени для реакций под действием ионов гелия более доступны. В частности, это касается двух нейтронодефицитных изотопов тербия, чрезвычайно интересных для ядерной мелицины — 149 Tb и 152 Tb. Первый из них представляет собой единственный медицинский α-излучатель среди редкоземельных элементов, к тому же сочетает испускание α-частиц и позитронов. Эта уникальная особенность позволяет проводить α-радиотерапию под контролем с помощью ПЭТ. Другой изотоп — 152 Tb — представляет интерес как эмиттер позитронов. По химическим свойствам он близок к одному из самых популярных терапевтических радионуклидов – ¹⁷⁷Lu, и может использоваться в качестве диагностической пары. Оба изотопа тербия могут быть получены в реакции на самом легком стабильном изотопе гадолиния 152 Gd [41]. Но его содержание в природной смеси весьма невелико (0.20%), обогащенные более 35% образцы коммерчески не доступны, даже низкообогащенные препараты стоят очень дорого. Для ¹⁵²Тb в качестве исходного материала можно использовать ¹⁵⁴Gd, но его в природной смеси тоже немного (2.18%). Альтернативой может быть использование реакций на ¹⁵¹Еи под действием ³Не [42, 43] и α-частиц [44, 45]. В этом случае содержание изотопа-мишени в природной смеси 47.81%, и высокообогащенный материал доступен по низким ценам.

В ряде случаев для получения радионуклида можно использовать как α-частицы, так и протоны, однако реакции на протонах требуют более высо-кой энергии пучков. Так, ⁵²Fe может быть получен

ИСПОЛЬЗОВАНИЕ УСКОРЕННЫХ ИОНОВ ГЕЛИЯ

Радионуклид	Тип распада	<i>T</i> _{1/2}	Путь получения на α-частицах	Альтернативный путь на протонах/дейтронах
⁵² Fe	ϵ,β^+	8.275 ч	${}^{50}\mathrm{Cr}(\alpha, 2n){}^{52}\mathrm{Fe}$	$^{55}Mn(p, 4n)^{52}Fe$
⁶⁷ Cu	β^{-}	2.58 сут	64 Ni(α , p) 67 Cu	68 Zn(<i>p</i> , 2 <i>p</i>) 67 Cu
⁷² Se	3	8.40 сут	74 Ge(α , 2 <i>n</i>) 72 Se	75 As $(p, 4n)^{72}$ Se
⁷⁶ Br	ε, β ⁺	16.2 ч	75 As(α , 3 <i>n</i>) ⁷⁷ Br	77 Se $(p, 2n)^{77}$ Br
⁷⁷ Br	ε	2.38 сут	75 As(α , 2 <i>n</i>) ⁷⁷ Br	78 Se $(p, 2n)^{77}$ Br
¹¹¹ In	ε	2.80 сут	^{nat} Ag(α , 2 <i>n</i>) ¹¹¹ In	$^{\rm nat}{\rm Cd}(p,xn)^{111}{\rm In}$
^{117m} Sn	IT	14.0 сут	116 Cd(α , 3 <i>n</i>) ^{117m} Sn	$^{\rm nat}{ m Sb}(p,x)^{117{ m m}}{ m Sn}$
¹⁴⁹ Tb	$\epsilon, \beta^+, \alpha$	4.12 ч	151 Eu(α , 6 <i>n</i>) ¹⁴⁹ Tb	152 Gd(<i>p</i> , 4 <i>n</i>) ¹⁴⁹ Tb0
			151 Eu(³ He, 5 <i>n</i>) ¹⁴⁹ Tb	154 Gd(<i>p</i> , 6 <i>n</i>) ¹⁴⁹ Tb
¹⁵² Tb	ε, β ⁺	17.5 ч	151 Eu(α , 3 <i>n</i>) 152 Tb	152 Gd(<i>p</i> , <i>n</i>) 152 Tb
				154 Gd(p , $3n$) 152 Tb
				154 Gd(<i>d</i> , 4 <i>n</i>) 152 Tb
^{193m} Pt	IT	4.33 сут	192 Os(α , $3n$) 193m Pt	193 Ir(<i>p</i> , <i>n</i>) 193m Pt

Таблица 3. Радионуклиды, для получения которых α-частицы конкурентоспособны с протонами/дейтронами

по реакции ⁵⁰Сг(α , 2*n*)⁵²Fе при энергии налетающих частиц 45 МэВ в количестве 7.2 МБк/мкАч. Реакция ⁵⁵Мп(*p*, 4*n*)⁵²Fе протекает со значительно большим выходом (34 МБк/мкАч), но и энергия протонов требуется более высокая (100 МэВ) [46]. Реакция ⁶⁴Ni(α , *p*)⁶⁷Cu существенно проигрывает в выходе в сравнении с ⁶⁸Zn(*p*, 2*p*)⁶⁷Cu (1.1 МБк/мкАч при 40 МэВ [47] и 73 МБк/мкАч при 100 МэВ [48] соответственно), однако дает более чистый продукт и не требует дефицитных протонных пучков энергией ~100 МэВ.

В других случаях мишень, подходящая для наработки под действием протонов, может состоять из большого числа стабильных изотопов, а значит, приводить к большому количеству примесей. Так, уже рассмотренный радионуклид ¹⁶⁷Tm можно получить по реакции ¹⁶⁵Ho(α , 2n)¹⁶⁷Tm на гольмии природного изотопного состава, тогда как получение под действием протонов на природном эрбии приводит к большому количеству радиоизотопных примесей. Еще один пример – получение ¹¹¹In облучением естественного кадмия протонами, при котором в качестве примеси получается ^{114m}In ($T_{1/2} = 49.5$ сут). При облучении α -частицами серебра долгоживущих примесей не образуется. Другие примеры приведены в табл. 3.

КОСВЕННЫЕ ПУТИ ПОЛУЧЕНИЯ КАК СПОСОБ ПОВЫШЕНИЯ РАДИОИЗОТОПНОЙ ЧИСТОТЫ

В ряде случаев целевой радионуклид образуется не прямо в результате ядерной реакции, а через ϵ/β^+ -распад промежуточного продукта (табл. 4). Такие случаи представляют отдельный интерес, если период полураспада промежуточного продукта достаточен для его радиохимического выделения (часы и сутки). Выделение промежуточного продукта часто позволяет сбросить значительную часть радионуклидных примесей, и конечный продукт получается чище, чем в случае использования прямых путей. В частности, подобный подход был применен для получения ⁹⁵ Tc облучением молибдена естественного изотопного состава α-частицами. При этом образуется смесь радионуклидов технеция (94m,g, 95m,g, 96, 99m) и рутения (94, 95, 97, 103). Экстрагировав рутений, можно лобиться накопления ⁹⁵ Tc. солержащего лишь незначительную примесь других радиоизотопов технеция [23].

Одним из наиболее показательных примеров служит получение перспективного медицинского радионуклида ¹⁵⁵Tb. Он может быть получен облучением протонами ¹⁵⁵Gd по реакциям (*p*, *n*) и (*p*, 2*n*). Но относительно невысокое (~90%) обогащение коммерчески доступных обогащенных изотопов приводит к образованию 6 и 8% примеси ¹⁵⁶Tb соответственно [49]. Альтернативой может быть путь ^{nat}Gd(α , *xn*)¹⁵⁵Dy \rightarrow ¹⁵⁵Tb [50], дающий меньше примеси (5.4% ¹⁵³Tb) при соизмеримом выходе.

РАДИОХИМИЧЕСКИЕ АСПЕКТЫ ПОЛУЧЕНИЯ РАДИОНУКЛИДОВ ПОД ДЕЙСТВИЕМ АЛЬФА-ЧАСТИЦ

В некоторых случаях использование α-частиц позволяет упростить радиохимическое выделение

Радионуклид	Путь получения	Альтернативный путь на протонах/дейтронах
⁹⁰ Nb	^{nat} Zr(α , <i>xn</i>) ⁹⁰ Mo \rightarrow ⁹⁰ Nb	90 Zr(<i>p</i> , <i>n</i>) 90 Nb
^{95g} Tc	^{nat} Mo(α , <i>xn</i>) ⁹⁵ Ru \rightarrow ⁹⁵ Tc	95 Mo(<i>p</i> , <i>n</i>) 95m,g Tc
¹¹⁹ Sb	$^{\rm nat}{\rm Sn}(\alpha, xn)^{119}{\rm Te} \rightarrow {}^{119}{\rm Sb}$	119 Sn(<i>p</i> , <i>n</i>) 119 Sb
		120 Sn(<i>p</i> , 2 <i>n</i>) ¹¹⁹ Sb
¹⁵⁵ Tb	^{nat} Gd(α , <i>xn</i>) ¹⁵⁵ Dy \rightarrow ¹⁵⁵ Tb	155 Gd(<i>p</i> , <i>n</i>) 155 Tb
		156 Gd(<i>p</i> , 2 <i>n</i>) ¹⁵⁵ Tb
¹⁶⁵ Er	$^{\text{nat}}\text{Er}(\alpha, xn)^{165}\text{Yb} \rightarrow {}^{165}\text{Tm} \rightarrow {}^{165}\text{Er}$	165 Ho(<i>p</i> , <i>n</i>) 165 Er
¹⁶⁷ Tm	^{nat} Er(α , xn) ¹⁶⁷ Yb \rightarrow ¹⁶⁷ Tm	$^{167}{\rm Er}(p, n)^{167}{\rm Tm}$

Таблица 4. Косвенные пути производства радионуклидов с использованием α-частиц

продукта реакции из облученной мишени. В качестве характерного примера можно привести выделение радиоизотопов тербия из европиевых мишеней. Европий в отличие от других редкоземельных элементов может быть восстановлен до двухвалентного состояния в водном растворе, а затем осажден в виде EuSO₄ [44, 51]. Такой метод вполне может быть применен для переработки мишеней массой в сотни миллиграммов.

ЗАКЛЮЧЕНИЕ

С течением времени доля ускорителей, позволяющих получить достаточно интенсивные пучки α -частиц, сокращается. Однако реакции под действием ионов гелия в некоторых случаях являются единственным способом получения важных для медицины радионуклидов, среди которых самым важным является ²¹¹At. Кроме этого, пучки ионов ³He и/или ⁴He могут быть полезными для наработки радиоизотопов тербия, ¹⁵³Sm, ^{195m}Pt, ⁹⁷Ru и других. Поэтому при сооружении новых установок для наработки радиоизотопов крайне желательно предусматривать функцию ускорения положительных ионов.

Работа выполнена при поддержке Министерства науки и высшего образования Российской Федерации (грант № 075-15-2021-1360) в области наработки и выделения изотопов тербия.

СПИСОК ЛИТЕРАТУРЫ

- 1. Rutherford E. // Philos. Mag. 2010. V. 90. № 1. P. 31.
- 2. Joliot F., Curie I. // Nature. 1934. V. 133. № 3354. P. 201.
- 3. *Koning A.J., Rochman D., Sublet J.-C. et al.* // Nucl. Data Sheets. 2019. V. 155. P. 1.
- Sitarz M., Nigron E., Guertin A. et al. // Instruments. 2019. V. 3. № 1. P. 1. https://doi.org/10.3390/instruments3010007

- Ziegler J.F., Ziegler M.D., Biersack J.P. // Nucl. Instrum. Methods Phys. Res. B. 2010. V. 268. № 11–12. P. 1818.
- Scott N.E., Cobble J.W.J., Daly P.J.P. // Nucl. Phys. A. 1968. V. 119. № 1. P. 131.
- Kormazeva E.S., Khomenko I A., Unezhev V.N., Aliev R.A. // J. Radioanal. Nucl. Chem. 2022. V. 331. № 10. P. 4259.
- Corson D.R., MacKenzie K.R., Segrè E. // Phys. Rev. 1940. V. 58. № 8. P. 672.
- 9. Zalutsky M.R., Pruszynski M. // Curr. Radiopharm. 2011. V. 4. № 3. P. 177.
- 10. Feng Y., Zalutsky M.R. // Nucl. Med. Biol. 2021. V. 100-101. P. 12.
- 11. *Wilbur D.S.* // Nature Chem. 2013. V. 5. № 3. P. 246. https://doi.org/10.1038/nchem.1580
- 12. *Greene J.P., Nolen J., Baker S.* // J. Radioanal. Nucl. Chem. 2015. V. 305. № 3. P. 943.
- 13. *Maeda E., Yokoyama A., Taniguchi T. et al.* // J. Radioanal. Nucl. Chem. 2020. V. 323. № 2. P. 921.
- Crawford J.R., Kunz P., Yang H. et al. // Appl. Radiat. Isot. 2017. V. 122. P. 222.
- Van de Voorde M., Duchemin C., Heinke R. et al. // Front. Med. 2021. V. 8. https://doi.org/10.3389/fmed.2021.675221
- 16. *Qaim S.M., Spahn I., Kandil S.A. et al.* // Radiochim. Acta. 2007. V. 95. № 6. P. 313.
- 17. Sakaguchi M., Aikawa M., Ukon N. et al. // Appl. Radiat. Isot. 2021. V. 176. P. 109826.
- Aikawa M., Sakaguchi M., Ukon N. et al. // Appl. Radiat. Isot. 2022. V. 187. P. 110345.
- 19. Levkovskij V.N. Cross-Sections of Medium Mass Nuclide Activation (A = 40-100) by Medium Energy Protons and Alpha-Particles (E = 10-50 MeV). Moscow: Inter Vesi, 1991.
- 20. *Ditrói F., Hermanne A., Tárkányi F. et al.* // Nucl. Instrum. Methods Phys. Res. B. 2012. V. 285. P. 125.
- 21. *Tárkányi F., Hermanne A., Ditrói F. et al.* // Nucl. Instrum. Methods Phys. Res. B. 2017. V. 399. P. 83.
- 22. Choudhary M., Gandhi A., Sharma A. et al. // Eur. Phys. J. A. 2022. V. 58. № 5. P. 95.
- 23. Aliev R.A. // Radiochim. Acta. 2009. V. 97. № 6. P. 303.

РОССИЙСКИЕ НАНОТЕХНОЛОГИИ том 18 № 4 2023

Dmitriev S.N., Zaitseva N.G. // Radiochim. Acta. 2005.
 V. 93. № 9–10. P. 571.

24. Zaitseva N.G., Rurarz E., Vobecky M. et al. // Radio-

25. Zaitseva N.G., Stegailov V.I., Khalkin V.A. et al. // Appl.

27. Kumar D., Maiti M., Lahiri S. // Phys. Rev. C. 2016.

28. Filosofov D., Kurakina E., Radchenko V. // Nucl. Med.

chim. Acta. 1992. V. 56. № 2. P. 59.

Radiat. Isot. 1996. V. 47. No 2. P. 145.

V. 94. № 4. P. 044603.

Biol. 2021. V. 94–95. P. 1.

26. Maiti M. // Ract. 2013. V. 101. № 7. P. 437.

- Romanchuk A.Y., Kalmykov S.N., Aliev R.A. // Radiochim. Acta. 2011. V. 99. № 3. P. 137.
- Delagrange H., Fleury A., Alexander J.M. // Phys. Rev. C. 1978. V. 17. № 5. P. 1706.
- Gromova E., Jakovlev V., Aaltonen J. et al. // Nucl. Data Sheets. 2014. V. 119. P. 237.
- 34. Kassis A.I. // Semin. Nucl. Med. 2008. V. 38. № 5. P. 358.
- 35. *Hilgers K., Coenen H.H., Qaim S.M.* // Appl. Radiat. Isot. 2008. V. 66. № 4. P. 545.
- 36. *Uddin M.S., Scholten B., Hermanne A. et al.* // Appl. Radiat. Isot. 2010. V. 68. № 10. P. 2001.
- 37. Knapp F.F., Mirzadeh S., Beets A.L. et al. // J. Radioanal. Nucl. Chem. 2005. V. 263. № 2. P. 503.
- Dykiy M.P., Dovbnya A.N., Lyashko Y.V. et al. // J. Label. Compd. Radiopharm. 2007. V. 50. № 5–6. P. 480.

- 39. Ruth T.J. // Annu. Rev. Nucl. Part. Sci. 2020. V. 70. № 1. P. 77.
- Wolterbeek B., Kloosterman J.L., Lathouwers D. et al. // J. Radioanal. Nucl. Chem. 2014. V. 302. № 2. P. 773.
- 41. *Steyn G.F., Vermeulen C., Szelecsényi F. et al.* // Nucl. Instrum. Methods Phys. Res. B. 2014. V. 319. P. 128.
- 42. Zagryadskii V.A., Latushkin S.T., Malamut T.Y. et al. // Atomic Energy. 2017. V. 123. № 1. P. 55.
- 43. *Moiseeva A.N., Aliev R.A., Unezhev V.N. et al.* // Sci. Rep. 2020. V. 10. № 1. P. 508.
- 44. Aliev R.A., Zagryadskiy V.A., Latushkin S.T. et al. // Atomic Energy. 2021. V. 129. № 6. P. 337.
- Moiseeva A.N., Aliev R.A., Unezhev V.N. et al. // Nucl. Instrum. Methods Phys. Res. B. 2021. V. 497. March. P. 59.
- 46. *Hermanne A., Adam Rebeles R., Tárkányi F. et al. //* Nucl. Instrum. Methods Phys. Res. B. 2015. V. 356–357. P. 28.
- 47. Skakun Y., Qaim S.M. // Appl. Radiat. Isot. 2004. V. 60. № 1. P. 33.
- 48. Szelecsényi F., Steyn G.F., Dolley S.G. et al. // Nucl. Instrum. Methods Phys. Res. B. 2009. V. 267. № 11. P. 1877.
- 49. Dellepiane G., Casolaro P., Favaretto C. et al. // Appli. Radiat. Isot. 2022. V. 184. P. 110175.
- Moiseeva A.N., Aliev R.A., Furkina E.B. et al. // Nucl. Med. Biol. 2022. V. 106–107. P. 52.
- Kazakov A.G., Aliev R.A., Bodrov A.Y. et al. // Radiochim. Acta. 2018. V. 106. № 2. P. 135.