УДК 544.478.42

# ИССЛЕДОВАНИЕ Pt-СОДЕРЖАЩИХ КАТАЛИЗАТОРОВ НА ОСНОВЕ УПОРЯДОЧЕННОГО АЛЮМОСИЛИКАТА ТИПА AI-MCM-41 И ПРИРОДНЫХ НАНОТРУБОК ГАЛЛУАЗИТА В ИЗОМЕРИЗАЦИИ КСИЛОЛОВ

© 2019 г. А. П. Глотов<sup>1,</sup> \*, М. И. Артемова<sup>1</sup>, Н. Р. Демихова<sup>1</sup>, Е. М. Смирнова<sup>1</sup>, Е. В. Иванов<sup>1</sup>, П. А. Гущин<sup>1</sup>, С. В. Егазарьянц<sup>2</sup>, В. А. Винокуров<sup>1</sup>

<sup>1</sup>РГУ нефти и газа (НИУ) имени И.М. Губкина, Москва, 119991 Россия <sup>2</sup>Московский государственный университет имени М.В. Ломоносова, Москва, 119991 Россия \*E-mail: glotov.a@gubkin.ru Поступила в редакцию 13.06.2019 г. После доработки 01.07.2019 г. Принята к публикации 02.07.2019 г.

Синтезированы и исследованы иерархические композитные материалы на основе упорядоченных алюмосиликатов типа Al-MCM-41 и галлуазитных нанотрубок (ГНТ) с различным массовым соотношением Al-MCM-41/галлуазит в качестве компонентов носителей Pt-содержащих катализаторов изомеризации ароматической фракции C-8 риформинга. На каждом этапе синтеза материалы были охарактеризованы методами просвечивающей электронной микроскопии (ПЭМ), низкотемпературной адсорбции азота, рентгенофлуоресцентного анализа, рентгенофазового анализа (РФА) и термопрограммируемой десорбцией аммиака (ТПД NH<sub>3</sub>). В изомеризации ксилолов наиболее эффективно проявили себя каталитические системы с массовым соотношением Al-MCM-41/ГНТ = 90 : 10 мас. %, обеспечив большую конверсию этилбензола и *м*-ксилола, чем катализатор на основе ГНТ. Установлено, что синтезированные катализаторы обладают большей селективностью по целевому продукту процесса, *n*-ксилолу, чем промышленный аналог в диапазоне температур 360–440°C. Максимальное значение селективности по *n*-ксилолу достигнуто в присутствии катализатора р Pt/Al-MCM-41/ГНТ (90 : 10)/Al<sub>2</sub>O<sub>3</sub> при 360°C (70%).

*Ключевые слова:* галлуазит, алюмосиликаты, MCM-41, изомеризация, *n*-ксилол, мезопористые материалы

DOI: 10.1134/S0028242119060030

Фракция, поступающая с установок риформинга, богата ароматическими соединениями состава  $C_8H_{10}$  (*пара-*, *орто-*, *мета-*ксилолы и этилбензол). Основная часть ксилолов идет на дальнейшую переработку с целью извлечения изомеров, в первую очередь *n-* и *о-*ксилолов. Так фталевый ангидрид, получаемый из *о-*ксилола, является сырьем для производства пластификаторов и алкидных смол, а переработка *n*-ксилола в терефталевую кислоту и диметилтерефталат создает сырьевую базу для производства синтетических (полиэфирных) волокон и пластмасс, в частности, полиэтилентерефталата (ПЭТ) [1].

На сегодняшний день катализаторы и процессы изомеризации нефтехимического ароматического сырья достаточно хорошо изучены [2–4]. Несмотря на это, по-прежнему актуальна задача разработки и модификации катализаторов процесса изомеризации С-8 фракции с целью достижения высокого выхода *n*-ксилола при одновременном снижении общих потерь ксилолов, а также возможностью переработки сырья с высоким содержанием этилбензола.

Ключевую роль в активности катализатора играют природа и свойства используемого носителя, важными характеристиками которого являются удельная площадь поверхности, кислотность, объем пор, термостабильность и др. [5-8]. В качестве активной фазы носителя, как правило, используют цеолиты. В литературе чаще всего упоминаются цеолиты типа ZSM-5 и MOR [9]. Однако их микропористая структура затрудняет лиффузию углеводородного сырья к активным центрам катализатора, что снижает конверсию и увеличивает коксообразование с последующей дезактивацией катализатора [10]. Потенциальным решением данной проблемы является применение в качестве компонента носителя мезопористых аналогов цеолитов [11]. Наиболее известным и хорошо изученным представителем семейства структурированных мезопористых материалов на основе оксила кремния является материал типа МСМ-41, обладающий регулярной гексагональной упаковкой с диаметром пор в диапазоне 2-4 нм и высокой удельной площадью поверхности (1000–1200 м<sup>2</sup> г<sup>-1</sup>). [12]. Для получения такой структуры используют метод темплатного синтеза, подробно описанный в [13]. Однако сам по себе оксид кремния обладает низкой кислотностью. В тоже время наличие в катализаторах изомеризации сильных кислотных центров во многом определяет их активность. Дополнительно увеличить кислотность МСМ-41 можно за счет внедрения в его структуру атомов алюминия на этапе синтеза. Получаемые в ходе такой процедуры мезопористые алюмосиликаты типа Al-MCM-41 содержат большое количество сильных кислотных центров и представляют интерес в качестве компонентов носителей катализаторов [14].

Тем не менее, алюмосиликаты Al-MCM-41 обладают существенным недостатком: стенки их пор на молекулярном уровне аморфны и имеют малую толщину (порядка 0.8 нм), что обусловливает их плохую термическую стабильность по сравнению с кристаллическими алюмосиликатами. Стабильность таких материалов можно улучшить путем их армирования на стадии синтеза более прочными материалами, например галлуазитом.

Галлуазит способен выдерживать воздействие высоких температур, его кристаллическая структура сохраняется до 400°С, а трубчатая морфология — до 1100°С [15, 16]. Помимо термической устойчивости, галлуазит обладает уникальными химическими свойствами. При сворачивании алюмосиликата в трубки слой положительно заряженного оксида алюминия находится внутри, а отрицательно заряженного оксида кремния снаружи. Это позволяет проводить селективную модификацию внутренней/внешней поверхностей нанотрубок, что делает галлуазит перспективной основой для синтеза иерархической структуры алюмосиликатов [17–19].

Ранее нами было показано, что введение галлуазитных нанотрубок в структуру MCM-41 позволяет значительно улучшить термомеханические характеристики материала [20]. В этой же работе было предположено, что полученные нанокомпозиты могут быть эффективно использованы в качестве катализаторов или сорбентов.

Таким образом, представляло интерес исследование возможности использования композитных материалов на основе алюмосиликатов типа Al-MCM-41 и нанотрубок галлуазита в качестве компонентов катализаторов изомеризации фракции C-8 риформинга.

## ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез упорядоченных мезопористых алюмосиликатов Al-MCM-41-ГНТ. Упорядоченный мезопористый композит типа Al-MCM-41/ГНТ был синтезирован методом темплатного синтеза по модифицированной методике [21]. Для определения допустимого содержания галлуазита в функциональном материале были изготовлены два образца с различным массовым соотношением Al-MCM-41 : ГНТ – 90 : 10 и 60 : 40 мас. %

Галлуазит (фирмы Aldrich) диспергировали в смесь цетилтриметиламмоний бромида (CTMABr, Aldrich) и изопропилового спирта (ИПС, ЭКОС-1) непосредственно перед стадией добавления тетраэтоксисилана (Aldrich). В качестве источника алюминия использовали изопропоксид алюминия (Aldrich).

Полученный гель состава  $Al_2O_3/40$  SiO<sub>2</sub>/ 2 CTMABr/1555 H<sub>2</sub>O/150 ИПС/3.76 ГНТ термостатировали при 90°Св течение 48 ч, фильтровали и промывали дистиллированной водой до отсутствия бромид-ионов в маточном растворе, сушили при 80, 90, 100 и 110°С по 4 ч, а затем прокаливали в токе воздуха при 550°С в течение 4 ч.

Формовка носителя Al-MCM-41-Галлуазит/Al<sub>2</sub>O<sub>3</sub>. В качестве связующего вещества для приготовления носителя катализаторов в виде экструдатов использовали бемит фирмы Sasol марки Pural SB в соотношении алюмосиликат : бемит = 60 : 40 мас. %; пептизирующий раствор состоял из 94 мас. % дистиллированной воды, 1 мас. % азотной кислоты и 5 мас. % полиэтиленгликоля. После сушки и прокаливания были получены носители состава Al-MCM-41-ГНТ(60 : 40)/Al<sub>2</sub>O<sub>3</sub> и Al-MCM-41-ГНТ(90 : 10)/Al<sub>2</sub>O<sub>3</sub> в виде экструдатов диаметром около 1 мм и длиной 1.5–2 мм.

Синтез катализаторов Pt/Al-MCM-41-ГНТ(60:40)/ Al<sub>2</sub>O<sub>3</sub> и Pt/Al-MCM-41-ГНТ(90: 10)/Al<sub>2</sub>O<sub>3</sub>. В качестве активного металла использовали платину, способность которой эффективно переносить водород позволяет значительно снизить дезактивацию катализатора, обусловленную коксообразованием, а также повысить эффективность изомеризации этилбензола, протекающую через стадию образования продуктов гидрирования — нафтеновых интермедиатов [22]. Нанесение платины на сформованные в виде экструдатов носители осуществляли в одну стадию методом пропитки по влагоемкости. В качестве источника платины использовали хлорид тетрааминплатины(II) (Аурат). Количество соли рассчитывали исходя из того, чтобы содержание платины в катализаторе составило 0.5 мас. % Полученные образцы катализаторов поэтапно сушили при комнатной температуре, а затем при 60, 65, 85, 120 и 160°С. Катализаторы подвергали восстановлению в токе водорода  $(10 \text{ мл мин}^{-1})$  при ступенчатом повышении температуры от комнатной до  $250^{\circ}$ С (со скоростью  $2^{\circ}$ С мин<sup>-1</sup>), выдерживали в течение 1 ч, а затем температуру поднимали до  $450^{\circ}$ С (скорость на-грева  $10^{\circ}$ С мин<sup>-1</sup>) и восстанавливали в течение 3 ч.

Физико-химические методы исследования материалов и катализаторов на их основе. Удельную площадь поверхности образцов определяли на приборе Micromeritics Gemini VII 2390t с использованием модели полимолекулярной адсорбции Брунауэра–Эммета–Теллера на основании адсорбционных данных в диапазоне относительных давлений ( $P/P_0$ ) = 0.04–0.25. Объем и распределение пор по размерам определяли с использованием модели Баррета–Джойнера–Халенда.

Кислотность образцов определяли на приборе Micromeritics AutoChem HP2950 в кварцевом реакторе. Насыщение проводили в токе аммиака, разбавленного азотом при температуре 100°C в течение 30 мин. Удаление физически адсорбированного аммиака проводили при 100°C в токе азота в течение 30 мин со скоростью продувки азотом 50 мл мин<sup>-1</sup>. Для получения кривой ТПД-NH<sub>3</sub> постепенно повышали температуру до 700°C со скоростью 10 град мин<sup>-1</sup>.

Структуру и морфологию поверхности полученных образцов исследовали методом просвечивающей электронной микроскопии на проборе Jeol JEM-2100 с кратностью увеличения 50— 1500000 раз и разрешением изображения 0.19 нм при 200 кВ.

Атомное соотношение Si/Al в образцах определяли на энергодисперсионном рентгенофлуоресцентном анализаторе Thermo Fisher Scientific-ARLQuant'X в вакууме. Обработку результатов производили с помощью бесстандартного метода UniQuant.

РФА-анализ образцов проводили на приборе Rigaku SmartLab в диапазоне углов 1.5-8°20 с шагом 0.05°20 и временем накопления сигнала не менее 0.3 с/точка.

Каталитические эксперименты. Активность каталитических систем  $Pt/Al-MCM-41-\Gamma HT/Al_2O_3$ на основе полученных материалов была изучена в реакции изомеризации ксилольной фракции C-8, полученной с промышленной установки риформинга, состав которой представлен в табл. 1.

Активность полученных образцов исследовали на установке проточного типа с закрепленным слоем катализатора. Загрузка катализатора составляла 5 мл. Каталитические испытания проводили в следующих условиях: давление водорода 1 МПа, объемная скорость подачи сырья 1 ч<sup>-1</sup>, мольное соотношение водород/сырье = 0.5 в диапазоне температур 360–440°С с шагом 20°С. В качестве образца сравнения использовали промышленный цеолитсодержащий катализатор изомеризации, испытанный в тех же условиях.

Таблица 1. Состав сырья для изомеризации\*

| Компонент                           | Содержание,<br>мас. % |
|-------------------------------------|-----------------------|
| Сумма неароматических углеводородов | 4.39                  |
| Толуол                              | 0.38                  |
| Этилбензол                          | 10.00                 |
| п-Ксилол                            | 3.04                  |
| м-Ксилол                            | 66.12                 |
| Изопропилбензол                     | 0.03                  |
| о-Ксилол                            | 16.04                 |

\* Согласно методике UOP 744.

Анализ состава продуктов изомеризации. Анализ газообразных продуктов изомеризации проводили на газовом хроматографе "Хромос ГХ-1000", снабженном четырьмя детекторами (3 ДТП, 1 ПИД), тремя набивными насадочными и одной капиллярной колонкой ValcoPiotVP-AluminaNa<sub>2</sub>SO<sub>4</sub> 50 м  $\times$  0.53 мм  $\times$  10.0 мкм, газы-носители – аргон и гелий. Количественный анализ жидких продуктов изомеризации проводили на газожидкостном хроматографе "Хромос ГХ-1000" с детектором ПИД и капиллярной колонкой MEGA-WAXSpirit (0.32 мм × 60 м × 0.25 мкм), газ-носитель – гелий. Обсчет хроматограмм производили при помощи программного обеспечения "Хромос". Концентрацию компонентов в жидких продуктах изомеризации рассчитывали методами простой нормализации.

Отбор проб газообразных и жидких продуктов реакции осуществляли раз в час. Для расчета количественных показателей процесса выбирали результаты трех экспериментов, погрешность которых не превышала 1%.

## РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

#### Физико-химические характеристики

Результаты исследования физико-химических свойств синтезированных функциональных материалов Al-MCM-41/ГНТ(60:40), Al-MCM-41/ГНТ(90:10) и ГНТ, а также носителей и катализаторов на их основе представлены в табл. 2.

Исходный галлуазит обладает весьма малой удельной площадью поверхности (49 м<sup>2</sup> г<sup>-1</sup>), добавление фазы Al-MCM-41 значительно увеличивает данный показатель. Для материалов Al-MCM-41/ГНТ(60:40) и Al-MCM-41/ГНТ(90:10) характерна изотерма низкотемпературной адсорбции/десорбции азота IV типа с петлей гистерезиса, что свидетельствует о наличии в образцах мезопористой структуры (рис. 1). Изотерма адсорбции азота природного галлуазита относится



**Рис. 1.** Изотермы низкотемпературной адсорбции азота образцов Al-MCM-41/ГНТ(90 : 10)/ Al<sub>2</sub>O<sub>3</sub>, Al-MCM-41/ГНТ(60 : : 40)/Al<sub>2</sub>O<sub>3</sub> и ГНТ/Al<sub>2</sub>O<sub>3</sub>.

ко второму типу, такая изотерма присуща непористым или макропористым адсорбентам.

Для доказательства наличия мезопористой структуры функциональные материалы были исследованы методом ПЭМ. На микрофотографиях ПЭМ образцов Al-MCM-41/ГНТ (рис. 2) отчетливо видно наличие фазы Al-MCM-41, закристаллизованной внутри и на поверхности нано-

Таблица 2. Текстурные характеристики и показатели кислотности материалов, носителей и катализаторов на их основе

|                |                                                                 | Текстурные<br>характеристики                        |                      |                                                       | Показатели кислотности                              |                                  |                                             |
|----------------|-----------------------------------------------------------------|-----------------------------------------------------|----------------------|-------------------------------------------------------|-----------------------------------------------------|----------------------------------|---------------------------------------------|
| Этап синтеза   | Образец                                                         | S <sub>уд</sub> ,<br>м <sup>2</sup> г <sup>-1</sup> | D <sub>πop</sub> , Å | V <sub>пор</sub> ,<br>см <sup>3</sup> г <sup>-1</sup> | кислотные<br>центры<br>слабой<br>и средней<br>силы* | сильные<br>кислотные<br>центры** | общее<br>количество<br>аммиака,<br>мкмоль/г |
| Функциональный | ГНТ                                                             | 49                                                  | 157                  | 0.22                                                  | 22                                                  | 122                              | 144                                         |
| материал       | Al-MCM-41/ΓΗΤ(60:40)                                            | 286                                                 | 62                   | 0.43                                                  | 35                                                  | 495                              | 530                                         |
|                | Al-MCM-41/ΓΗΤ(90:10)                                            | 597                                                 | 36                   | 0.82                                                  | 91                                                  | 592                              | 683                                         |
|                | Al-MCM-41                                                       | 635                                                 | 35                   | 0.41                                                  | 150                                                 | 613                              | 763                                         |
| Носитель       | $\Gamma HT/Al_2O_3$                                             | 118                                                 | 91                   | 0.35                                                  | 137                                                 | 56                               | 193                                         |
|                | Al-MCM-41/ $\Gamma$ HT(60 : 40)/Al <sub>2</sub> O <sub>3</sub>  | 246                                                 | 40                   | 0.50                                                  | 278                                                 | 192                              | 470                                         |
|                | Al-MCM-41/ΓΗΤ(90:10)/Al <sub>2</sub> O <sub>3</sub>             | 416                                                 | 39                   | 0.56                                                  | 342                                                 | 211                              | 553                                         |
| Катализатор    | Pt/ ΓΗT/Al <sub>2</sub> O <sub>3</sub>                          | 114                                                 | 88                   | 0.34                                                  | 140                                                 | 126                              | 266                                         |
|                | Pt/Al-MCM-41/ $\Gamma$ HT(60:40)/Al <sub>2</sub> O <sub>3</sub> | 239                                                 | 41                   | 0.49                                                  | 250                                                 | 189                              | 439                                         |
|                | Pt/Al-MCM-41/ΓΗΤ(90:10)/Al <sub>2</sub> O <sub>3</sub>          | 397                                                 | 36                   | 0.41                                                  | 403                                                 | 127                              | 530                                         |
|                | Промышленный катализатор                                        | 313                                                 | 72                   | 0.61                                                  | 259                                                 | 1318                             | 1577                                        |

\* Количество аммиака (мкмоль  $r^{-1}$ ), десорбированного до 300°С.

\*\* Количество аммиака (мкмоль г<sup>-1</sup>), десорбированного выше 300°С.

НЕФТЕХИМИЯ том 59 № 6, выпуск 1 2019



**Рис. 2.** Микрофотографии ПЭМ образцов материалов Al-MCM-41/ГНТ(60 : 40) (а) и Al-MCM-41/ГНТ(90 : 10) (б). \*Микрофотографии для каждого образца с разрешением 100 и 200 нм.

трубок галлуазита в виде глобул, обладающих упорядоченной гексагональной упаковкой.

Формирование мезопористой фазы Al-MCM-41 также подтверждено результатами РФА (рис. 3) в области малых углов ( $2\theta = 1.5^{\circ}-8^{\circ}$ ). На рентгенограмме образца присутствуют рефлексы с индексами *hkl* 100, 110, 200, характерные для упорядоченных молекулярных сит с гексагональной симметрией и полностью согласующиеся с литературными данными для Al-MCM-41 [23].

При добавлении к галлуазиту бемита удельная площадь поверхности и объем пор материала существенно возрастают (118 м<sup>2</sup> г<sup>-1</sup> и 0.35 см<sup>3</sup> г<sup>-1</sup> соответственно). После формовки носителей в виде экструдатов у образцов Al-MCM-41/ГНТ(60 : 40)/Al<sub>2</sub>O<sub>3</sub> и Al-MCM-41/ГНТ(90 : 10)/Al<sub>2</sub>O<sub>3</sub>, напротив, наблюдается снижение удельной площади поверхности, а также незначительные изменения диаметра и объема пор.

После нанесения платины текстурные характеристики образцов практически не изменяются, однако наблюдается незначительное снижение удельной площади поверхности, а также диаметра и объема пор, что может быть связано с блокировкой пор частицами металла. Для всех образцов характерно наличие петли гистерезиса IV типа, что свидетельствует о сохранении мезопористой структуры на всех стадиях синтеза катализатора (рис. 4).

Кривые, полученные в результате анализа спектров термопрограммируемой десорбции аммиака для материалов на основе ГНТ имеют максимумы десорбции при температурах до 300°С, соответствующие кислотным центрам слабой и средней силы, и после 300°С, что соответствует сильным кислотным центрам (табл. 1). Следует отметить, что общее число кислотных центров в образцах Al-MCM-41/ГНТ(90:10) и Al-MCM-41/ГНТ(60 : 40) (683 и 530 мкмоль г<sup>-1</sup> соответственно) в несколько раз превышает их количество в немодифицированном галлуазите (144 мкмоль  $r^{-1}$ ). Наибольшей кислотностью обладает материал Al-MCM-41/ГНТ(90:10), что объясняется наличием на поверхности Al-MCM-41 сильных бренстедовских кислотных центров [22].

После формовки экструдатов общее число кислотных центров у всех образцов практически не меняется. Однако значительно возрастает количество средних и слабых центров, в то время как число центров сильной кислотности уменьшается. При нанесении активного металла кислотность несколько снижается, что может быть обусловлено как частичной блокировкой пор частицами металла, так и их взаимодействием с кислотными центрами композита.



**Рис. 3.** Данные РФА для материала Al-MCM-41/ГНТ(90:10).



**Рис. 4.** Изотермы низкотемпературной адсорбции азота для катализаторов  $Pt/Al-MCM-41/\Gamma HT(60:40)/Al_2O_3$ ,  $Pt/Al-MCM-41/\Gamma HT(90:10)/Al_2O_3$  и  $Pt/\Gamma HT/Al_2O_3$ .

Также необходимо отметить тот факт, что результаты элементного анализа состава полученных катализаторов адекватно согласуются с расчетным содержанием платины, введенной на стадии синтеза.

По текстурным характеристикам катализаторы на основе Al-MCM-41 и галлуазита превосходят катализатор, используемый в промышленности. Однако кислотные характеристики полученных образцов значительно уступают характеристикам промышленного экземпляра.

НЕФТЕХИМИЯ том 59 № 6, выпуск 1 2019

## Катализ

Изомеризация ксилолов может протекать по двум механизмам: мономолекулярному – прямая изомеризация *м*-ксилола [3] – и бимолекулярному, в котором *м*-ксилол подвергается диспропорционированию с последующим трансалкилированием и образованием *n*-ксилола [24]. Бимолекулярный механизм практически не реализуется при использовании цеолитсодержащих катализаторов вследствие стерических затруднений, воз-



Рис. 5. Зависимость конверсии *м*-ксилола (а) и этилбензола (б) от температуры.



Рис. 6. Зависимость селективности по *n*-ксилолу (а) и *о*-ксилолу (б) от температуры.

никающих при диффузии молекул субстрата в порах носителя [25].

С ростом температуры конверсии *м*-ксилола и этилбензола плавно возрастают, причем конверсия *м*-ксилола для всех образцов катализаторов всегда выше. Конверсии м-ксилола и этилбензола на катализаторе  $Pt/\Gamma HT/Al_2O_3$  не превышают 5% (рис. 5). Для катализатора Pt/Al-MCM-41/ГНТ(60: 40)/Al<sub>2</sub>O<sub>3</sub> максимальная конверсия м-ксилола достигается при 440°С и составляет 30%, а конверсия этилбензола уже при 420°С (41%). В присутствии катализатора Pt/Al-MCM-41/ГНТ(90:10)/Al<sub>2</sub>O<sub>3</sub> с ростом температуры конверсии *м*-ксилола и этилбензола постепенно возрастают в диапазоне от 20 до 45%.

Максимальная селективность по целевому *п*-ксилолу достигается на катализаторах состава Pt/Al-MCM-41/ГНТ(60:40)/Al<sub>2</sub>O<sub>3</sub> и Pt/Al-MCM-41/ГНТ(90: 10)/Аl<sub>2</sub>O<sub>3</sub> при 360°С (69 и 68% соответственно), при дальнейшем увеличении температуры процесса наблюдается снижение выхода

*п*-ксилола (рис. 6). Селективность по целевому продукту на катализаторе Pt/ГНТ/Al<sub>2</sub>O<sub>3</sub> с повышением температуры изменяется в диапазоне от 47 до 28%. Повышенная селективность по *п*-ксилолу катализаторов на основе Al-MCM-41/ГНТ может быть связана с их мезопористой структурой [26] и большим числом кислотных центров по сравнению с катализатором Pt/ГНТ/Al<sub>2</sub>O<sub>3</sub>. Это свидетельствует о невысокой изомеризуюшей способности катализатора на основе немодифицированного ГНТ, которая, вероятно, связана с низкой кислотностью образца, а также бо'льшим объемом пор носителя, который, в отличие от катализаторов на основе Al-MCM-41/ГНТ, не обладает высокой субстратной селективностью [27].

Стоит также отметить, что селективность по *п*-ксилолу на промышленном катализаторе заметно ниже, чем значения, полученные на ката-



Рис. 7. Зависимость селективности по бензолу (а) и толуолу (б) от температуры.

лизаторах состава  $Pt/Al-MCM-41/\Gamma HT(60:40)/Al_2O_3$  и  $Pt/Al-MCM-41/\Gamma HT(90:10)/Al_2O_3$ .

Селективность по *о*-ксилолу с ростом температуры возрастает на обоих катализаторах на основе Al-MCM-41/ГНТ вследствие меньшего числа кислотных центров по сравнению с промышленным образцом [3]. Однако выше 400°С ее значение постепенно снижается вследствие преобладания реакций деалкилирования.

При изомеризации ксилолов протекают побочные реакции, в частности, деалкилирование и диспропорционирование этилбензола и ксилолов. Об этом свидетельствует наличие в продуктах реакции существенного количества бензола и толуола (рис. 7). Повышение температуры способствует протеканию реакций деалкилирования, что также подтверждается увеличением выхода газообразных продуктов — метана, этана и пропана (табл. 3). С ростом температуры суммар-

| Температура,                                       | Pt/Al-MCM-41/ΓΗΤ(60 : 40)/Al <sub>2</sub> O <sub>3</sub> |                                                                                                        |                                                               | Pt/Al-MCM-41/ΓΗΤ(90 : 10)/Al <sub>2</sub> O <sub>3</sub> |                                                                                 |                                                                         |  |
|----------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------|--|
| °C                                                 | CH <sub>4</sub>                                          | C <sub>2</sub> H <sub>6</sub>                                                                          | C <sub>3</sub> H <sub>8</sub>                                 | CH <sub>4</sub>                                          | C <sub>2</sub> H <sub>6</sub>                                                   | C <sub>3</sub> H <sub>8</sub>                                           |  |
| 360                                                | 18.5                                                     | 4.4                                                                                                    | 18.7                                                          | 29.5                                                     | 9.7                                                                             | 27.3                                                                    |  |
| 380                                                | 27.9                                                     | 6.2                                                                                                    | 18.6                                                          | 30.9                                                     | 7.2                                                                             | 19.5                                                                    |  |
| 400                                                | 31.8                                                     | 7.1                                                                                                    | 15.1                                                          | 32.0                                                     | 8.4                                                                             | 18.9                                                                    |  |
| 420                                                | 36.7                                                     | 10.4                                                                                                   | 18.7                                                          | 42.1                                                     | 11.4                                                                            | 12.4                                                                    |  |
| 440                                                | 43.7                                                     | 12.0                                                                                                   | 16.7                                                          | 58.0                                                     | 15.7                                                                            | 12.2                                                                    |  |
| Температура, Pt/ГНТ/Al <sub>2</sub> O <sub>3</sub> |                                                          |                                                                                                        | Промышленный катализатор                                      |                                                          |                                                                                 |                                                                         |  |
| Температура,                                       |                                                          | Pt/ΓΗΤ/Al <sub>2</sub> O <sub>3</sub>                                                                  |                                                               | Промь                                                    | ішленный катал                                                                  | изатор                                                                  |  |
| Температура,<br>°С                                 | CH <sub>4</sub>                                          | Pt/ΓΗΤ/Al <sub>2</sub> O <sub>3</sub><br>C <sub>2</sub> H <sub>6</sub>                                 | C <sub>3</sub> H <sub>8</sub>                                 | Промь<br>СН <sub>4</sub>                                 | ишленный катал<br>С <sub>2</sub> Н <sub>6</sub>                                 | изатор<br>С <sub>3</sub> Н <sub>8</sub>                                 |  |
| Температура,<br>°С<br>360                          | CH <sub>4</sub><br>26.5                                  | Рt/ГHT/Al <sub>2</sub> O <sub>3</sub><br>С <sub>2</sub> H <sub>6</sub><br>28.9                         | C <sub>3</sub> H <sub>8</sub><br>17.5                         | Промь<br>СН <sub>4</sub><br>7.4                          | ишленный катал<br>С <sub>2</sub> Н <sub>6</sub><br>61.8                         | изатор<br>С <sub>3</sub> H <sub>8</sub><br>22.5                         |  |
| Температура,<br>°С<br>360<br>380                   | CH <sub>4</sub><br>26.5<br>24.4                          | Pt/ГНТ/Al <sub>2</sub> O <sub>3</sub><br>C <sub>2</sub> H <sub>6</sub><br>28.9<br>39.0                 | C <sub>3</sub> H <sub>8</sub><br>17.5<br>21.0                 | Промь<br>СН <sub>4</sub><br>7.4<br>7.1                   | ишленный катал<br>С <sub>2</sub> Н <sub>6</sub><br>61.8<br>61.1                 | изатор<br>С <sub>3</sub> H <sub>8</sub><br>22.5<br>25.8                 |  |
| Температура,<br>°C<br>360<br>380<br>400            | CH <sub>4</sub><br>26.5<br>24.4<br>21.4                  | Pt/ΓΗΤ/Al <sub>2</sub> O <sub>3</sub><br>C <sub>2</sub> H <sub>6</sub><br>28.9<br>39.0<br>38.6         | C <sub>3</sub> H <sub>8</sub><br>17.5<br>21.0<br>25.2         | Промь<br>СН <sub>4</sub><br>7.4<br>7.1<br>7.3            | ишленный катал<br>С <sub>2</sub> Н <sub>6</sub><br>61.8<br>61.1<br>58.0         | изатор<br>С <sub>3</sub> H <sub>8</sub><br>22.5<br>25.8<br>28.7         |  |
| Температура,<br>°C<br>360<br>380<br>400<br>420     | CH <sub>4</sub><br>26.5<br>24.4<br>21.4<br>26.9          | Pt/ΓΗΤ/Al <sub>2</sub> O <sub>3</sub><br>C <sub>2</sub> H <sub>6</sub><br>28.9<br>39.0<br>38.6<br>43.0 | C <sub>3</sub> H <sub>8</sub><br>17.5<br>21.0<br>25.2<br>19.6 | Промь<br>СН <sub>4</sub><br>7.4<br>7.1<br>7.3<br>8.0     | ишленный катал<br>C <sub>2</sub> H <sub>6</sub><br>61.8<br>61.1<br>58.0<br>55.7 | изатор<br>С <sub>3</sub> H <sub>8</sub><br>22.5<br>25.8<br>28.7<br>31.6 |  |

**Таблица 3.** Концентрации компонентов в газообразных продуктах реакции изомеризации на исследуемых катализаторах (мол. %)

ная концентрация бензола и толуола в жидких продуктах реакции возрастает на всех катализаторах. Суммарная концентрация бензола и толуола на промышленном катализаторе достигает 72% при 440°C, что значительно выше, чем на катализаторе на основе ГНТ.

## выводы

Синтезированы и исследованы иерархические композитные материалы на основе упорядоченных алюмосиликатов типа Al-MCM-41 и галлуазитных нанотрубок. Показана активность катализаторов изомеризации на базе иерархических материалов. Полученные материалы испытаны в качестве носителей катализаторов изомеризации ароматической фракции C-8 риформинга.

В изомеризации ксилолов наиболее эффективно проявляют себя каталитические системы на основе Al-MCM-41/ГНТ, обеспечивая большую конверсию этилбензола и *м*-ксилола, чем катализатор на основе ГНТ.

Установлено, что синтезированные катализаторы обладают большей селективностью по отношению к целевому продукту процесса, *n*-ксилолу, чем промышленный аналог в диапазоне температур 360–440°С. Максимальное значение селективности по *n*-ксилолу достигнуто в присутствии катализатора Pt/Al-MCM-41/ГНТ(90 : 10)/Al<sub>2</sub>O<sub>3</sub> при 360°С (70%). Суммарное содержание продуктов деалкилирования (бензола и толуола) для исследуемых катализаторов увеличивалось по мере возрастания температуры.

### ФИНАНСИРОВАНИЕ РАБОТЫ

Исследование выполнено за счет гранта Российского научного фонда (проект № 19-19-00711).

## конфликт интересов

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

#### ИНФОРМАЦИЯ ОБ АВТОРАХ

Глотов Александр Павлович, ORCID: https://orcid.org/ 0000-0002-2877-0395

Артемова Мария Игоревна, ORCID: https://orcid.org/ 0000-0002-3048-8495

*Демихова Наталия Руслановна*, ORCID: https://orcid. org/0000-0003-0492-4094

Смирнова Екатерина Максимовна, ORCID: https:// orcid.org/0000-0001-5638-9105

Иванов Евгений Владимирович, ORCID: https://orcid. org/0000-0001-6529-2321

Гущин Павел Александрович, ORCID: https://orcid.org/ 0000-0003-4788-9137

*Егазарьянц Сергей Владимирович*, ORCID: https://orcid. org/0000-0001-9160-4050

*Винокуров Владимир Арнольдович*, ORCID: https://orcid. org/0000-0002-0570-6577

## СПИСОК ЛИТЕРАТУРЫ

- Караханов Э.А., Максимов А.Л., Золотухина А.В., Винокуров В.А. // ЖПХ. 2018. Т. 91. № 5. С. 609.
- Corma A., Llopis F., Monton J. B. // Stud. Surf. Sci. Catal. 1993. 75. P. 1145.
- Guisnet M., Gnep N.S., Morin S. // Microporous Mesoporous Materials. 2000. V. 35–36. P. 47.
- Глотов А.П., Ролдугина Е.А., Артемова М.И., Смирнова Е.М., Демихова Н.Р., Стыценко В.Д., Егазарьянц С.В., Максимов А.Л., Винокуров В.А. // ЖПХ. 2018. № 91. С. 1173.
- Chirico R.D., Knipmeyer S.E., Nguyen A., Steele W.V. // J. Chem. Eng. Data. 1997. V. 42. № 4. P. 784.
- Toch K., Thybaut J.W., Vandegehuchte B.D., Narasimhan C.S.L., Domokos L., Marin G.B. // Appl. Catal. A: General. 2012. V. 425–426. P. 130.
- Young L.B., Butter S.A., Kaeding W.W. // J. Catal. 1982.
  V. 76. № 2. P. 418.
- 8. Marcilly C.R. // Top. Catal. 2000. V. 13. № 4. P. 357.
- Guillon E., Lacombe S., Sozinho T., Magnoux P., Gnep S., Moreau P., Guisnet M. // Oil Gas Sci. Technol. 2009. V. 64. № 6. P. 731.
- 10. Baerlocher C., McCusker L.B. Atlas of Zeolite Framework Types. Elsevier. 2007. P. 398.
- 11. Morin S., Ayrault P., El Mouahid S., Gnep N.S., Guisnet M. // Appl. Catal. A-Gen. 1997. V. 159. P. 317.
- Kresge C., Vartuli J., Roth W., Leonowicz M. // Stud. Surf. Sci. Catal. 2004. V. 148. P. 53.
- Bernal Y.P., Alvarado J., Juarez R.L., Mendez Rojas M., de Vasconcelos E.A., de Azevedo W.M., Iniesta S.A., Cab J.V. // Optik. 2019. V. 185. P. 429.
- Čejka J., Krejčí A., Žilková N., Dědeček J., Hanika J.// Microporous Mesoporous Mater. 2001. № 44. P. 499.
- 15. Vinokurov V.A., Stavitskaya A.V., ChudakovYa.A., Glotov A.P., Ivanov E.V., Gushchin P.A., Lvov Yu.M., Maximov A.L., Muradov A.V., Karakhanov E.A. // Pure Appl. Chem. 2018. V. 90. № 5. P. 825.
- Kadi S., Lellou S., Marouf-Khelifa K., Schott J., Gener-Batonneau I., Khelifa A. // Microp. Mesopor. Mat. 2012. № 158. P. 47.
- 17. Lvov Y., Wang W., Zhang L., Fakhrullin R. // Adv. Mater. 2016. V. 28. № 6. P. 1227.
- Vinokurov V.A., Glotov A.P., Chudakov Ya.A., Stavitskaya A.V., Ivanov E.V., Gushchin P.A., Zolotukhina A.V., Maximov A.L., Karakhanov E.A. // Ind. Eng. Chem. Res. 2017. V. 56. № 47. P. 14043.
- Vinokurov V.A., Stavitskaya A.V., Chudakov Ya.A., Ivanov E.V., Shrestha L.K., Ariga K., Darrat Y.A., Lvov Yu.M. // Sci. Technol. Adv. Mater. 2017. V. 18. № 1. P. 147.

НЕФТЕХИМИЯ том 59 № 6, выпуск 1 2019

- Glotov A., Levshakov N., Stavitskaya A., Artemova M., Gushchin P., Ivanov E., Vinokurov V. Lvov Y. // Chem. Commun. 2019. № 55. P. 5507.
- 21. Kwak K.-Y., Kim M.-S., Lee D.-W., Cho Y.-H., Han J., Kwon T.S., Lee K.-Y. // Fuel. 2014. V. 137. P. 230.
- 22. *Farshadi M., Falamaki C.* // Chin. J. Chem. Eng. 2018. V. 26. № 1. P. 116.
- Glotov A., Levshakov N., Vutolkina A., Lysenko S., Karakhanov E., Vinokurov V. // Catal. Today. 2019. V. 329. P. 156.
- 24. Corma A., Sastre E. // J. Catal. 1991. V. 129. P. 177.
- 25. Morin S., Ayrault P., El Mouahid S., Gnep N.S., Guisnet M. // Appl. Catal. A: General. 1997. V. 159. P. 317.
- 26. Zhou Y., Liu H., Li Y., Zhou B., Jiang W., Han W., Lan G. // Chin. J. Catal. 2013. V. 34. № 7. P. 1429.
- Fernandez C., Stan I., Gilson J. P., Thomas K., Vicente A., Bonilla A., Perez-Ramirez J. // Chem. Eur. J. 2010. V. 16. № 21. P. 6224.