УДК 665.7.033.28+541.183+536.7

АДСОРБЦИЯ АСФАЛЬТЕНОВ НАНОЧАСТИЦАМИ С РАЗЛИЧНЫМ ХИМИЧЕСКИМ СОСТАВОМ ПОВЕРХНОСТИ: ИССЛЕДОВАНИЕ РАВНОВЕСНЫХ И ТЕРМОДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК

© 2019 г. Sepideh Kashefi¹, Mohammad Nader Lotfollahi^{1, *}, Abbas Shahrabadi²

¹Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan, Iran ²Exploration and Production Division, Research Institute of Petroleum Industry (RIPI), Tehran, Iran

**E-mail: mnlotfollahi@semnan.ac.ir* Поступила в редакцию 29.12.2017 г. После доработки 10.03.2018 г. Принята к публикации 03.07.2019 г.

В данной работе изложены результаты исследования методом УФ-спектроскопии равновесной адсорбции асфальтенов несколькими типами наночастиц (NiO, MgO, Fe₃O₄) с различным химическим составом поверхности при различных температурах. Оксид никеля имеет на поверхности кислотные центры, оксид магния – осно́вные центры, и у оксида железа есть и кислотные, и осно́вные центры, что было показано методом титрования. Изотерма адсорбции наночастиц находится в хорошем соответствии с моделью Ленгмюра, в приближении однослойной адсорбции. Адсорбция асфальтенов наночастицами лучше всего происходит при минимальной температуре (25°С), при этом количество адсорбированного асфальтена находится в диапазоне 0.6364–1.0545 мг/м²; наибольшие значения наблюдались для NiO, меньшие – для MgO и Fe₃O₄. Полученные результаты подтверждают возможность применения наночастиц, имеющих на своей поверхности кислотные центры, для адсорбции и удаления асфальтенов. Более того, термодинамические параметры при различных температурах показали, что адсорбция асфальтена наночастицами была спонтанной ($\Delta G^0 < 0$), экзотермической ($\Delta H^0 < 0$) и физической (2.1 < $|\Delta H^0| < 20.9$ кДж/моль).

Ключевые слова: асфальтен, адсорбция, равновесие, наночастицы, химия поверхности, термодинамика **DOI:** 10.1134/S0028242119060121

Сырая нефть представляет собой сложную смесь, в составе которой имеется много компонентов. Наиболее тяжелыми полярными фракциями сырой нефти являются асфальтены, растворимые в ароматических углеводородах (УВ) [1]. Самоассоциация асфальтенов в коллекторе вызывает образование их агрегатов размером 5-20 нм [2]. При изменении термодинамических условий при добыче нефти образуются агрегаты асфальтенов, а их кластеры формируются размером от 6 до 300 нм [3]. Асфальтеновые осадки в нефтеносном коллекторе и последующее осаждение асфальтенов на поверхности пород могут снизить добычу нефти и проницаемость горных пород из-за забивания горловины пор [4]. Поэтому некоторые исследователи изучили различные методы удаления асфальтеновых отложений, такие как использование поверхностно-активных веществ [5, 6], полимерных ингибиторов [7, 8] и различных адсорбентов, включая поверхности минералов [9], металлические поверхности [10] и наночастицы [11-14]. Использование наночастиц в качестве адсорбента асфальтенов является эффективным методом удаления и конверсии асфальтенов благодаря их особым свойствам, таким как высокое отношение площади поверхности к объему, возможность функционализации поверхности и высокая скорость адсорбции [15–18].

Основная цель данной работы — оценка потенциального влияния химического состава поверхности наночастиц на адсорбцию и удаление асфальтенов из сырой нефти. Таким образом, для удаления асфальтенов из модельного раствора в толуоле были использованы три вида наночастиц оксидов металлов, имеющие на своей поверхности кислотные, основные, а также те и другие центры. Количество адсорбированных наночастицами асфальтенов определяли методом UV-Vis-спектроскопии. Были исследованы адсорбционные характеристики, включая изотермы Ленгмюра, и термодинамические характеристики ($\Delta G^0, \Delta H^0$ и ΔS^0).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Реактивы. Для адсорбции асфальтена использовались три типа наночастиц оксидов металлов: Fe₃O₄, MgO и NiO (US Research Nanomaterials Inc., Хьюстон, Техас). Толуол (99%, Merck) и асфальтен (из иранской сырой нефти) для подготовки модельного раствора асфальтена в толуоле. У компании Merck были приобретены химические реактивы, включая NaOH, HCl, NaCl, KOH и HClO₄, которые использовались для измерения количества кислотных и основных центров на поверхности наночастиц и асфальтенов.

Характеристика асфальтена. В данном исследовании использовали асфальтен, который был извлечен из залежи сырой нефти на юго-западе Ирана (API = 33.74) по стандарту IP-14 [19]. Асфальтен со средней молекулярной массой 750 г/моль содержит несколько элементов, таких как углерод, водород, азот, сера и кислород [17]. Был исследован элементный состав добытого асфальтена. Для измерения содержания водорода, углерода и азота использовали стандартный метод ASTM D5291. Количества кислорода и серы были определены путем измерения ИК- спектров СО и SO₂, образующихся при пиролизе при температуре 1100 и 1150°С соответственно [1]. Кислотное и осно вное числа асфальтена были измерены методом потенциометрического титрования по описанным в литературе методикам [20, 21]. Для этих целей был использован портативный измеритель компании Knick Portamess 911. Для нейтрализации раствора асфальтена использовали 0.04 М раствора КОН в изопропаноле, а для определения кислотного и основного числа асфальтена использовали 0.055 М раствора HClO₄ [20, 21].

Характеристика наночастиц. ИК-Фурье спектрометр BrukerEquinox 55 был использован для записи ИК-спектров наночастиц с разрешением 4 см⁻¹ в диапазоне 4000–400 см⁻¹. Размеры наночастиц были определены с помощью просвечивающей электронной микроскопии (ПЭМ) мна приборе Zeiss EM900. Площадь поверхности наночастиц измеряли методом адсорбции–десорбции N₂ при температуре 77 К с помощью прибора ASAP 2010. Удельная площадь поверхности наночастиц была определена методом Брунауэра–Эммета–Теллера (БЭТ), а площадь внешней поверхности наночастиц была рассчитана по t-методу.

Количество кислотных и основных центров на поверхности наночастиц (ммоль H⁺/г наночастиц) были определены, соответственно, методами титрования и обратного титрования, описанными в литературе [22, 23]. Для определения количества кислотных центров на поверхности наночастиц раствор титровали NaOH (0.1 M) [22]. Обратное титрование проводили раствором HCI (0.05 M). Стандартизированный раствор NaOH (0.02 M) использовали в качестве титранта для определения количества основных центров на поверхности наночастиц [23]. Для большей точности процедуру титрования проводили дважды.

Эксперименты по равновесной адсорбции Для проведения этих экспериментов были подготовлены модельные растворы 100-3000 мг/л асфальтенов в толуоле (от критической концентрации наноагрегата до более высокой критической концентрации кластеризации асфальтенов в толуоле) [24]. Затем в растворы были добавлены наночастицы в количестве 0.1 г/10 мл. Образцы перемешивали со скоростью при 200 об./мин до достижения равновесия. Затем наночастицы, содержащие адсорбированные асфальтены, отделяли центрифугой при скорости 5000 об./мин в течение 30 мин. Оставшийся раствор проанализировали на содержание асфальтена методом UV-Visспектрометрии на длине волны 410 нм [16]. Для изучения термодинамики адсорбции эксперименты проводили при температуре 25, 40 и 55°С. Количество адсорбированного наночастицами асфальтена вычисляли по следующему уравнению:

$$q = \frac{C_0 - C_{\rm e}}{m} \left(\frac{V}{A}\right),$$

где q — равновесное адсорбированное количество асфальтена (мг/м²), V — объем раствора (л), m сухая масса наночастиц (г), A —площадь поверхности наночастиц (м²/г), C — концентрация асфальтена в растворе (мг/л); индексы 0 и е указывают начальное и равновесное состояние, соответственно.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Анализ асфальтенов. Элементный состав асфальтенов показал, что процентное содержание C, H, N, S и O в них составляет 79.45, 8.86, 1.69, 7.35 и 2.65%, соответственно. Можно заметить, что С и Н были основными элементами асфальтенов с максимальной массой фракций. Мольное соотношение Н/С составляет 1.34, что выше H/C = 1 для одного бензольного кольца. Более высокое значение Н/С можно объяснить большей длиной алифатических цепей асфальтенов. Также этим вызвано низкое содержание гетероатомов (N, S), которые чаще всего встречаются в ароматических кольцах. Таким образом, можно сделать вывод, что чем выше Н/С, тем меньше содержание ароматических групп в асфальтенах [25]. Кроме того, при помощи потенциометрических методов титрования было установлено, что кислотное число асфальтенов составляет 2.25 мг, основное – 12.46 мг (КОН/г асфальтенов). Эти значения подтверждают, что асфальтены по своей природе чаще проявляют основные свойства, и это подтверждается литературными данными [17, 26].

Анализ наночастиц. FTIR-спектры использованных наночастиц показаны на рис. 1. FTIR-спектр NiO содержит пик при 426 см⁻¹ а FTIR-спектр Fe_3O_4 содержит сильный пик при 582 см⁻¹,

что подтверждает наличие Ni–O- и Fe–O-валентных колебаний, соответственно. Основные пики при 419 и 691 см⁻¹ в спектрах MgO FTIR связаны с колебаниями Mg–O. По результатам FTIR-анализа всех наночастиц адсорбционные полосы в диапазоне 3420–3490 и 1630 см⁻¹ указывают на валентные и деформационные колебания молекулы воды, соответственно. Пики поглощения около 1435 и 1100 см⁻¹ представляли собой деформационные колебания OH-связи. Эти значения хорошо согласуются с результатами, представленными в литературе [27–29].

Были определены размер частиц, удельная площадь поверхности, площадь внешней поверхности и химический состав поверхности наночастиц. Полученные данные представлены в табл. 1. Наночастицы измеряли просвечивающим электронным микроскопом и выяснили, что их размеры составляют от 10 до 20 нм. На основании результатов низкотемпературной адсорбции азота удельная площадь поверхности наночастиц составляет от 82 до 100 м²/г, и существенных различий между внешней и удельной площадями поверхности наночастиц оксида металла не наблюдается. Из этого можно заключить, что наночастицы оксидов металлов непористые, как описано в литературе [12, 17].

Методом простого титрования и обратного титрования было определено число кислотных и осно́вных центров Бренстеда на поверхности наночастиц (наночастицы ммоль H⁺/r) [20, 21]. Результаты, приведенные в табл. 1, показывают, что число кислотных центров H⁺ на грамм NiO равно 0.128 ммоль. Было установлено, что число осно́вных центров на поверхностях наночастиц MgO составляет 0.179 ммоль/г, что свидетельствует о его слабой осно́вной способности. Fe_3O_4 имеет

Таблица 1. Свойства наночастиц

Рис. 1. FTIR-спектры наночастиц MgO, NiO и Fe₃O₄.

кислотные и осно́вные центры на поверхности из-за отсутствия Н⁺, что было выявлено в результате титрования и обратного титрования.

Адсорбционные изотермы. Равновесные изотермы важны для понимания процесса адсорбции. Изотерма адсорбции показывает зависимость между количеством поглощенного твердого вещества и его равновесной концентрацией в растворе [30].

Равновесная адсорбция. На рис. 2а-2с показано количество адсорбированных асфальтенов наночастицами (мг/м²) в зависимости от равновесной концентрации асфальтенов в растворе при различных температурах. Все эксперименты были воспроизведены трижды с максимальной погрешностью ±5%. Можно видеть, что все рассмотренные в данной работе наночастицы эффективны при адсорбции асфальтенов, а адсорбция асфальтенов снизилась с повышением температуры от 25 до 55°С, особенно для высоко-

Нано- частицы	Удельная площадь, м ² /г	Внешняя площадь поверхности, м ² /г	Размер частиц, нм	Кислотность, ммоль Н ⁺ /г	Основность, ммоль Н ⁺ /г	Химический состав поверхности
NiO	100	89	10-20	0.128	_	Кислотный
MgO	95	92	20	_	0.179	Основный
Fe ₃ O ₄	82	76	15-20	_	_	Амфотерный

Рис. 2. Изотермы адсорбции асфальтена при температуре 25, 40 и 55°С наночастицами: (а) Fe₃O₄; (б) MgO; (с) NiO. Точки – экспериментальные данные, сплошные линии – расчет по модели Ленгмюра. $C_{\rm e}$ – мг/л (эквивалентная концентрация).

концентрированных растворов (>500 мг/л). Полученные результаты подтвердили экзотермический характер адсорбционного процесса. Результаты равновесной адсорбции показали, что сорбционная способность наночастиц уменьшается в ряду NiO > MgO > Fe₃O₄. Кроме того, более высокая прозрачность остаточных растворов после адсорбции с использованием наночастиц NiO в сравнении с наночастицами MgO и Fe₃O₄ подтвердила, что NiO лучше всего адсорбирует асфальтены. Исходя из того, что наночастицы обладают различными адсорбционными способностями, можно утверждать, что химические свойства поверхности адсорбента играют важную роль в адсорбции асфальтенов. Частицы асфальтенов имеют основной характер (основное число в 5.5 раза больше кислотного числа). Таким образом, асфальтены могут взаимодействовать с кислотными центрам на поверхности наночастиц, и в результате этих взаимодействий увеличивается адсорбция асфальтена адсорбентами с кислотными поверхностями. Поэтому можно сделать вывод, что адсорбция асфальтенов наночастицами с кислотной поверхностью (NiO) выше, чем адсорбция асфальтенов наночастицами, имеющими основные или амфотерные поверхности (MgO и Fe_3O_4), что соответствует результатам, указанным в литературе [12, 17].

Модель Ленгмюра. Результаты изотермических исследований показали, что адсорбция асфальтенов резко возрастала при низких равновесных концентрациях и достигала постоянного значения за счет увеличения концентрации асфальтенов. Проявились признаки однослойной адсорбции асфальтенов наночастицами. Таким образом, теория адсорбции Ленгмюра использовалась для моделирования изотермических данных равновесной адсорбции [17]. Кривые изотермы адсорбции Ленгмюра показаны на рис. 2а-2с). Установлено, что параметры адсорбции асфальтена для всех наночастиц при различных температурах очень хорошо описывает модель Ленгмюра ($R^2 > 0.99$). Параметры Ленгмюра, включая максимальное количество адсорбированных асфальтенов q_{max} и коэффициент равновесной адсорбции Ленгмюра k_{L} , рассчитаны по линейной модели Ленгмюра ($\frac{C_e}{q_e}$ vs. C_e) соответственно. Зна-

чения параметров приведены в табл. 2.

По результатам моделирования (табл. 2) значения $k_{\rm L}$ при всех температурах изменялись в порядке NiO > MgO > Fe₃O₄. Объяснить эти различия можно разными типами и силой взаимодействий между поверхностью наночастиц и молекулами асфальтена. Кроме того, видно, что значения $q_{\rm max}$ для выбранных наночастиц уменьшаются в порядке убывания NiO > MgO > Fe₃O₄. Поэтому можно предположить, что NiO со значением примерно 1.0545 мг/м² является перспективным адсорбентом для адсорбции асфальтенов из растворов.

Для исследования применимости изотермы адсорбции Ленгмюра был использован безразмерный параметр равновесия, называемый коэффициентом разделения R_L [31]. Расчетные значения R_L в диапазоне от 0 до 1 (табл. 2) показали, что адсорбционные изотермы асфальтенов для этих

НЕФТЕХИМИЯ том 59 № 6, выпуск 1 2019

	T °C	Параметры урав	нения Ленгмюра		
наночастицы	температура, "С	$q_{\rm max}$, мг/м ²	$k_{ m L},$ л/мг	R^2	R _L
NiO	25	1.0545	0.0104	0.9996	0.48
	40	0.9758	0.0081	0.9994	0.55
	55	0.8887	0.0063	0.9976	0.61
MgO	25	0.8735	0.0054	0.9979	0.64
	40	0.8378	0.0043	0.9977	0.69
	55	0.7830	0.0037	0.9975	0.72
Fe ₃ O ₄	25	0.6364	0.0027	0.9989	0.78
	40	0.6067	0.0023	0.9969	0.80
	55	0.5715	0.0020	0.9920	0.82

Таблица 2. Параметры уравнения Ленгмюра для адсорбции асфальтена различными наночастицами при разных температурах

Таблица 3. Термодинамические параметры адсорбции асфальтеновнаночастицами

	Параметры						
Наночастицы		ΔG^0 , кДж/моль	ΔH^0 KD \times (MOUL)	ΔS^0 ,			
	25°C	40°C	55°C		кДж/моль К		
NiO	-27.76	-28.45	-29.09	-14.51	0.044		
MgO	-26.14	-26.8	-27.69	-9.76	0.051		
Fe ₃ O ₄	-24.47	-25.26	-26.03	-8.92	0.052		

наночастиц подходят с точки зрения термодинамики [31]. Коэффициент разделения рассчитывается следующим образом:

$$R_{\rm L} = \frac{1}{1 + k_{\rm L} C_0}.$$

Термодинамика адсорбции. Для описания процесса адсорбции применяются такие термодинамические параметры, как изменение стандартной энергии Гиббса (ΔG^0), стандартной энтальпии (ΔH^0) и стандартной энтропии (ΔS^0). Эти параметры могут быть рассчитаны по комбинированной форме уравнений Гиббса и Вант-Гоффа соответственно. Значения ΔH^0 и ΔS^0 были рассчитаны

НЕФТЕХИМИЯ том 59 № 6, выпуск 1 2019

исходя из наклона и участка пересечения графика зависимости $\ln K$ от обратной температуры. Следует отметить, что K — безразмерная изотермическая константа Ленгмюра [17].

Рассчитанные значения ΔG^0 , ΔH^0 и ΔS^0 для всех наночастиц приведены в табл. 3. Установлено, что для всех наночастиц значения ΔG^0 были отрицательными при любых температурах, что свидетельствует о спонтанной адсорбции асфальтенов на наночастицах. Наибольшее абсолютное значение ΔG^0 наблюдалось при самой высокой температуре (55°С) для всех наночастиц, как сообщается в литературе [32]. Видно, что более высокие абсолютные значения ΔG^0 были получены при адсорбции асфальтена на NiO, что может свидетельствовать о большей движущей силе адсорбции асфальтена на NiO.

В данном исследовании значения ΔH^0 адсорбции асфальтена на Fe_3O_4 , MgO, NiO были равны -8.92, -9.76, -14.52 кДж/моль соответственно. Отрицательные значения ΔH^0 указывают на то, что адсорбция асфальтена на наночастицы является экзотермическим процессом. Как правило, для абсолютных значений ΔH^0 в диапазоне от 2.1 до 20.9 кДж/моль процесс адсорбции является физическим, а в диапазоне от 80 до 200 кДж/моль химическим [33]. Поэтому можно сделать вывод о том, что произошла физическая адсорбция асфальтена наночастицами. Для абсолютных значений ΔH^0 в диапазоне 0.5–10 кДж/моль силы Вандер-Ваальса преобладают над силами асфальтеновой адсорбции на адсорбенты (Fe₃O₄ и MgO), а для абсолютных значений в диапазоне 10-50 кДж/моль полярные взаимодействия способствуют адсорбции асфальтенов адсорбентом (NiO) [34]. Более того, положительные значения ΔS^0 свидетельствуют о возрастании вероятности взаимодействий на границе раздела наночастиц и жидкости при адсорбции асфальтенов наночастицами [17].

Итак, в данном исследовании для адсорбции асфальтенов из модельных растворов асфальтена в толуоле использовалось несколько видов наночастиц с различным химическим составом поверхности (кислотное, основное и амфотерное). Исследование адсорбции подтверждает, что изотермы адсорбции асфальтена соответствуют модели Ленгмюра, поэтому при адорбции на поверхности наночастиц асфальтен образует монослой. Результаты показали, что с увеличением температуры в диапазоне 25-55°С адсорбция асфальтенов снижается. Установлено, что возможности адсорбировать асфальтены наночастицами с кислотной поверхностью (NiO) превышают адсорбционные возможности наночастиц, имеющих основные или амфотерные свойства поверхности (MgO и Fe₃O₄). Данный эффект можно объяснить тем, что асфальтен имеет основные свойства, а на адсорбцию асфальтенов влияет кислотность поверхности наночастиц. Термодинамически рассчитанные абсолютные значения изменения энтальпии NiO (>10 кДж/моль) по сравнению с MgO и Fe₃O₄ (<10 кДж/моль) указывают на то, что кислотно-основные взаимодействия преобладают между асфальтенами и наночастицами с кислотным (лучше характер или свойства) поверхности; эти взаимодействия сильнее, чем силы Ван-дер-Ваальса, существующие между асфальтенами и наночастицами, имеющими основный и амфотерный поверхности. Таким образом, NiO с его кислотной поверхностью можно предложить в качестве эффективного адсорбента асфальтенов.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Eyssautier J., Frot D., Barré L.* // Langmuir. 2012. V. 28. P. 11997.
- 2. *Gray M.R.* From Black to Gold: Nanotechnology in Upgrading of Heavy Asphaltic Crude Oils. SPE Distinguished Lecturer Program, 2010.
- Mullins O.C., Seifert D.J., Zuo J.Y., Zeybek M. // Energy Fuels. 2012. V. 27. P. 1752.
- 4. *Kashefi S., Lotfollahi M.N., Shahrabadi A.* // J. Pet. Sci. Technol. 2017. V. 7. P. 12.
- Karambeigi M. A., Kharrat R. // Pet. Sci. Technol. 2014. V. 32. P. 1213.
- Kashefi S., Shahrabadi A., Jahangiri S., Lotfollahi M.N., Bagherzadeh H. // Energy Sources, Part A. Recovery Util. Environ. Eff. 2016. V. 38. P. 3647.
- Kashefi S., Shahrabadi A., Lotfollahi M.N., Varamesh A. // Korean J. Chem. Eng. 2016. V. 33. P. 3273.
- Jafari Behbahani T., Miranbeigi A.A., Sharifi K. // Petrol. Chem. 2017. V. 57. P. 874.
- 9. Marczewski A.W., Szymula M. // Colloid. Surf. A. Physicochem. Eng. Asp. 2002. V. 208. P. 259.
- Abdallah W.A., Taylor S.D. // Nucl. Instrum. Methods Phys. Res. B. 2007. V. 258. P. 213.
- Kashefi S., Lotfollahi M.N., Shahrabadi A. // Oil Gas Sci. Technol. – Rev. d'IFP Energies Nouvelles. 2018. V. 73. P. 2.
- Nassar N.N., Hassan A., Pereira-Almao P. // Energy Fuels. 2011. V. 25. P. 1017.
- Nassar N.N., Hassan A., Carbognani L., Lopez-Linares F., Pereira-Almao P. // Fuel. 2012. V. 95. P. 257.
- 14. Franco C., Patiño E., Benjumea P., Ruiz M.A., Cortés F.B. // Fuel. 2013. V. 105. P. 408.
- 15. Hashemi R., Nassar N.N., Pereira-Almao P. // Energy Fuels. 2012. V. 26. P. 1645.
- 16. Nassar N.N. // Energy Fuels. 2010. V. 24. P. 4116.
- 17. Hosseinpour N., Khodadadi A.A., Bahramian A., Mortazavi Y. // Langmuir. 2013. V. 29. P. 14135.
- Nassar N.N., Hassan A., Pereira-Almao P. // J. Colloid Interface Sci. 2011. V. 360. P. 233.
- 19. Standard Test Method for Determination of Asphaltenes (Heptane Insolubles) in Crude Petroleum and Petroleum Products, ASTMD6560-00, 2005.
- 20. Fan T., Buckley J.S. Acid Number Measurements Revisited. SPE/DOE Symp. on Improved Oil Recovery, Society of Petroleum Engineers, 2006.
- 21. Dubey S.T., Doe P.H. // SPE Reserv. Eng. 1993. V. 8. P. 195.
- Saadatjoo N., Golshekan M., Shariati S., Kefayati H., Azizi P. // J. Mol. Catal. A. Chem. 2013. V. 377. P. 173.
- 23. Sun L.B., Gu F.N., Chun Y., Kou J.H., Yang J., Wang Y., Zhu J.H., Zou Z.G. // Microporous Mesoporous Mater. 2008. V. 116. P. 498.

НЕФТЕХИМИЯ том 59 № 6, выпуск 1 2019

- Yudin I.K., Nikolaenko G.L., Gorodetskii E.E., Kosov V.I., Melikyan V.R., Markhashov E.L., Frot D., Briolant Y. // J. Pet. Sci. Eng. 1998. V. 20. P. 297.
- Modeling of Processes and Reactors for Upgrading of Heavy Petroleum, Ed. by Ancheyta J. CRC Press, 2013.
- Peng J., Tang G.-Q., Kovscek A.R. // J. Pet. Sci. Eng. 2009. V. 66. P. 47.
- Fatahian S., Shahbazi D., Pouladian M., Yousefi M.H., Amiri GH.R., Shahi Z., Jahanbakhsh H. // Dig. J. Nanomater. Bios. 2011. V. 6. P. 1161.
- 28. *Li J., Yan R., Xiao B., Liang D.T., Lee D.H. //* Energy Fuels. 2007. V. 22. P. 16.

- Tamilselvi P., Yelilarasi A., Hema M., Anbarasan R. // Nano Bulletin. 2013. V. 2. P. 130106.
- Yousef R.I., El-Eswed B., Ala'a H. // Chem. Eng. J. 2011. V. 171. P. 1143.
- Al-Anber M.A. Thermodynamics Approach in the Adsorption of Heavy Metals. INTECH Open Access Publisher, 2011.
- 32. *Tan J., Wei X., Ouyang Y., Fan J., Liu R. //* Period. Polytech. Chem. Eng. 2014. V. 58. P. 131.
- 33. Liu Y. // J. Chem. Eng. Data. 2009. V. 54. P. 1981.
- 34. The Adsorption of Gases on Solids, Ed. by A.R. Miller. Cambridge University Press, 2013.