УДК 665.6.03:665.64

СОСТАВ ПРОДУКТОВ ГИДРОТЕРМАЛЬНО-КАТАЛИТИЧЕСКОЙ КОНВЕРСИИ АСФАЛЬТИТА СПИРИДОНОВСКОГО МЕСТОРОЖДЕНИЯ

© 2019 г. В. Р. Антипенко^{1, *}, Г. П. Каюкова^{2, 3, **}, И. М. Абдрафикова³

¹Институт химии нефти СО РАН, Томск, Россия

²Институт органической и физической химии им. А.Е. Арбузова ФИЦ КазНЦ РАН, Казань, Россия ³Казанский (Приволжский) федеральный университет, Казань, Россия

> **E-mail: avr@ipc.tsc.ru* ***E-mail: kayukova@iopc.ru* Поступила в редакцию 14.11.2017 г. После доработки 13.02.2018 г. Принята к публикации 26.07.2018 г.

Показано, что в случае гидротермально-каталитической конверсии твердого природного асфальтита Спиридоновского месторождения (Республика Татарстан) при 250°С в присутствии гематита образуются жидкие продукты с пониженным содержанием смол и асфальтенов При этом в продуктах конверсии появляется дисперсная фаза нерастворимых науглероженных вешеств типа карбенов и карбоидов. Проведен анализ структурно-группового и молекулярного состава масел жидких продуктов конверсии, которые по данным ¹Н ЯМР и ИК-спектроскопии обогащены ароматическими, полициклоароматическими, карбонилсодержащими структурными фрагментами и сульфоксидами. Установлено, что молекулярный состав масел исходного асфальтита и продуктов его конверсии практически идентичен, но наблюдаются изменения в относительном содержании различных типов соединений. Низкое содержание алканов, повышенное содержанием тритерпанов характеризует исходный спиридоновский асфальтит как биодеградированный объект. В продуктах конверсии резко возросло относительное содержание алканов, стало больше три- и тетрациклических ароматических углеводородов (УВ), дибензотиофенов. Доля фенантренов и тетрациклических ароматических УВ возросла в 9.3 и 2.6 раза, соответственно, идентифицированы алкилциклогексаны, которые отсутствовали в исходном асфальтите. При этом заметно снизилось относительное содержание полициклических нафтенов (прегнанов, стеранов, хейлантанов и гопанов). Выявленные различия, по-видимому, обусловлены масштабами генерации этих соединений при деструкции смол и асфальтенов, в которых они находились как структурные фрагменты молекул, либо в адсорбированном и/или окклюдированном виде.

Ключевые слова: природный асфальтит, гидротермально-каталитическое превращение, жидкие продукты конверсии, состав, свойства.

DOI: 10.1134/S0028242119010040

В последние годы в мире в связи с истощением активно разрабатываемых ресурсов легкой нефти энергетические компании и правительства стран все большее внимание уделяют нетрадиционным видам углеводородного сырья, к которым относятся тяжелые, высоковязкие нефти и природные битумы. Мировые геологические запасы тяжелых, сверхтяжелых нефтей и битумов велики и сосредоточены в основном в Канаде, Венесуэле и России (87.1% мировых запасов) [1, 2]. Нетрадиционные нефтяные ресурсы России отличаются по характеристикам и особенностям добычи как друг от друга, так и от обычной сырой нефти. Чтобы воспользоваться этими нефтяными "ресурсами будущего", компаниям необходимо внедрять новые технологии добычи и переработки [3].

На территории РФ значительным ресурсным потенциалом тяжелых, высоковязких нефтей и природных битумов располагает Татарстан (36% от ресурсов РФ) [3]. На мелкозалегающей залежи Ашальчинского месторождения были проведены успешные испытания пилотной фазы технологии добычи нефти с применением парных двухустьевых горизонтальных скважин и закачкой пара для снижения вязкости нефти в пластовых условиях [4]. Сегодня ведется стабильная добыча нефти с дебитом около 1000 т/сут [4].

Весьма перспективными являются процессы преобразования тяжелых нефтяных флюидов в присутствии доступных железооксидных катализаторов в среде водяного пара, которые позволяют проводить деструкцию высокомолекулярных компонентов углеводородных флюидов в сравнительно мягких условиях [5–8]. Воздействие на тяжелую нефть непосредственно в пласте обеспечивает более легкое извлечение ее на дневную поверхность вследствие образования легких УВ и снижения ее вязкости [9, 10]. Однако в пермских отложениях на территории Татарстана, наряду с месторождениями тяжелых высоковязких нефтей, широко развиты залежи битуминозных пород, содержащих вязкие, полувязкие и твердые битумы – мальты, асфальты и асфальтиты [10–12].

Ранее нами [7] были проведены лабораторные опыты по гидротермально-каталитической конверсии сверхтяжелой нефти Ашальчинского месторождения в закрытой системе при температурах 210, 250 и 300°С в присутствии природного катализатора — гематита и добавок воды в количестве 100, 20 и 6% в расчете на загруженную нефть. В приведенных условиях процессы деструкции смол и асфальтенов приводят к образованию светлых фракций, отсутствующих в исходной нефти. Конверсия асфальтитов в этих условиях не была изучена. В то же время, в работах [13–17] были продемонстрированы реальные возможности эффективной конверсии близкого по компонентному составу асфальтита в воде, находящейся в сверхкритических условиях, в присутствии различных добавок.

Цель настоящей работы — выявление закономерностей превращения высокомолекулярных компонентов твердого асфальтита Спиридоновского месторождения в условиях лабораторных экспериментов по моделированию процессов его внутрипластовой конверсии при добыче паротепловым методом.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Объект исследований — твердый асфальтит, извлекаемый экстракцией из пермских битуминозных песчаников Спиридоновского месторождения, имеющих выход на дневную поверхность [10–12]. Экстракцию проводили в аппарате Сокслета смесью органических растворителей: бензол, хлороформ и изопропиловый спирт (1 : 1 : 1 по объему). Выход экстракта составил 2.47% в расчете на массу породы. Общая характеристика, компонентный состав асфальтита, а также состав некоторых типов УВ в маслах асфальтита представлен в [18, 19].

Опыты по гидротермальному превращению асфальтита проведены в высокотемпературном реакторе высокого давления емкостью 1 л при температуре 250°С, характерной для паротеплового воздействия на пласт, и начальном давлении воздуха в системе 2 МПа. В процессе опыта давление паровоздушной смеси поднималось до 6 МПа. В качестве катализатора использовали природный железосодержащий минерал – гематит (Fe₂O₃) в количе-

НЕФТЕХИМИЯ том 59 № 1 2019

стве 4% в расчете на навеску асфальтита, взятого в опыт. Содержание воды в системе составляло 30% от массы исходного асфальтита.

Компонентный состав асфальтита и жидких продуктов его гидротермально-каталитической конверсии определяли по методике [20], включающей осаждение асфальтенов 40-кратным (по объему) избытком петролейного эфира с температурой кипения 40–70°С и разделение мальтенов колоночной хроматографией на силикагеле АСК. Элюирование масел проводили смесью гексан–бензол (7:3 по объему), элюирование смол– последовательно бензолом и смесью этанол–бензол 1:1 по объему.

Полученные образцы были охарактеризованы ИК-спектрометрией, а масла – с использованием дополнительно ¹Н ЯМР и хроматомасс-спектрометрии (ГХ-МС). ИК-спектры регистрировали на FTIR-спектрометре "NICOLET 5700" и FTIR-спектрометре Vector 22 (Bruker) в области 2000–400 см⁻¹. Образцы асфальтенов для анализа готовили прессованием смеси их тонко растертых порошков и оптически чистого КВг. ИК-спектры масел регистрировали с использованием пленки между двумя пластинами из КВг. Образцы смол наносили на пластину из КВг в виде пленки из их раствора в CHCl₃. Отнесение полос поглощения в ИК-спектрах изученных образцов проводили с использованием литературных данных [21].

Спектры ¹Н ЯМР масел регистрировали с помощью ЯМР-Фурье спектрометра AVANCE AV 300 фирмы "Bruker" при 300 МГц в растворах CDCl₃, химические сдвиги сигналов приведены относительно тетраметилсилана. Относительное содержание атомов водорода в различных структурных фрагментах определяли исходя из площадей сигналов в соответствующих областях спектра [22, 23]: для $H_{ar} - 8.3-6.6$; $H_{ol} - 6.6-4.5$; $H_{\alpha} - 4.1-2.1$; $H_{\beta} - 2.1-1.1$; $H_{\gamma} - 1.1-0.3$ м. д.

Анализ группового и молекулярного состава масел осуществляли методом ГХ-МС на приборе "Termo Scientific" DFS, оснащенном газовым хроматографом Trace GC Ultra. Режим массспектрометра: энергия ионизирующих электронов 70 эВ, температура источника 250°С. Сканирование масс-спектров осуществляли в диапазоне массовых чисел m/z 50–500 а. е. м. со скоростью 1 с/декаду мас. Режим хроматографа: начальная температура 80°С, термостатирование в течение 2 мин, затем нагрев до 300°С со скоростью 4°С/мин и термостатирование в течение 35 мин. Использовали кварцевую капиллярную колонку TR-5MS длиной 30 м, внутренним диаметром 0.25 мм и толщиной фазы 0.25 мкм. Газ носитель – гелий. Режим сброса – без сброса. Пробу исследуемого образца перед вводом разбавляли гексаном до концентрации ~1 мг/мкл, в раствор добавляли внутренний стандарт (дейтерированный аценафтен – $C_{12}D_{10}$) в количестве 5 мкг. После регистрации хроматограммы по полному ионному току процедура дальнейшего анализа была аналогична описанной в [24]. В некоторых случаях проводилась идентификация соединений с использованием электронной библиотеки масс-спектров NIST 02, а также литературных данных. Оценку относительного содержания различных соединений проводили путем сопоставления площади пиков в их масс-хроматограммах (S_i) и суммарной площади пиков в масс-хроматограммах всех идентифицированных типов соединений (ΣS_i).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Битуминозные породы Спиридоновского месторождения залегают на глубинах до 30 м в приповерхностных отложениях пермской системы [11, 12], имеющих выход на дневную поверхность. Основная часть продуктивной толщи слагается из песчаников, мощность которых изменяется от 4.5 до 15.2 м.

Экстракт из породы – асфальтит, с плотностью 1.0955 г/см³ и содержанием серы 4.85% представляет собой хрупкий аморфный материал черного цвета. Компонентный состав асфальтита и продуктов его конверсии представлен в табл. 1. По сравнению с исходным асфальтитом в составе жидких продуктов гидротермально-каталитической конверсии более чем в 3 раза увеличивается содержание масел, снижается содержание этанол-бензольных смол, а также асфальтенов. Содержание бензольных смол несколько возрастает. При этом в продуктах конверсии появляется дисперсная фаза нерастворимых науглероженных веществ типа карбенов и карбоидов [25]. Их содержание составляет 24.6%. Образование нерастворимого остатка конверсии с выходом 11.3-44.5% в зависимости от условий конверсии всегда наблюдалось при конверсии высокосернистого асфальтита Ивановского месторождения в сверхкритической воде [13-17].

В ИК-спектрах спиридоновского асфальтита, жидких продуктов конверсии и продуктов их экстракционно-хроматографического разделения (рис. 1) присутствуют полосы поглощения, соответствующие алифатическим (1460, 1380, 720 см⁻¹), ароматическим (1600, 880-740 см⁻¹), кислородсодержащим (1770-1650, 1290, 1160, 970 см⁻¹) и сульфоксидным (1030 см⁻¹) структурным фрагментам. Все изученные образцы характеризуются высокой оптической плотностью полос в области 1770-1650 см⁻¹, соответствующих наличию в них кислородсодержащих функциональных групп. Она всегда выше оптической плотности полосы в области 1600 см⁻¹, отражающей содержание в образцах соединений ароматического характера. Условное содержание кислородных функций

Таблица 1. Компонентный состав спиридоновского асфальтита и продуктов его гидротермально-каталитических превращений

Объект	Компонентный состав, мас. %						
OOBERI	М	СБ	СЭБ	СЭБ/СБ	ACΦ	KK	
CA	8.7	3.3	27.3	8.3	60.7	Отс.	
ЖПК	20.1	4.1	15.8	3.8	35.4	24.6	

СА – спиридоновский асфальтит; ЖПК – жидкие продукты конверсии асфальтита; М – масла; СБ – смолы бензольные; СЭБ – смолы этанол-бензольные; АСФ – асфальтены, КК – карбено-карбоиды.

возрастает в ряду масла < смолы бензольные < асфальтены < смолы этанол-бензольные.

Как видно на рис. 1а, в ИК-спектрах асфальтенов ЖПК (АСФ-К) по сравнению с асфальтенами спиридоновского асфальтита (АСФ-0) возрастает нормированная оптическая плотность полос в области поглощения карбонильных (1730, 1710 см⁻¹), ароматических (1600 см⁻¹), алифатических (1380, 720 см⁻¹) структурных фрагментов и сульфоксидов (1030 см⁻¹). В алифатических заместителях возрастает условное содержание терминальных метильных групп (1380 см⁻¹), то есть возрастает показатель разветвленности. Асфальтены после конверсии, проведенной в воздушной среде, являются более окисленными в отличие от опытов, проведенных на асфальтенах спиридоновского асфальтита в среде водорода [18].

На рис. 1г видно, что для масел ЖПК (М-К) по сравнению с маслами СА (М-0) наблюдается заметное увеличение оптической плотности полос карбонильных, ароматических структурных фрагментов и сульфоксидов и незначительное снижение оптической плотности полос поглощения, характерных для алифатических заместителей с числом атомов углерода в цепи больше 4 (720 см⁻¹). Для обоих типов смол (рис. 16, в) снижается нормированная оптическая плотность в области 1730, 1030 и 720 см⁻¹. Их отличие заключается в характере изменения оптической плотности полос в области 1710, 1600 и 1380 см⁻¹.

Распределение атомов водорода по различным структурным фрагментам изученных образцов масел по результатам ¹Н ЯМР-спектрометрии представлено в табл. 2. Из нее следует, что содержание ароматических протонов (H_{ar}) в маслах продуктов конверсии по сравнению с маслами исходного асфальтита возрастает, а содержание терминальных метильных групп (H_{γ}) снижается. Олефины (H_{ol}) присутствуют только в М-К в незначительном количестве.

По результатам ГХ-МС анализа образцов качественный состав соединений в них практически идентичен (табл. 3). Идентифицированы

Рис. 1. Нормированные оптические плотности некоторых полос поглощения в ИК-спектрах компонентов асфальтита (0) и жидких продуктов его конверсии (К).

нормальные и изопреноидные алканы, моно- и полициклические нафтены, алкилтриметилбензолы, ди-, три- и тетрациклические ароматические углеводороды (АУВ), дибензотиофен и его гомологи.

Хроматограмма по полному ионному току М-0 (рис. 2А) свидетельствует о преобладании в них компонентов "горба" [26], низком относительном содержании алканов, повышенном содержании тритерпанов (хейлантанов и гопанов), что характеризует исходный спиридоновский асфальтит как биодеградированный объект. В М-К картина резко меняется: на сравнительно небольшом "горбе" четко проявляются пики алканов, их интенсивность по сравнению с пиками тритерпа-

Таблица 2. Относительное содержание атомов водорода в различных структурных фрагментах масел спиридоновского асфальтита и продуктов его конверсии

Образец	H _{ar} , %	$H_{\alpha}, \%$	$\mathrm{H}_{\beta},\%$	Η _γ , %	$H_{ol}, \%$
M-0	1.17	3.04	67.82	27.96	0.0
M-K	2.38	5.15	68.61	23.63	0.23

М-0 — масла исходного асфальтита; М-К — масла жидких продуктов конверсии.

НЕФТЕХИМИЯ том 59 № 1 2019

нов резко возрастает. Относительное содержание различных соединений приведено в табл. 3.

Из этих данных видно, что в М-0 и М-К основное содержание (90-93%) приходится на насыщенные УВ – алканы, моноциклические и полициклические нафтены. Что находится в соответствии с результатами ¹Н ЯМР-анализа этих образцов (табл. 2). Гидротермально-каталитическое превращение спиридоновского асфальтита привело к изменению относительного содержания различных типов соединений в М-К по сравнению с М-0 (табл. 3). В частности, появились алкилциклогексаны, которые не были найдены в М-0. Резко возросло относительное содержание алканов, стало больше три- и тетрациклических ароматических УВ (тетраАУВ), дибензотиофенов. Относительное содержание полициклических нафтенов (стеранов, тритерпанов) заметно снизилось.

По коэффициенту изменения относительного содержания (табл. 3) соединения располагаются в ряд: фенантрены > дибензотиофены > тетраАУВ > алканы > нафталины > алкилтриметилбензолы > (стераны, тритерпаны) > дифенилы. Изменение относительного содержания привело к существенному изменению отношений (табл. 4). Обращает на себя внимание, что гидротермальное

АНТИПЕНКО и др.

Соединения (характеристические ионы)	M-0	M-K	Коэффициент изменения
<i>н</i> -Алканы + изопреноиды, (<i>m</i> / <i>z</i> 57 + 113)	29.2	67.0	2.3
Алкилциклогексаны (<i>m</i> / <i>z</i> 82+83)	0	8.5	_
Стераны (<i>m</i> / <i>z</i> 217+218+259)	11.5	2.5	0.2
Тритерпаны (<i>m</i> / <i>z</i> 191)	52.6	11.6	0.2
Алкилтриметилбензолы (<i>m</i> / <i>z</i> 133 + 134)	2.1	1.1	0.5
Нафталины (m/z 128 + 142 + 156 + 170 + 184)	0.6	0.5	0.9
Фенантрены (<i>m</i> / <i>z</i> 178 + 192 + 206 + 220)	0.6	5.6	9.3
Тетрациклические АУВ (<i>m</i> / <i>z</i> 202 + 228)	0.6	1.6	2.6
Дибензотиофены (<i>m</i> / <i>z</i> 184 + 198 + 212)	0.4	1.4	3.4
Дифенилы (<i>m</i> / <i>z</i> 154 + 168 + 182 + 196)	2.5	0.3	0.1

Таблица 3. Относительное содержание углеводородов и гетероатомных соединений в маслах (% от суммарной площади пиков всех идентифицированных типов соединений)

превращение не привело к изменению величины отношения: тритерпаны/стераны, которое отражает степень биохимической трансформации органического вещества в осадках в процессе его диагенеза [27, 28]. Выявленные различия, по-видимому, обусловлены масштабами генерации этих соединений при деструкции смол и асфальтенов, в которых они находились как структурные фрагменты молекул, в адсорбированном и/или окклюдированном состоянии. Продукты термолиза смол и

Рис. 2. Хроматограммы M-0 (1) и M-K (2) по полному ионному току (А) и масс-хроматограммы по ионам с m/z 57 + 113 (Б, алканы). Ст. – стандарт (аценафтен D₁₀), Н.с. – неидентифицированное соединение, Pr, Ph –пристан и фитан, * *i*-C₁₈, ^ *i*-C₁₆, Фт. – фталаты. Цифры соответствуют числу атомов углерода в молекулах *н*-алканов.

Отношение	M-0	M-K	Коэффициент изменения
Тритерпаны/фенантрены	87.0	2.0	43.5 (-)
Стераны/фенантрены	11.9	0.4	29.8 (-)
Дибензотиофены/фенантрены	0.7	0.2	3.5 (-)
Тритерпаны/алканы	1.8	0.2	9.0 (-)
Тритерпаны/стераны	4.6	4.7	1.02
АТМБ*/нафталины	3.8	2.1	1.8 (-)
Фенантрены/нафталины	1.1	10.7	9.7 (+)

Таблица 4. Отношение различных типов соединений в М-0 и М-К

* Алкилтриметилбензолы.

асфальтенов в различных средах всегда содержат масла, в которых идентифицированы УВ и гетероорганические соединения [15, 18, 29–40].

М-К отличаются от М-0 не только относительным содержанием различных типов соединений, но также их групповым и молекулярным составом. На рис. 2Б приведены масс-хроматограммы M-0 и M-К по ионам с *m/z* 57 + 113. Видно, что молекулярно-массовое распределение (ММР) *н*-алканов в М-0 является унимодальным с максимумом при С₂₀. Совершенно иная картина наблюдается для М-К. Для них характерно резкое преобладание н-алканов с четным числом атомов углерода в молекуле, причем положение максимума ММР практически не меняется. Отметим, что преобладание "четных" н-алканов наблюдалось в маслах продуктов гидротермального превращения асфальтенов спиридоновского асфальтита в восстановительной среде при 360°С [18], а также в маслах продуктов конверсии кашпирского горючего сланца в сверхкритической воде [24]. Причем, в [24] такая особенность состава н-алканов, а также олефинов, проявлялась только у продуктов, полученных при температурах 440-550°C. В М-К резко возросло отношение н-алканов и изопреноидов, что практически всегда является результатом термического воздействия на нефть. Изменились отношения Pr/н-C₁₇ и Ph/н-C₁₈, которые согласно [27, 28, 41] характеризуют степень термического преобразования органического вешества (ОВ) осалочных пород.

В работе [42] преобладание "четных" *н*-алканов в органическом веществе пород объясняется резко восстановительной обстановкой в диагенезе, которая способствуют прямому восстановлению "четных" кислот, преобладающих в исходном OB (биопродуцентах). Для M-0 и M-K отношение $Pr/Ph \leq 1$, что свидетельствует о восстановительной обстановке в диагенезе. В условиях проведенного нами эксперимента, возможно, происходит восстановление кислот, "запечатанных" в структуре смолисто-асфальтеновых веществ, в присутствии водорода, который,

НЕФТЕХИМИЯ том 59 № 1 2019

согласно [5], образуется при взаимодействии гематита с парами воды.

Второй механизм образования "четных" н-алканов – специфический механизм декарбоксилирования "четных" кислот с образованием "четных" н-алканов. Этот механизм характерен только для нефтематеринских карбонатных пород. Хотя асфальтит Спиридоновского месторождения залегает в песчанике, но залежь может быть аллохтонная. В работе [12] описаны примеры явного преобладания "четных" н-алканов во фракции насыщенных УВ, выделенных из хлороформенных битумоидов карбонатных осадочных пород восточного борта Мелекесской впадины (месторождение Енорускинское, скв. 1390) и Абларахмановской плошали (месторожление Ромашкинское, скв. 8825). В обоих образцах отношение Pr/Ph заметно меньше 1. Интересно отметить, что в процессе лабораторного гидротермального превращения ОВ пород Енорускинского месторождения соотношение "четных" и "нечетных" гомологов среди н-алканов выравнивается, а для органического вещества Ромашкинского месторождения практически не меняется. В первом случае процесс конверсии проводился в автоклаве, а во втором – в проточной установке.

Наконец, изменение соотношения "нечетных" и "четных" н-алканов в пользу последних может быть обусловлено вкладом алифатических УВ, которые находились в смолах и асфальтенах в адсорбированном, окклюдированном и "серосвязанном" состоянии [43, 44], и в условиях конверсии перешли в М-К. В самом деле, в [43] установлено, что "четные" *н*-алканы и *н*-алкены в 13-ти образцах из 16-ти преобладают в составе окклюдированных соединений, выделенных из асфальтенов путем их мягкого окисления системой H₂O₂/CH₃COOH. Асфальтены перед процедурой окисления экстрагировали ацетоном в аппарате Сокслета в течение 240 ч для удаления адсорбированных/соосажденных соединений. В [44] аналогичное MMP среди *н*-алканов и *н*-алкенов наблюдалось в маслах ацетонового экстракта асфальтенов нефти

Рис. 3. Масс-хроматограммы М-0 (1) и М-К (2) по ионам с *m/z* 178 + 192 (А, фенантрены) и по ионам с *m/z* 202 + 228 (Б, тетрациклические АУВ); Ф – фенантрен, МФ – изомеры метилфенантрена, Флу – флуорантен, Пир – пирен, Хр – хризен, Б[а]А - бензо[а]антрацен.

Крапивинского месторождения (Томская область), а также среди соединений, связанных через сульфидные мостики в структуре неэкстрагируемых ацетоном, так называемых, "высокомолекулярных" асфальтенов.

По характеристическим ионам с m/z 82 + 83 не удалось идентифицировать алкилциклогексаны в М-0. В то же время, они легко идентифицируются в М-К. В этом образце, аналогично *н*-алканам, среди алкилциклогексанов с числом атомов углерода в молекуле от 18 до 30 преобладают "четные" гомологи.

Что касается стеранов и тритерпанов, они показывают типичный для большинства нефтей и природных битумов Татарстана [11, 45] состав.

Гидротермальная конверсия асфальтита практически не приводит к изменению состава этих соединений. Среди стеранов незначительно возрастает доля прегнанов и диастеранов, что практически всегда происходит при термическом воздействии [15, 27, 28]. В составе тритерпанов отмечаются лишь незначительные изменения соотношения между адиантаном (Γ_{29}) и гопаном (Γ_{30}).

Более существенные изменения произошли в составе ароматических УВ. Для фенантренов и тетрациклических ароматических УВ, доля которых после конверсии возросла в 9.3 и 2.6 раза, соответственно (табл. 3), изменения их группового и индивидуального составов отражено на рис. 3.

В случае фенантренов (рис. 3А) интенсивность пика незамещенного фенантрена по отношению к изомерам метилфенантена резко возрастает. Это свидетельствует в пользу заключения, высказанного в [15, 37], о наличии в молекулах смол и асфальтенов связей типа бифенильной, так как полное деалкилирование гомологов фенантрена при температуре конверсии 250°С маловероятно. Пики антрацена и его метилзамещенного гомолога отсутствуют, хотя их появление, как правило, характерно для продуктов термических превращений природных битумов, в частности, асфальтита Ивановского месторождения [13-15, 46. 47]. В случае тетрациклических ароматических УВ (рис. 3Б) резко возросло отношение суммы флуорантена и пирена к сумме хризена и бензо[а]антрацена.

Тетразамещенные 1-алкил-2,3,6-триметилбензолы в нефтях впервые были идентифицированы в работе [48]. Их преобладание среди моноциклических ароматических УВ является характерной особенностью, которая связана с наличием в исходной биомассе таких биароматических каротиноидов, как изорениератен, который содержится в фотосинтезирующих серных бактериях семейства Chlorobiaceae (род *Chlorobium*) [49–51]. Эти бактерии, в свою очередь, относятся к группе аноксигенных фототрофных бактерий, осуществляющих окисление сероводорода или серы до сульфатов [52]. В продуктах конверсии отсутствуют низкомо-

Рис. 4. Масс-хроматограммы М-0 (1) и М-К (2) по ионам с m/z 133 + 134 (А, алкилтриметилбензолы) и по ионам с m/z 184 + 198 + 212 (Б, дибензотиофены). Фт – фталаты. Цифры соответствуют числу атомов углерода в молекулах алкилтриметилбензолов. ДБТ – дибензотиофен, МДБТ, С₂-ДБТ – области элюирования дибензотиофена, изомеров метилдибензотиофена и С₂-дибензотиофенов, соответственно.

лекулярные гомологи (рис. 4А), а также произошло незначительное изменение отношения гомологов с 15, 16 18, 19 атомов углерода в молекуле.

Сходство и различие М-0 и М-К по групповому составу нафталинов заключается в следующем: а) нафталин отсутствует в обоих образцах; б) в М-К в отличие от М-0 также отсутствуют изомеры метилнафталина; в) среди гомологов в обоих образцах преобладают изомеры С₃-нафталина.

Что касается дибензотиофенов в М-0 и М-К, то различия в их составе заключаются (рис. 4Б) в увеличении относительной интенсивности пика незамещенного гомолога в продукте конверсии.

Таким образом, в модельных экспериментах показано, что при сравнительно низкой температуре 250°С с использованием природного оксидного катализатора – гематита могут быть созданы благоприятные условия для конверсии твердого природного асфальтита с образованием жидких продуктов. Гидротермально-каталитическая конверсия асфальтита Спиридоновского месторожления позволяет более чем в 2 раза увеличить в составе продуктов содержание УВ (масел), в 2 раза снизить содержание этанол-бензольных смол, а асфальтенов – с 60.7 до 35.4%. Нежелательным фактором является наличие в составе продуктов конверсии нерастворимых науглероженных веществ типа карбенов и карбоидов, выход которых составляет 24.6%.

Установлено, что масла продуктов гидротермально-каталитической конверсии асфальтита обогащены ароматическими, полициклоароматическими, карбонилсодержащими структурными фрагментами и сульфоксидами. Наблюдаются изменения и в относительном содержании различных типов индивидуальных соединений. Низкое содержание алканов, повышенное содержание тритерпанов характеризуют исходный спиридоновский асфальтит как биодеградированный объект. Однако в маслах жидких продуктов конверсии резко возросло относительное содержание алканов, идентифицированы алкилциклогексаны, которые отсутствовали в исходном асфальтите, стало больше три- и тетрациклических ароматических УВ, дибензотиофенов. В составе масел доля фенантренов и тетрациклических ароматических УВ, возросла в 9.3 и 2.6 раза, соответственно. В то же время, заметно снизилось относительное содержание полициклических нафтенов: стеранов, тритерпанов. Выявленные различия в составе идентифицированных соединений, по-видимому, обусловлены их генерацией при деструкции смол и асфальтенов, в которых они могли находиться как в сорбированном и/или окклюдированном состоянии, так и в виде структурных фрагментов молекул, в том числе "серосвязанных".

НЕФТЕХИМИЯ том 59 № 1 2019

Авторы благодарят Томский региональный центр коллективного пользования ТНЦ СО РАН (Tomsk Regional Common Use Center of the TSC SB RAS) за предоставленные приборы: ИК-Фурьеспектрометр с Раман-модулем TermoElectron, Nicolet 5700 и масс-спектрометр высокого разрешения Termo Scientific DFS.

СПИСОК ЛИТЕРАТУРЫ

- 1. Бахтизина Н.В. // Научно-технический Вестник ОАО "НК "Роснефть". 2011. № 24. С. 30.
- Российская нефть: проблемы и перспективы // Московский центр Карнеги, 2013 [Электронный ресурс]. Режим доступа: http://carnegie.ru/2013/05/28/, свободный.
- Минерально-сырьевая база [Электронный ресурс] // Портал Правительства Республики Татарстан, 2013. Режим доступа: http://tfi.tatarstan.ru/rus/mineral.htm.
- Маганов Н., Ибрагимов Н., Хисамов Р., Зарипов А., Мотина Л., Мехеев Е. // Oil&Gas Journal Russia. 2015. № 7. С. 60.
- 5. Шарыпов В.И., Береговцова Н.Г., Барышников С.В., Кузнецов Б.Н. // Химия в интересах устойчивого развития. 1997. Т. 5. С. 287.
- Абдрафикова И.М., .Каюкова Г.П., Петров С.М., Косачев И.П., Самигуллина А.И., Башкирцева Н.Ю., Романов Г.В. // Материалы Междунар. научнопрактич. конф. "Проблемы повышения эффективности разработки нефтяных месторождений на поздней стадии", 4–6 сентября 2013. Казань: ФЭН. С. 161.
- 7. Абдрафикова И.М., Каюкова Г.П., Петров С.М., Рамазанова А.И., Мусин Р.З., Морозов В.И. // Нефтехимия. 2015. Т. 55. № 2. С. 110 [Petrol. Chemistry. 2015. V. 55. № 2. Р. 104].
- Kayukova G.P., Gubaidullin A.T., Petrov S.M., Romanov G.V., Petrukhina N.N., Vakhin A.V. // Energy Fuels. 2016. V. 30. № 2. P. 773.
- 9. In situ Techniques for Recovery of Oil Sands Using Teledyne Isco Syringe Pumps // Syringe Pump Application Note AN12. 28 September, 2012.
- Каюкова Г.П. Петров С.М., Успенский Б.В. Свойства тяжелых нефтей и битумов пермских отложений Татарстана в природных и техногенных процессах. М.: ГЕОС. 2015. 343 с.
- Каюкова Г.П., Романов Г.В., Муслимов Р.Х., Лебедев Н.П., Петров Г.А. Химия и геохимия пермских битумов Татарстана М.: Наука, 1999. 304 с.
- 12. Каюкова Г.П., Романов Г.В., Лукьянова Р.Г., Шарипова Н.С. Органическая геохимия осадочной толщи и фундамента территории Татарстана М.: ГЕОС, 2009. 487 с.
- 13. Антипенко В.Р., Голубина О.А., Гончаров И.В., Носова С.В., Рокосов Ю.В. // Известия Томского политехнического университета. 2005. Т. 308. №6. С. 122.
- 14. Антипенко В.Р., Гончаров И.В., Рокосов Ю.В., Борисова Л.С. // Сверхкритические флюиды: Теория и практика. 2011. Т. 6. № 3. С. 15 [Russian J. of Physical Chemistry B. 2011. V. 5. № 8. Р. 1195].

- 15. Антипенко В.Р. Термические превращения высокосернистого природного асфальтита. Геохимические и технологические аспекты. Новосибирск: Наука, 2013. 184 с.
- 16. Fedyaeva O.N., Antipenko V.R., Vostrikov A.A. // The J. of Supercritical Fluids. 2014. V. 88. P. 105.
- 17. Востриков А.А., Антипенко В.Р., Шишкин А.В., Федяева О.Н. // Сверхкритические флюиды: Теория и практика. 2014. Т. 9. № 1. С. 62 [Russian J. of Physical Chemistry B. 2014. V. 8. № 8. Р. 1069].
- 18. *Каюкова Г.П., Киямова А.М., Романов Г.В.* // Нефтехимия. 2012. Т. 52. № 1. С. 7 [Petrol. Chemistry. 2012. V. 52. № 1. Р. 5].
- Каюкова Г.П., Успенский Б.В., Абдрафикова И.М., Мусин Р.З. // Нефтехимия. 2016. Т. 56. № 4. С. 337 [Petrol. Chemistry. 2016. V. 56. № 7. Р. 572].
- Современные методы исследования нефтей (Справочно-методическое пособие). Под ред. Богомолова А.И, Темянко М.Б., Хотынцевой Л.И. Л.: Недра, 1984. 431 с.
- 21. *Большаков Г.Ф.* Инфракрасные спектры аренов. Новосибирск: Наука, 1989. 230 с.
- 22. *Speight J.G.* Handbook of Petroleum Analysis. New-York: Willey Interscience, 2001. 489 p.
- 23. Cookson D.J., Smith B.E. // Fuel. 1989. V. 68. P. 776.
- 24. Федяева О.Н., Антипенко В.Р., Востриков А.А. // Сверхкритические флюиды: Теория и практика. 2017. Т. 12. № 1. С. 80.
- Туманян Б.П. Научные и прикладные аспекты теории нефтяных дисперсных систем. М.: ООО "Тумагрупп". Изд.-во "Техника", 2000. 336 с.
- 26. Петров Ал.А. Углеводороды нефти. М.: Наука, 1984. 263 с.
- Peters K.E., Moldowan J.M. The Biomarkers Guide. Interpreting Molecular Fossils in Petroleum and Ancient Sediments – Englewood Cliffs, New Jersey: Prentice Holl, 1993. 363 p.
- Peters K.E., Walters P.P., Moldovan J.M. // The Biomarker Guide. Biomarkers and Isotopes in Petroleum Systems and Earth History. V. 1 and 2. Cambridge: Cambridge University Press, 2005. 1155 p.
- 29. Rubinstein I., Spyckerelle P., Strausz O.P. // Geochim. Cosmochim. Acta. 1979. V. 43. № 1. P. 1.
- 30. Арефьев О.А., Макушина В.М., Петров Ал.А. // Известия АН СССР, сер. геол. 1980. № 4. С. 124.
- 31. *Гордадзе Г.Н., Петров Ал.А.* // Геология нефти и газа. 1986. № 3. С. 31.
- Jones D.M., Douglas A.G., Connan J. // Org. Geochem. 1988. V. 13. № 4–6. P. 981.
- 33. Sofer Z. // Org. Geochem. 1988. V. 13. № 4–6. P. 939.
- 34. Гордадзе Г.Н. Термолиз органического вещества в нефтегазопоисковой геохимии. М.: ИГиРГИ, 2002. 336 с.
- 35. Гордадзе Г.Н., Русинова Г.В. // Нефтехимия. 2003. Т. 43. № 5. С. 342.
- 36. Гордадзе Г.Н., Гируц М.В., Кошелев В.Н., Юсупова Т.Н. // Нефтехимия. 2015. Т. 55. № 1. С. 25 [Petrol. Chemistry. 2015. V. 55. № 1. Р. 22].
- 37. Антипенко В.Р., Меленевский В.Н. // Нефтехимия. 2012. Т. 52. № 6. С. 403. [Petrol. Chemistry. 2012. V. 52. № 6. Р. 373].

НЕФТЕХИМИЯ том 59 № 1 2019

- 38. Гринько А.А., Мин Р.С., Сагаченко Т.А., Головко А.К. // Нефтехимия. 2012. Т. 52. № 4. С. 249 [Petrol. Chemistry. 2012. V. 52. № 4. Р. 221].
- Гринько А.А., Мин Р.С., Сагаченко Т.А., Головко А.К. // Нефтепереработка и нефтехимия. 2012. № 4. С. 24.
- Гринько А.А., Мин Р.С., Сагаченко Т.А., Головко А.К. // Химия в интересах устойчивого развития. 2012. Т. 20. № 2. С. 205.
- Агафонова З.Г. // Геология нефти и газа. 2003. № 5. С. 37.
- 42. *Тиссо Б., Вельте Д.* Образование и распространение нефти. М.: Мир, 1981. 503 с.
- 43. Yang P., Liao Z., Zhang L., Creux P. // Energy Fuels. 2009. V. 23. P. 820.
- 44. Сергун В.П., Чешкова Т.В., Сагаченко Т.А., Мин Р.С. // Известия Томского политехнического университета. Инжиниринг георесурсов. 2017. Т. 328. № 7. С. 228.

- 45. Арефьев О.А., Забродина М.Н., Русинова Г.В., Петров Ал.А. // Нефтехимия. 1994. Т. 34. № 6. С. 483 [Petrol. Chemistry. 1994. V. 34. № 6. Р. 469].
- 46. *Антипенко В.Р.* // Известия Томского политехнического университета. 2011. Т. 319. № 3. С. 125.
- 47. Антипенко В.Р. // Нефтехимия. 2012. Т. 52. № 3. С. 196 [Petrol. Chemistry. 2012. V. 52. № 3. Р. 196].
- Остроухов С.Б., Арефьев О.А., Макушина В.М., Забродина М.Н., Петров Ал.А. // Нефтехимия. 1982. Т. 22. № 6. С. 723 [Petrol. Chemistry 1982. V. 22. № 6. Р. 723].
- 49. Summons R.E., Powell T.G. // Nature. 1986. V. 319. P. 763.
- 50. *Summons R.E., Powell T.G.* // Geochim. Cosmochim. Acta. 1987. V. 51. № 3. P. 557.
- Koopmans M.P., Köster J., Schouten H.M.E., Hartgers W.A., de Leeuw J.W., Sininghe Damste J.S. // Geochim. Cosmochim. Acta. 1996. V. 60. № 20. P. 4467.
- 52. Определитель бактерий Берджи. В 2-х т., Т. 1: Пер. с англ. / Под ред. Хоулта Дж., Крига Н., Снита П., Стейли Дж., Уилльямса С. М.: Мир, 1997. 432 с.