УЛК 66.092-977+544.421.42+544.421.081.7+544.032.4

ИССЛЕДОВАНИЕ ТЕРМИЧЕСКОЙ СТАБИЛЬНОСТИ 4-mpem-БУТИЛФЕНОЛА

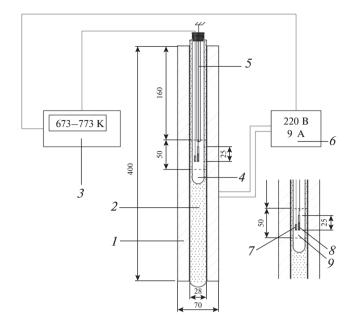
© 2019 г. В. А. Шакун^{1, *}, Т. Н. Нестерова¹, П. В. Наумкин²

¹Самарский государственный технический университет, Самара, Россия
²ООО "ИНКОРГАЗ", Санкт-Петербург, Россия
*E-mail: ShakyH@mail.ru
Поступила в редакцию 14 01 2017 г.

Поступила в редакцию 14.01.2017 г. После доработки 09.04.2018 г. Принята к публикации 26.07.2018 г.

В диапазоне температур 673—738 К изучена термическая стабильность 4-*терет*-бутилфенола, проведена идентификация компонентов реакционной массы термолиза, предложена кинетическая модель процесса, рассчитаны константы скорости и параметры уравнения Аррениуса для всех рассматриваемых реакций. Установлена преобладающая роль изомеризационных превращений 4-*терет*-бутилфенола. Информация о термической стабильности 4-ТБФ позволяет более обоснованно подходить к его применению в качестве добавки, повышающей окислительную стабильность топлив и смазочных материалов, а также в качестве антиоксиданта для полимерных композиций.

Ключевые слова: 4-*терми*-бутилфенол, термолиз, термическая стабильность, термическая деструкция, изомеризация, кинетика, константа скорости, параметры уравнения Аррениуса.


DOI: 10.1134/S0028242119010131

Алкилфенолы (АФ) имеют большое практическое значение в развитии современной промышленности. Они используются в производстве пенопластов, полимерных эмульсий, ПАВ, присадок к маслам и топливам и стабилизаторов термической деструкции полимеров. АминоАФ применяются в получении топливных эмульсий для двигателей [1—4]. Фенольные смолы используются при производстве электролитических ячеек и огнеупорных материалов [5]. Фенольные антиоксиданты обладают широким спектром применения. Тем не менее, вопросу термической стабильности фенолов и их производных уделяется внимание в довольно ограниченном объеме исследований:

- Качатряном и др. [6, 7] получены данные по кинетике образования феноксильных ($C_6H_5O \cdot$) и циклопентадиенильных ($C_5H_5 \cdot$) радикалов при газофазном пиролизе фенола 673—1273 К при пониженных давлениях.
- Марш, Ледесма и др. [8] исследовали пиролиз пирокатехина в атмосфере азота (при 773 1273 К и времени контакта 0.4 с с целью получения кинетических параметров образования конденсированных полициклических ароматических углеводородов (УВ), являющихся твердым топливом.
- Адоункпе и др. [9] исследована термическая стабильность гидрохинона в газовой фазе в ин-

тервале температур 623-1123 K; установлено наличие *п*-хинольного и циклопентадиенильного радикала, а также выявлено влияние температуры процесса на их концентрации.

- В работе [10] Хамама и Навар описали термический распад 2-трет-бутил-4-метоксифенола, н-пропилгаллата, 2-трет-бутилгидрохинона и 2,6-ди-трет-бутил-4-метилфенола в среде воздуха при 458 К. Предложены вероятные механизмы распада 2-трет-бутил-4-метоксифенола, 2,6-дитрет-бутил-4-метилфенола и 2-трет-бутилгидрохинона. Для 2-трет-бутилгидрохинона установлено, что наряду с деструкцией возможно протекание изомеризационных превращений трет-бутильного заместителя в изобутильный. Однако результаты данной работы ограничены одной температурой и не рассматривают кинетические параметры протекающих превращений.
- Сато и др. [11] установили факт изомеризации алкильного заместителя при пиролизе изопропилфенолов в среде суперкритической воды при 720—820 К; предложена модель протекающих превращений, рассчитаны константы скорости реакии.
- Репкиным [12] исследована термическая стабильность 4-*трет*-бутилфенола (4-ТБФ) в диапазоне 683—733 К; предложена модель распада. Однако, как показали наши исследования, информация о составе реакционных масс разложения 4-

Рис. 1. Схема экспериментальной установки: 1- печь; 2- реактор, заполненный кварцевым песком; 3- измеритель-регулятор температур одноканальный TPM1; 4- пробирка из кварцевого стекла; 5- направляющая из кварцевого стекла; 6- ЛАТР; 7- термопара типа "платинородий—платина" тип S; 8- капилляр с исследуемым веществом; 9- изотермическая зона.

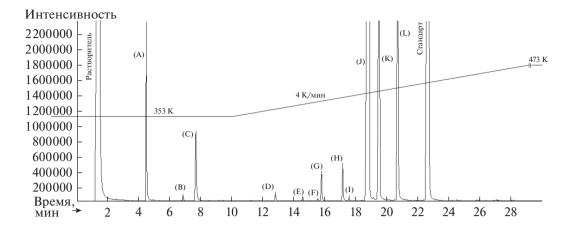
ТБФ, приведенная в работе, нуждается в уточнении, а кинетическая модель должна быть изменена и дополнена.

В настоящей работе более подробно рассмотрен вопрос состава реакционной массы термолиза 4-ТБФ. Для всех превращений, включенных в кинетическую модель, произведен расчет кинетических параметров.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исходные вещества. 4-ТБФ синтезирован, выделен и очищен нами в соответствии с рекомендациями работы [13]. Концентрация основного вещества составила 99.9 мас. %. Получали 4-ТБФ алкилированием фенола изобутиленом температуре 353 К, соотношении изобутилен : фе-HOJ = 0.25 моль/моль в присутствии высушенного до постоянного веса макропористого сульфокатионита Amberlyst 36 Dry; загрузка катализатора 10 мас. % в расчете на реакционную массу, время контакта 30 мин. Синтез осуществляли в трехгорлой колбе, снабженной капилляром подачи изобутилена, термометром и обратным холодильником с внутренней направляющей для стеклянной мешалки. Расход изобутилена (концентрация 99.99%) регулировали с помощью калиброванного реометра.

Выделение 4-ТБФ осуществляли с помощью вакуумной ректификации ($p_{\text{ост}} = 0.8-1.0 \text{ кПа}$) на лабораторных колонках эффективностью 30 теоретических тарелок. Чистота выделенного 4-ТБФ составила 99.9 мас. %.


Идентификацию 4-ТБФ производили методом ГХ-МС и сравнением спектров и времени выхода полученного образца со стандартным образцом 4-ТБФ (чистота 99 мас. %) производства Sigma-Aldrich. Вероятность совпадения с данными библиотеки NIST 2011 составила 99%.

Методика исследования термолиза 4-ТБФ. Термолиз проводили в газовой фазе в кварцевых капиллярах (l = 20-25 мм; $d_n = 1.05-1.56$ мм), в которые помещали исследуемое вещество, после этого капилляр продували гелием (чистота 99.999%) и запаивали на волоролной горелке. Степень заполнения веществом составляла 20-30% объема, что соответствовало массе вещества в 0.4-0.5 мг. Взвешивания производили на аналитических весах Shimadzu AUW 120D с точностью 10^{-4} г. Термостатирование осуществляли на специальной установке (рис. 1), обеспечивающей точность поддержания температуры в изотермической зоне ±1 К. Время достижения изотермического режима после помещения капилляра в печь не превышало 60 с. Процесс пиролиза всегда завершали процедурой закалки, которую проводили путем незамедлительного переноса капилляра из печи в охлажденную до -15° С пробирку. Для решения задачи по установлению кинетической модели термического распада 4-ТБФ была избрана индивидуальная температура — 718 К (в интервале исследования 673-738 К с шагом в 5 К).

Анализ и идентификация продуктов. Основной метод анализа реакционных смесей — ГЖХ. Анализ выполнен на приборе "Кристалл 2000 М" с программно-аппаратным комплексом "Хроматек-Аналитик", оснащенном пламенно-ионизационным детектором, делителем потока газа-носителя и кварцевой капиллярной колонкой ($60 \text{ м} \times 250 \text{ мкм} \times 0.25 \text{ мкм}$) с привитой неподвижной фазой SE-30. В качестве газа-носителя использовали гелий; давление его на входе в колонку — 3 атм, стабильность давления обеспечивалась двойным редуцированием. Температурные профили колонки приведены на соответствующих хроматограммах (с погрешностью ± 0.1 °C). Температура испарителя — 200°C, детектора — 280°C.

При количественном анализе в качестве внутреннего стандарта использован n-тетрадекан (чистота 99.9 мас. % по ГЖХ).

Идентификация компонентов смесей включала также хромато-масс-спектрометрический анализ, выполненный на газовом хроматографе Agilent 6850, оснащенном капиллярной колонкой Agilent 19091S-433E (30 м × 250 мкм × 0.25 мкм) с неподвижной фазой HP-5MS (5% дифенилполи-

Рис. 2. Хроматограмма продуктов термических превращений 4-ТБФ ($T=718~\mathrm{K}$, $t_{\mathrm{контакта}}=20~\mathrm{мин}$): (A) — фенол; (B) — 2-метилфенол (2-МеФ); (C) — 4-метилфенол (4-МеФ); (D) —4-этилфенол (4-ЭФ);, (E) — 2-изопропилфенол (2-ИПФ); (F) — 2-и-пропилфенол (2-НПФ), (G) — 4-изопропилфенол (4-ИПФ), (H) — 4-и-пропилфенол (4-НПФ), (I) — 2-изобутилфенол, (J) — 4-ТБФ, (K) — 4-изобутилфенол (4-ИБФ); (L) — 4-и-бутилфенол, добавленный к анализируемой смеси с целью установления структуры 4-ИБФ методом ГХ-МС.

силоксана + 95% диметилполисилоксана) и массселективным детектором Agilent 5975C VL MSD при ионизирующем напряжении 70 эВ.

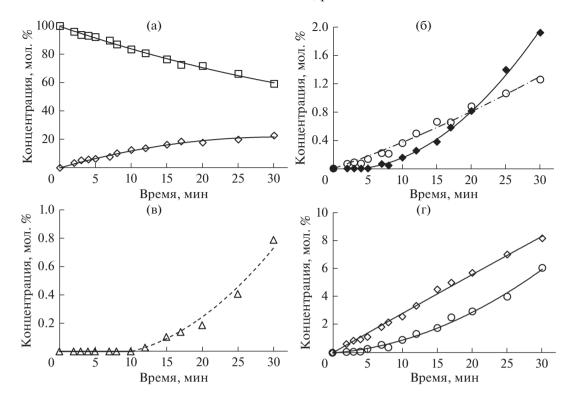
Реакционная масса термолиза 4-*трем***-бутилфенола.** Типичная хроматограмма продуктов пиролиза представлена на рис. 2.

Идентификацию основных продуктов реакции проводили с использованием данных библиотеки NIST 2011 по полученным нами массспектрам соединений: фенол (m/z 94), 2-МеФ и 4-МеФ (m/z 108, m/z 107), 4-ЭФ (m/z 122, m/z 107), 2-ИПФ и 4-ИПФ (m/z 136, m/z 121, m/z 91, m/z 77), 2-НПФ и 4-НПФ (m/z 136, m/z 107, m/z 77), 4-ТБФ (m/z 150, m/z 135, m/z 107).

Совпадение масс-спектра с библиотечными данными NIST 2011 для всех компонентов реакционной массы, приведенных на хроматограмме (рис. 2) составило 99%. Структуру 4-МеФ, 4-ЭФ, 4-ИПФ и 4-НПФ дополнительно определяли путем сравнения времен выхода и спектров продуктов реакции со стандартными образцами Sigma-Aldrich чистотой 99, 99, 98 и 99% соответственно.

4-ИБФ (m/z 150, m/z 107) был идентифицирован в результате сравнения времен выхода и масс-спектров компонента (K), образующегося в результате термических превращений 4-ТБФ, и 4- μ -бутилфенола (4-НБФ, компонент (L)) (>98% по ГЖХ), который был добавлен к анализируемой смеси. Компоненты (K) и (L) имели разное время выхода.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ


Вопреки ожидаемому распаду по β-С–С-связи или деалкилированию 4-ТБФ термическое воздействие приводило прежде всего к структурной изомеризации алкильного заместителя с образова-

нием 4-ИБФ (рис. 3a). За 30 мин опыта содержание его в реакционной массе достигало 22.70 мол. % (при степени превращения 4-ТБФ 40.80%). Деалкилирование 4-ТБФ при этом приводило к образованию фенола, концентрация которого за 30 мин достигала 8.13 мол. % (рис. 3г). Анализ характера кинетических кривых позволил нам сделать вывод о том, что это единственные превращения, которым подвергается исходный 4-ТБФ. Источником образования прочих компонентов реакционной массы является 4-ИБФ.

Продукты деструкции и дальнейших последовательных превращений 4-ИБФ имели значительно более низкие концентрации. 4-ИПФ, 4-НПФ (рис. 36) и 4-ЭФ (рис. 3в) за 30 мин в сумме представляли лишь 3.96 мол. %, а 4-МеФ — 6.03 мол. % (рис. 3г).

По мере увеличения глубины процесса (15—27 мин) наблюдалась также позиционная изомеризация заместителей в ароматическом ядре фенолов с образованием 2-изомеров ИБФ, ИПФ, НПФ и МеФ. При этом концентрация 2-ИБФ была ниже 4-ИБФ в $2.05 \times 10^3 - 1.36 \times 10^4$ раз. Концентрации в остальных группах позиционных изомеров были представлены в следующих соотношениях: 4-ИПФ/2-ИПФ = (10-25)/1,4-HПФ/2-HПФ = (15-35)/1,4-MeΦ/2-MeΦ = (20-80)/1. 2-Изомеры ТБФ и ЭФ не были обнаружены.

Учитывая значительное преобладание изомеров с заместителем в положении 4- и возможность образования 2-изомеров вследствие *параорто*-изомеризации, при разработке кинетической модели мы пользовались обозначениями 4-ИБФ, 4-ИПФ, 4-НПФ, 4-МеФ для суммы 4- и 2-изомеров.

Рис. 3. Зависимость изменения концентрации продуктов превращения 4-ТБФ в реакционной массе при 718 К: (а) (\blacksquare , —) 4-ТБФ; (\diamondsuit , —) 4-ИБФ; (\diamondsuit) (\diamondsuit , —) 4-ИПФ, (\diamondsuit , —) 4-НПФ; (\diamondsuit) (\diamondsuit , —) 4-ЭФ; (\diamondsuit , —) 4-МеФ; (\diamondsuit , —) фенол.

Для установления возможных направлений протекания превращений с участием перечисленных выше компонентов был принят ряд предположений, основанных на структурных особенностях молекул и характере изменения их концентраций. Основные направления: изомеризация 4-ТБФ в 4-ИБФ; образование фенола из 4-ТБФ вследствие отщепления изобутилена; образование 4-ИПФ из 4-ИБФ вследствие отщепления метиленового фрагмента и перегруппировки; образование 4-МеФ из 4-ИБФ вследствие отщепления пропилена; изомеризация 4-ИПФ с образованием 4-НПФ; деструкция 4-НПФ с образованием 4-ЭФ.

На основе указанных выше предположений были сформированы:

- общая схема превращений в системе (рис. 4).
- кинетическая модель процесса.

$$\frac{d[4 - T \mathbf{D} \Phi]}{dt} = -k_1 [4 - T \mathbf{D} \Phi] - k_2 [4 - T \mathbf{D} \Phi], \quad (1)$$

$$\frac{d[4 - \Pi B\Phi]}{dt} = k_{l}[4 - \Pi B\Phi] - (2)$$
$$-k_{3}[4 - \Pi B\Phi] - k_{4}[4 - \Pi B\Phi],$$

$$\frac{d[4 - \Pi \Pi \Phi]}{dt} = k_3[4 - \Pi \Phi] - k_5[4 - \Pi \Pi \Phi], \quad (3)$$

$$\frac{d[4 - H\Pi\Phi]}{dt} = k_5[4 - H\Pi\Phi] - k_6[4 - H\Pi\Phi]. \quad (4)$$

$$\frac{d[4-\Theta\Phi]}{dt} = k_6[4-H\Pi\Phi]. \tag{5}$$

$$\frac{d[4 - \text{Me}\Phi]}{dt} = k_4[4 - \text{M}\Phi]. \tag{6}$$

Значения констант скорости индивидуальных превращений (табл. 1) были определены дифференциальным методом путем совместной обработки для каждой температуры всех экспериментальных данных с критерием оптимизации (7):

$$\sum_{n} \left(\left(\frac{dC_{i}}{dt} \right)_{\text{эксперимент}} - \left(\frac{dC_{i}}{dt} \right)_{\text{pacчet}} \right)^{2} \to \min, \quad (7)$$

где n — количество измерений.

Адекватность модели иллюстрируется на рис. 5, где экспериментальные концентрации компонентов сопоставлены с расчетными значениями концентраций, полученными методом Рунге—Кутты с использованием констант скорости, приведенных в табл. 1. Величина критерия Пирсона для сопоставления концентраций составила 0.99.

Значения констант скорости k_1 и k_2 , представленных в табл. 1, свидетельствуют о том, что при термическом воздействии на 4-ТБФ изомеризация "4-ТБФ \rightarrow 4-ИБФ" протекает в 4 раза быстрее деструктивных превращений.

OH
OH
OH
$$k_2$$
OH
 k_3
OH
 k_4
OH
OH
 k_4
OH
 k_4
OH
 k_4
OH

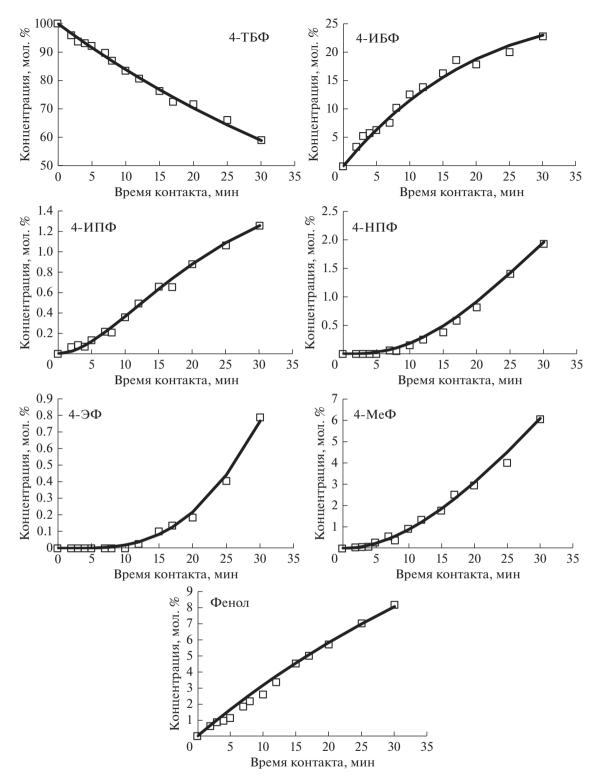

Рис. 4. Схема превращений, протекающих при термолизе 4-ТБФ (718 К).

Таблица 1. Значения констант скорости для термических превращений, сопровождающих деструкцию 4-ТБФ в диапазоне 673–738 K

Реакция	4-ТБФ	4-ТБФ	4-ИБФ	4-ИБФ	4-ИПФ	4-НПФ
геакция	4-ИБФ	Фенол	4-ИПФ	4-МеФ	4-НПФ	4-ЭФ
k_i , c ⁻¹ T , K	k_1	k_2	k_3	k_4	k_5	k_6
673	1.90×10^{-5}	2.43×10^{-6}	3.50×10^{-6}	5.57×10^{-6}	2.11×10^{-4}	3.12×10^{-5}
678	2.91×10^{-5}	3.69×10^{-6}	5.86×10^{-6}	9.59×10^{-6}	2.92×10^{-4}	4.70×10^{-5}
683	3.28×10^{-5}	5.27×10^{-6}	8.64×10^{-6}	1.42×10^{-5}	3.86×10^{-4}	6.59×10^{-5}
688	5.04×10^{-5}	7.49×10^{-6}	1.27×10^{-5}	2.10×10^{-5}	5.08×10^{-4}	9.20×10^{-5}
693	7.27×10^{-5}	1.06×10^{-5}	1.85×10^{-5}	3.07×10^{-5}	6.65×10^{-4}	1.28×10^{-4}
698	8.18×10^{-5}	1.49×10^{-5}	2.68×10^{-5}	4.48×10^{-5}	8.68×10^{-4}	1.77×10^{-4}
703	1.10×10^{-4}	2.08×10^{-5}	3.86×10^{-5}	6.49×10^{-5}	1.13×10^{-3}	2.43×10^{-4}
708	1.75×10^{-4}	3.35×10^{-5}	6.52×10^{-5}	1.15×10^{-4}	1.61×10^{-3}	3.82×10^{-4}
713	1.76×10^{-4}	4.02×10^{-5}	7.91×10^{-5}	1.34×10^{-4}	1.89×10^{-3}	4.55×10^{-4}
718	2.35×10^{-4}	5.73×10^{-5}	1.55×10^{-4}	2.37×10^{-4}	2.44×10^{-3}	6.42×10^{-4}
723	3.06×10^{-4}	7.61×10^{-5}	1.59×10^{-4}	2.72×10^{-4}	3.11×10^{-3}	8.36×10^{-4}
728	4.27×10^{-4}	1.04×10^{-4}	2.24×10^{-4}	3.85×10^{-4}	3.97×10^{-3}	1.13×10^{-3}
733	5.70×10^{-4}	1.35×10^{-4}	2.92×10^{-4}	4.75×10^{-4}	5.05×10^{-3}	1.39×10^{-3}
738	6.92×10^{-4}	1.80×10^{-4}	3.65×10^{-4}	6.55×10^{-4}	6.05×10^{-3}	1.98×10^{-3}

^{*} Погрешность определения значений констант скорости составила не более 5%.

НЕФТЕХИМИЯ том 59 № 1 2019

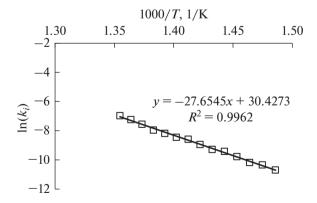
Рис. 5. Сопоставление экспериментальных (□) и расчетных (—) данных для изменения концентраций продуктов термических превращений 4-ТБФ при 718 К.

4-ИБФ подвергается деструкции с образованием 4-ИПФ и 4-МеФ (реакция 3 и 4). При этом отщепление пропилена, приводящее к 4-МеФ в качестве продукта, протекает в 1.5 раза быстрее по

сравнению с процессом, приводящим к 4-ИПФ ($k_3 = 1.55 \times 10^{-4}$, $k_4 = 2.37 \times 10^{-4}$ для T = 718 K).

Константа скорости k_6 для изомеризации "4-ИПФ ightarrow 4-НПФ" имеет наибольшее значе-

Таблица 2. Значения констант скорости для термических превращений "4-ТБ Φ \rightarrow продукты", протекающих при термолизе 4-ТБ Φ в диапазоне 673—738 К


<i>T</i> , K*	1000/T	k_{P} , c ⁻¹	ln (<i>k</i> _i)
673	1.4859	2.38×10^{-5}	-10.648
678	1.4749	3.36×10^{-5}	-10.302
683	1.4641	3.95×10^{-5}	-10.140
688	1.4535	5.85×10^{-5}	-9.747
693	1.4430	8.36×10^{-5}	-9.389
698	1.4327	9.55×10^{-5}	-9.257
703	1.4225	1.33×10^{-4}	-8.924
708	1.4124	1.92×10^{-4}	-8.560
713	1.4025	2.17×10^{-4}	-8.436
718	1.3928	2.85×10^{-4}	-8.164
723	1.3831	3.54×10^{-4}	-7.945
728	1.3736	5.31×10^{-4}	-7.541
733	1.3643	7.26×10^{-4}	-7.228
738	1.3550	9.46×10^{-4}	-6.963

^{*} Погрешность определения значений констант скорости составила не более 5%.

ние, что подтверждает преимущество изомеризационных превращений разветвленных заместителей в ароматическом ядре при термолизе 4-ТБФ.

Расчет параметров уравнения Аррениуса. Кинетический анализ экспериментальных данных в диапазоне $673-738~\rm K$ был выполнен для реакции распада "4-ТБФ \rightarrow продукты" по уравнениям расчета константы скорости реакции первого порядка:

$$A \to B$$
, где $A - 4$ -ТБФ, $B - \Sigma$ (продукты реакции), (8)

Рис. 6. Зависимость натурального логарифма константы скорости от обратной температуры для реакций распада 4-*mpem*-бутилфенола.

$$r = kC_4, \tag{9}$$

$$\ln \frac{C_{A,0}}{C_A} = kt.$$
(10)

Энергия активации и предэкспоненциальный множитель получены путем линеаризации уравнения Аррениуса в координатах " $\ln k_i - 1000/T$ ":

$$k = A \exp\left(\frac{-E_{\rm a}}{RT}\right). \tag{11}$$

Значения констант для реакции распада "4-ТБФ \rightarrow продукты" приведены в табл. 2, график зависимости "ln k_i от 1000/T" показан на рис. 6:

По экспериментальным значениям констант скоростей вычислены параметры уравнения Аррениуса: в исследуемом диапазоне температур предэкспоненциальный множитель для реакции распада "4-ТБФ \rightarrow продукты" равен $k_0 = 10^{13.2 \pm 0.3}$, энергия активации деструкции 4-ТБФ составляет 229.9 \pm 4.1 кДж/моль.

Для всех реакций, включенных в кинетическую модель процесса, в диапазоне температур 673—738 К были вычислены параметры уравнения Аррениуса (табл. 3).

С целью установления допустимого температурного диапазона синтезов, выделения, эксплуатации и хранения 4-ТБФ, а также продолжительности его пребывания в заданных условиях нами произведена приближенная оценка периода стабильности 4-ТБФ. Под периодом стабильности мы подразумеваем то время, в течение которого, при заданной температуре, происходит распад 1 мол. % вещества (табл. 4). Расчет произведен на основе полученных значений энергии активации и константы скорости по формуле (12):

$$\tau = \frac{0.01}{k_0 e^{-E/RT}}.$$
 (12)

ЗАКЛЮЧЕНИЕ

В результате исследования было установлено, что в диапазоне температур 673-738 К термолиз 4-трет-бутилфенола протекает по двум направлениям: деалкилирование с образованием фенола и изомеризация в 4-изобутилфенол. При этом скорость изомеризации значительно преобладает, а 4-изобутилфенол является основным продуктом исследуемых превращений. Реакционная масса также была представлена 4-метилфенолом, 4-изопропилфенолом, 4-лпропилфенолом, 4-этилфенолом.

Предложена кинетическая модель термических превращений 4-ТБФ, которая адекватно описывает экспериментальные данные в диапазоне температур исследования. Для шести реакций, составляющих кинетическую модель, полу-

Таблица 3. Значения параметров уравнения Аррениуса для термических превращений, сопровождающих деструкцию 4-ТБФ в диапазоне 673—738 К

Pear	кция	k_i	k_0 , c^{-1}	$E_{ m a}$, кДж/моль	R	m
4-ТБФ	4-ИБФ	k_1	12.8 ± 0.4	224.9 ± 4.7	0.99	14
4-ТБФ	Фенол	k_2	15.7 ± 0.2	273.7 ± 2.8	0.99	14
4-ИБФ	4-ИПФ	k_3	17.9 ± 0.5	299.7 ± 6.7	0.99	14
4-ИБФ	4-МеФ	k_4	18.3 ± 0.5	303.1 ± 6.1	0.99	14
4-ИПФ	4-НПФ	k_5	13.0 ± 0.1	214.1 ± 1.9	0.99	14
4-НПФ	4-ЭФ	k_6	15.8 ± 0.2	260.8 ± 2.8	0.99	14

Таблица 4. Период стабильности 4-ТБФ в диапазоне температур $523-773~{
m K}$

T, K	Время	Ед. изм.
773	2	С
723	25	c
673	428	c
623	3	Ч
573	6	сут
523	2	года

чены константы скорости и значения параметров уравнения Аррениуса. В диапазоне температур 673—738 К для распада "4-ТБФ \rightarrow продукты" определены константы скорости, значения энергии активации ($E_a = 229.9 \pm 4.1 \, \text{кДж/моль}$) и предэкспоненциального множителя ($k_0 = 10^{13.2 \pm 0.3}$). На основании полученных данных проведена приближенная оценка временных интервалов, в которых 99% 4-ТБФ сохраняет свою стабильность при заданной температуре. Для всех превращений, включенных в кинетическую модель, произведен расчет кинетических параметров.

Приведенная информация может быть использована в процессе разработки перспективных областей применения 4-ТБФ в качестве стабилизатора или антиоксиданта для смазочных материалов или полимеров, работающих в условиях повышенных температур. В целом, известная информация о термической стабильности 4-ТБФ позволяет более обоснованно подходить к его применению в качестве добавки, повышающей окисли-

тельную стабильность топлив и смазочных материалов, а также в качестве антиоксиданта для полимерных композиций.

СПИСОК ЛИТЕРАТУРЫ

- 1. Goldstein J.E., Pandrazi R.J. // Patent US № 20050217788 A1. Oct. 6. 2005.
- 2. Holmberg K., Jönsson B., Kronberg B., Lindman B.//
 Surfactants and Polymers in Aqueous Solution, 2nd ed., John Wiley & Sons Ltd., 2003, P. 545.
- 3. Rios M.A., Sales F.A., Mazetto S. E. // Energy & Fuels. 2009. V. 23. P. 2517.
- 4. Filippini B., Forsberg J., Steckel T., Moreton D., McAtee R. // Patent US № 20020020106 A1, Feb. 21, 2002.
- 5. *Rappoport Z*. The Chemistry of Phenols. Part 1. John Wiley & Sons Ltd., 2003. P. 1506.
- 6. *Khachatryan L., Adounkpe J., Dellinger B.* // J. Phys. Chem. A. 2008. V. 112. № 3. P. 481.
- 7. Khachatryan L., Burcat A., Dellinger B. // Combust. Flame. 2003. V. 132. P. 406.
- 8. Ledesma E. B., Marsh N. D., Sandrowitz A. K., Wornat M. J. // Energy & Fuels. 2002. V. 16. № 6. P. 1331.
- 9. *Adounkpe J., Khachatryan L., Dellinger B.* // Energy & Fuels. 2008. V. 22. № 5. P. 2986.
- Hamama A. A., Nawar W. W. // J. Agric. Food Chem. 1991. V. 39. P. 1063.
- Sato T., Adschiri T., Arai K. // J. Anal. Appl. Pyrolysis. 2003. V. 70. P. 735.
- Репкин Н.М. Дис. ... канд. хим. наук. Самара: Самарский гос. технич. ун-т. 2010. 160 с.
- 13. Воронин И.О., Нестерова Т.Н., Стрельчик Б.С., Журавский Е.А. // Кинетика и катали. 2014. Т. 55. № 6. С. 723.