УДК 661.9:544.34

ТЕРМОДИНАМИЧЕСКОЕ ИССЛЕДОВАНИЕ КОНВЕРСИИ ПОПУТНЫХ НЕФТЯНЫХ ГАЗОВ В МЕТАН

© 2019 г. В. Б. Ильин^{1, *}, Р. Е. Яковенко¹, Д. М. Белашов¹, Н. Д. Земляков¹, А. П. Савостьянов^{1, **}

¹Южно-Российский государственный политехнический университет (НПИ) им. М.И. Платова,

Новочеркасск, 346428 Россия *E-mail: ilyin07@gmail.com **E-mail: savost@hotmail.ru Поступила в редакцию 09.08.2018 г. После доработки 09.02.2019 г. Принята к публикации 12.02.2019 г.

Представлены результаты расчета констант равновесия и теплоты реакций конверсии попутных нефтяных газов с различным содержанием гомологов метана в интервале температур $300-475^{\circ}$ С. Показано, что метанирование протекает в две стадии, одна из которых – гидрогенолиз гомологов метана. Исследовано влияние параметров (температура, давление, состав ПНГ) на равновесный состав продуктов предриформинга, автотермичность и образование элементарного углерода. Расчеты проведены с учетом неидеальности газовых компонентов (модель Пенга–Робинсона) в области температур 350–450°С и давлений 0.1–2.0 МПа. Установлено, что при 350–400°С и давлении 2.0 МПа теоретически возможна автотермичная конверсия гомологов метана при отношении пар : газ = 1 : (1–1.25) (для ПНГ с метановым эквивалентом от 1.8 до 2.6). При таких параметрах термодинамически невозможно образование элементного углерода.

Ключевые слова: попутный нефтяной газ, предриформинг, константа равновесия, равновесный состав, зауглероживание

DOI: 10.1134/S0028242119070098

Утилизация попутного нефтяного газа (ПНГ) является актуальной задачей, так как объем добытого ПНГ только в России в 2016 г. составил 70.8 млрд м³, из которых сожжено на факелах 9.7 млрд м³ [1]. Большая доля сжигаемого ПНГ приходится на малодебитные и удаленные от магистральных газопроводов скважины. В состав ПНГ входят ценные химические вещества – метан и его гомологи [2, 3]. Возможны несколько вариантов утилизации попутного нефтяного газа: закачка в нефтяные скважины; использование в качестве топливного газа на объектах малой энергетики; производство на малотоннажных установках сжиженного газа или востребованных нефтехимических продуктов, например синтетического жидкого топлива по технологии GTL -"газ в жидкость" [4-13].

Наиболее капиталоемкой стадией в GTL-технологии является стадия получения синтез-газа (СО и H_2) – преимущественно используется риформинг C_1-C_5 с водяным паром, кислородом (или воздухом), диоксидом углерода или их смесью. Использование риформинга осложняется непостоянством расхода и состава газа в зависимости от месторождения, стадии сепарации, длительности эксплуатации отдельных скважин. Для стабилизации состава газа, подаваемого на риформинг применяют стадию предриформинга – предварительную конверсию углеводородов C₂₊ до метана [14–20].

Основное назначение стадии предриформинга попутного нефтяного газа заключается в смягчении условий работы катализатора основного риформинга (предотвращения сажеобразования, дополнительной очистки газа от сернистых соединений, уменьшения тепловой нагрузки), что приводит к снижению расходных коэффициентов по водяному пару, теплоносителю, продлению срока службы катализатора и, в конечном счете, уменьшению капитальных и эксплуатационных затрат на основной риформинг [8, 17, 21–26].

Из означенных целей можно сформулировать основные технологические требования к процессу предриформинга:

 возможность переработки различных по составу ПНГ;

высокая, близкая к 100%, степень конверсии гомологов метана;

 минимальный избыток окислителя (отношение пар : газ);

 минимально возможная температура процесса;

 автотермичность (возможность осуществления процесса без подвода энергии);

 – отсутствие термодинамической вероятности зауглероживания катализатора.

Первые работы по исследованию процесса низкотемпературной конверсии гомологов метана были проведены в СССР с целью разработки способа очистки природного газа от углеводородов С₂₊ перед стадией паровой конверсии природного газа. В работах [27, 28] показана возможность практически полной конверсии гомологов метана при температурах 380-400°С и впервые обрашено внимание на зауглероживание катализатора [29]. Однако работ, посвяшенных рассмотрению теоретических закономерностей процесса парового предриформинга попутных нефтяных газов в широком диапазоне параметров (состава исходного ПНГ, температуры, давления, отношения пар : газ) практически нет. В основном в работах приводятся данные по расчету равновесных составов продуктов конверсии модельных ПНГ в изотермических условиях при атмосферном давлении без учета неидеальности газовых компонентов и образования элементарного углерода [10, 30-32]. В то же $CO_2 + 4H_2 \leftrightarrows CH_4 + 2H_2O + 183.1 \frac{\kappa \square m}{2}$ время. моль

при низкотемпературной конверсии гомологов метана возможно протекание как эндотермических, так и экзотермических реакций; при этом суммарный тепловой эффект зависит от условий процесса и может быть, как положительным, так и отрицательным.

Цель настоящей работы — определение равновесного состояния системы в зависимости от параметров адиабатического процесса паровой конверсии гомологов метана (состав ПНГ, температура, давление, отношение пар : газ) и установление границ термодинамической вероятности образования фазы элементарного углерода в условиях, приближенных к промышленным.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Равновесный состав продуктов предриформинга зависит от параметров процесса (температура, давление, отношение пар : газ) и определяется соотношением констант равновесия термодинамически возможных реакций.

В условиях предварительного риформинга ПНГ водяным паром в области низких температур термодинамически возможно протекание большого количества реакций с образованием различных продуктов, в том числе элементарного углерода¹ [2, 10, 16, 23, 29, 31, 33]:

- конверсии гомологов метана ($n \ge 2$)

$$C_n H_{2n+2} + n H_2 O =$$

= nCO + (2n + 1) H₂ - 174.5 $\frac{K \square K}{MOЛЬ C}$, (1)
 $C_n H_{2n+2} + 2n H_2 O =$

=
$$nCO_2 + (3n+1)H_2 - 137.7 \frac{\kappa Д_{\mathcal{K}}}{\text{моль C}}$$
, (2)

метанирования гомологов метана

$$C_{n}H_{2n+2} + \frac{(n-1)}{2}H_{2}O =$$

$$(3)$$

$$= \frac{(3n+1)}{4} CH_4 + \frac{(n-1)}{4} CO_2 + 12.9 \frac{K/1}{MOJE} C,$$

– конверсии СО

_

(30

$$CO + H_2O \leftrightarrows CO_2 + H_2 + 37.1 \frac{\kappa \Delta m}{MOJE}, \qquad (4)$$

метанирования СО

$$CO + 3H_2 \leftrightarrows CH_4 + H_2O + 220.2 \frac{\kappa \not\perp w}{MODE}, \quad (5)$$

$$4\text{CO} + 2\text{H}_2\text{O} \leftrightarrows \text{CH}_4 + 3\text{CO}_2 + 331.5 \frac{\text{K} \ \text{K} \ \text{MOJE}}{\text{MOJE}}, \quad (6)$$

– гидрокрекинга гомологов метана

$$C_n H_{2n+2} + (n-1) H_2 = n C H_4 + 45.4 \frac{\kappa Д ж}{MOЛЬ C},$$
 (7)
– реакция Сабатье

$$CO_2 + 4H_2 \leftrightarrows CH_4 + 2H_2O + 183.1 \frac{\kappa \square \#}{MOJE}, \quad (8)$$

- термолиза углеводородов

$$C_n H_{2n+2} = nC + (n+1)H_2 - 38.6 \frac{\kappa Д ж}{\text{моль C}},$$
 (9)

– реакция Будуара

2CO
$$\leq$$
 C + CO₂ + 173.2 $\frac{\kappa \Delta \pi}{MOЛE}$, (10)

– реакция Боша

$$CO_2 + 2H_2 \leftrightarrows C + 2H_2O + 99.1 \frac{\kappa \Delta \pi}{MOJ}.$$
 (11)

Термодинамические характеристики вероятных реакций (константы равновесия, тепловые эффекты) приводятся, в основном, для высоких температур, характерных для паровой, паровоздушной и пароуглекислотной конверсии природного газа [2, 12, 29, 34]. Для температур ниже 450°C данные по константам равновесия в спра-

¹ Приведены средние значения тепловых эффектов реакций в интервале температур 300–475°С.

ТЕРМОДИНАМИЧЕСКОЕ ИССЛЕДОВАНИЕ КОНВЕРСИИ

D	n	Температура, °С							
Реакция		300	325	350	375	400	425	450	475
(1)	2	7.06×10^{-9}	1.77×10^{-7}	3.47×10^{-6}	5.45×10^{-5}	6.99×10^{-4}	7.50×10^{-3}	6.87×10^{-2}	5.44×10^{-1}
	3	1.50×10^{-10}	1.52×10^{-8}	1.07×10^{-6}	5.50×10^{-5}	2.11×10^{-3}	6.29×10^{-2}	1.49	28.66
	4	1.87×10^{-12}	7.77×10^{-10}	2.01×10^{-7}	3.45×10^{-5}	4.04×10^{-3}	3.39×10^{-1}	2.11×10^{1}	1000
	5	4.40×10^{-14}	7.35×10^{-11}	6.88×10^{-8}	3.88×10^{-5}	1.36×10^{-2}	3.18×10^{0}	5.13×10^{2}	5.92×10^4
	6	8.34×10^{-16}	5.66×10^{-12}	1.92×10^{-8}	3.58×10^{-5}	3.80×10^{-2}	2.47×10^{1}	1.04×10^4	2.92×10^{6}
(2)	2	6.6×10^{-6}	8.5×10^{-5}	9.1×10^{-4}	8.2×10^{-3}	6.3×10^{-2}	4.2×10^{-1}	2.47	13.0
	3	4.2×10^{-6}	1.6×10^{-4}	4.5×10^{-3}	1.0×10^{-1}	1.8×10^{0}	2.6×10^{1}	320	3.3×10^{3}
	4	1.6×10^{-6}	1.8×10^{-4}	1.4×10^{-2}	7.8×10^{-1}	33	1000	2.7×10^4	5.7×10^{5}
	5	1.2×10^{-6}	3.7×10^{-4}	7.6×10^{-2}	1.1	1000	7.4×10^{4}	4.0×10^{6}	1.6×10^{8}
	6	6.7×10^{-7}	6.2×10^{-4}	3.4×10^{-1}	1.2×10^{2}	2.8×10^4	4.3×10^{6}	4.8×10^{8}	4.0×10^{10}
(3)	2	1.07×10^5	8.67×10^4	7.15×10^{4}	5.98×10^4	5.07×10^4	4.34×10^{4}	3.75×10^{4}	3.28×10^4
	3	1.64×10^{9}	1.18×10^{9}	8.63×10^{8}	6.47×10^{8}	4.94×10^{8}	3.83×10^{8}	3.02×10^{8}	2.42×10^{8}
	4	4.86×10^{13}	3.03×10^{13}	1.96×10^{13}	1.31×10^{13}	8.92×10^{12}	6.24×10^{12}	4.47×10^{12}	3.26×10^{12}
	5	2.53×10^{17}	1.44×10^{17}	8.52×10^{16}	5.24×10^{16}	3.31×10^{16}	2.16×10^{16}	1.44×10^{16}	9.83×10^{15}
	6	1.14×10^{22}	5.57×10^{21}	2.87×10^{21}	1.55×10^{21}	8.70×10^{20}	5.05×10^{20}	3.03×10^{20}	1.87×10^{20}
(4)		39.4	28.0	20.4	15.3	11.8	9.23	7.37	5.98
(5)		2.08×10^7	3.08×10^6	5.26×10^{5}	1.02×10^{5}	2.25×10^4	5.49×10^{3}	1.47×10^{3}	4.29×10^2
(6)		5.9×10^{11}	3.22×10^{10}	2.22×10^{9}	1.89×10^{8}	1.92×10^7	2.29×10^{6}	3.17×10^{5}	5.00×10^4
(7)	2	3.07×10^6	1.68×10^6	9.60×10^{5}	5.72×10^{5}	3.54×10^5	2.26×10^{5}	1.49×10^{5}	1.00×10^5
	3	1.36×10^{12}	4.41×10^{11}	1.56×10^{11}	5.92×10^{10}	2.41×10^{10}	1.04×10^{10}	4.74×10^{9}	2.27×10^9
	4	3.54×10^{17}	6.95×10^{16}	1.54×10^{16}	3.81×10^{15}	1.04×10^{15}	3.08×10^{14}	9.87×10^{13}	3.40×10^{13}
	5	1.73×10^{23}	2.02×10^{22}	2.77×10^{21}	4.38×10^{20}	7.87×10^{19}	1.58×10^{19}	3.53×10^{18}	8.64×10^{17}
	6	6.85×10^{28}	4.79×10^{27}	4.01×10^{26}	4.14×10^{25}	4.93×10^{24}	6.75×10^{23}	1.05×10^{23}	1.83×10^{22}
(8)		6.84×10^5	1.40×10^{5}	3.25×10^4	8.36×10^{3}	2.37×10^{3}	7.34×10^{2}	2.45×10^2	87.9
(9)	1	4.60×10^{-3}	9.48×10^{-3}	1.85×10^{-2}	3.45×10^{-2}	6.16×10^{-2}	1.06×10^{-1}	1.76×10^{-1}	2.88×10^{-1}
	2	6.49×10^{1}	1.51×10^2	3.30×10^2	6.82×10^2	1.34×10^3	2.53×10^{3}	4.58×10^{3}	8.00×10^{3}
	3	1.32×10^{5}	3.76×10^{5}	9.89×10^{5}	2.43×10^6	5.62×10^6	1.23×10^{7}	2.56×10^{7}	5.10×10^{7}
	4	1.58×10^{8}	5.62×10^{8}	1.82×10^{9}	5.40×10^{9}	1.49×10^{10}	3.86×10^{10}	9.38×10^{10}	2.16×10^{11}
	5	3.56×10^{11}	1.55×10^{12}	6.05×10^{12}	2.14×10^{13}	6.98×10^{13}	2.10×10^{14}	5.89×10^{14}	1.55×10^{15}
	6	6.48×10^{14}	3.48×10^{15}	1.65×10^{16}	7.00×10^{16}	2.69×10^{17}	9.47×10^{17}	3.07×10^{18}	9.27×10^{18}
(10)		2.92×10^{6}	6.38×10^{5}	1.58×10^{5}	4.33×10^{4}	1.31×10^{4}	4.34×10^{3}	1.55×10^{3}	5.92×10^{2}
(11)		3.15×10^{3}	1.33×10^{3}	6.03×10^{2}	2.88×10^2	1.46×10^{2}	7.77×10^{1}	4.31×10^{1}	2.48×10^{1}

Таблица 1. Константы равновесия реакций предриформинга ПНГ

n — число атомов углерода в молекуле углеводорода.

НЕФТЕХИМИЯ том 59 № 6 выпуск 2 2019

817

Рис. 1. Зависимость изменения температуры в адиабатном процессе от давления. Начальная температура, °C: 1 - 350; 2 - 400; 3 - 450. Отношение пар : газ = = 1.5.

Масса углерода, кг/1000 м³ ПНГ

Рис. 2. Зависимость теоретической массы углерода от давления. Начальная температура, °C: 1 - 350; 2 - 400; 3 - 450. Отношение пар : газ = 1.5.

Рис. 3. Зависимость температуры на выходе из реактора от метанового эквивалента ПНГ. Начальная температура 400°С.

вочной и научной литературе, за редким исключением, отсутствуют. Учитывая, что в условиях каталитического предриформинга практически достигается равновесие даже при малом времени контактирования, знание констант равновесия необходимо для расчета равновесного состава реакционной смеси. Константы равновесия (табл. 1) рассчитаны через фугитивности с учетом неидеальности газовых компонентов по правилу Льюиса—Рендала [35] в диапазоне температур 300—475°С по уравнению:

$$K_{\rm p} = \frac{K_{\rm f}}{K_{\gamma}},\tag{12}$$

где $K_{\rm p}$ – константа равновесия, выраженная через парциальные давления, $K_{\rm f}$, $K_{\gamma-}$ константы равновесия, выраженные через фугитивности и коэффициенты фугитивности соответственно.

*К*_{*f*} вычислены интегрированием выражения:

$$\frac{d\ln(K_{\rm f})}{dT} = \frac{\Delta H_T}{RT^2},\tag{13}$$

где $K_{\rm f}$ – константа равновесия, выраженная через фугитивности, ΔH_T – энтальпия при температуре T, R – универсальная газовая постоянная.

Постоянная интегрирования *K*_{f25} найдена из выражения:

$$\ln(K_{f25}) = \frac{\Delta G_{25}}{R \cdot 298.16},\tag{14}$$

где ΔG_{25} — стандартная энергия Гиббса.

Для исследования влияния технологических параметров на характеристики процесса (состав конвертированного газа, вероятность образования элементарного углерода, суммарный тепловой эффект) с использованием пакета прикладных программ Технолог (разработка ООО "ТЕХНОСОФТ-Компьютерный центр") проведены расчеты предриформинга модельных составов попутных нефтяных газов в интервале начальных температур 350-450°С, давлений 0.1-2.0 МПа, отношений пар : газ 1.3-1.7. Расчеты проводили, используя модель равновесного адиабатического (без теплообмена) реактора с учетом тепловых эффектов реакций. На вход реактора подается модельный газ состава (мольные доли, %): CH₄ – 71.4; C₂H₆ – 3.7; C₃H₈ – 20.2; μ -C₄H₁₀ – 4.0; *н*-C₅H₁₂ – 0.2; CO₂ – 0.5 с расходом 1000 м³/ч и водяной пар в заданном соотношении. Считали, что в реакторе устанавливается термодинамическое равновесие, равновесный состав рассчитывается исходя из критерия минимального значения изобарно-изотермического потенциала ΔG в системе. При расчете параметров исходили из неидеальности газовых компонентов, используя мо-Пенга–Робинсона [36]. Рассчитывали лель температуру на выходе из реактора, состав сухого (без учета остаточного содержания водяного пара) конвертированного газа и количество образовавшегося углерода в твердой фазе на 1000 м³ исходного попутного нефтяного газа. Результаты

НЕФТЕХИМИЯ том 59 № 6 выпуск 2 2019

ТЕРМОДИНАМИЧЕСКОЕ ИССЛЕДОВАНИЕ КОНВЕРСИИ

Темпера	атура, °C		Macca					
на входе	на выходе	CH ₄	H ₂	СО	CO ₂	углерода, кг/1000 м ³ ПНГ		
	Отношение пар : $ra3 = 1.3$ (H ₂ O : C = 0.83)							
350	369	79.4	12.5	0.09	8.01	71.5		
375	382	77.4	14.4	0.10	8.10	75.0		
400	394	75.4	16.2	0.17	8.23	79.1		
425	407	73.1	18.3	0.20	8.40	84.2		
450	418	71.0	20.2	0.29	8.51	89.3		
	1	Отношение і	тар : газ = 1.4 (H	$_{2}$ O : C = 0.89)		I		
350	368	78.9	12.3	0.09	8.7	55.2		
375	380	76.9	14.1	0.13	8.9	58.2		
400	392	74.8	16.0	0.17	9.0	62.0		
425	405	72.6	18.0	0.23	9.2	66.7		
450	416	70.5	19.9	0.30	9.2	71.2		
	1	Отношение і	тар : газ = 1.5 (H	$_{2}$ O : C = 0.96)		I		
350	366	78.3	12.1	0.09	9.48	38.5		
375	378	76.4	13.8	0.12	9.6	41.1		
400	391	74.3	15.7	0.17	9.8	44.5		
425	402	72.3	17.6	0.23	9.9	48.4		
450	415	70.0	19.7	0.30	10.0	53.4		
	1	Отношение і	тар : газ = 1.6 (H	$_{2}$ O : C = 1.02)		I		
350	363	77.9	11.8	0.09	10.2	21.5		
375	375	76.1	13.4	0.12	10.4	23.4		
400	389	73.8	15.4	0.17	10.5	26.7		
425	401	71.8	17.3	0.20	10.7	30.3		
450	412	69.7	19.2	0.29	10.8	34.4		
Отношение пар : газ = 1.7 (H ₂ O : C = 1.09)								
350	361	77.4	11.6	0.09	10.9	4.2		
375	375	75.3	13.4	0.13	11.1	6.0		
400	387	73.3	15.2	0.17	11.3	8.6		
425	399	71.3	17.1	0.23	11.4	11.8		
450	411	69.2	18.7	0.29	11.5	15.7		

Таблица 2. Равновесный состав продуктов предриформинга ПНГ при давлении 0.1 МПа

численных экспериментов приведены в табл. 2, 3 и на рис. 1, 2.

Для определения области протекания процесса, в которой термодинамически невозможно образование углерода, в качестве модельных ПНГ были выбраны составы с низким, средним и высоким содержанием метана с различным метановым эквивалентом (табл. 4).

Расчеты адиабатического реактора проведены при следующих параметрах: давление 0.1 и 2.0 МПа, температура на входе в реактор 300–400°С. Результаты расчетов представлены в табл. 5 и на рис. 3, 4.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Как видно из приведенных данных, в системе "углеводороды—оксиды углерода—углерод—вода" термодинамически возможно протекание экзо- и эндотермических реакций. К экзотермическим относятся реакции метанирования гомологов метана (3), конверсии CO (4), метанирования CO (5) и (6), гидрокрекинга углеводородов (7), реакции Будуара (10) и Боша (11). Реакции конверсии гомологов метана (1), (2), термолиза углеводородов (9) протекают с поглощением теплоты.

Константы равновесия возможных реакций значительно отличаются по величине, на основании которых можно выделить практически необ-

ИЛЬИН и др.

Темпера	атура, °C		Углерод,						
на входе	на выходе	CH ₄	H ₂	СО	CO ₂	кг/1000 м ³ ПНГ			
	Отношение пар : газ = 1.3 (H_2O : $C = 0.83$)								
350	412	86.4	4.8	0.06	8.4	28.6			
375	430	85.2	5.7	0.09	8.9	27.0			
400	447	84.0	6.7	0.12	9.1	26.0			
425	464	82.7	7.8	0.17	9.3	25.7			
450	480	81.3	9.0	0.24	9.4	25.8			
	I	Отношение г	тар : газ = 1.4 (Н	$_{2}$ O : C = 0.89)		I			
350	408	85.8	4.6	0.06	9.5	11.7			
375	426	84.6	5.5	0.08	9.7	9.4			
400	444	83.4	6.5	0.12	10.0	7.9			
425	461	82.1	7.6	0.17	10.1	7.1			
450	478	80.7	8.8	0.24	10.2	6.8			
	Отношение пар : газ = 1.5 (H ₂ O : C = 0.96)								
350	404	85.4	4.5	0.05	10.0	—			
375	423	84.2	5.5	0.08	10.2	_			
400	441	83.0	6.6	0.12	10.3	_			
425	458	81.6	7.7	0.17	10.5	_			
450	475	80.3	8.9	0.23	10.6	_			
	1	Отношение и	пар : газ = 1.6 (Н	$_{2}$ O : C = 1.02)		I			
350	402	85.2	4.6	0.05	10.1	-			
375	421	84.0	5.7	0.08	10.2	_			
400	439	82.7	6.8	0.11	10.4	_			
425	456	81.4	7.9	0.16	10.5	_			
450	472	80.0	9.2	0.21	10.6	_			
Отношение пар : газ = 1.7 (H ₂ O : C = 1.09)									
350	400	85.1	4.8	0.05	10.1	-			
375	419	83.8	5.8	0.07	10.2	_			
400	437	82.5	7.0	0.10	10.4	_			
425	454	81.1	8.2	0.15	10.5	_			
450	471	79.6	9.5	0.20	10.7	—			

Таблица 3. Равновесный состав продуктов предриформинга ПНГ при давлении 2.0 МПа

ратимые и наиболее вероятные реакции. Так константы равновесия реакции (3) (метанирования гомологов метана) настолько велики (при $n \ge 3$), что ее можно считать необратимой, при этом, чем больше n, тем выше значение K_p . Следует отметить, что в интервале температур $300-475^{\circ}$ С константы равновесия слабо зависят от температуры. Реакции конверсии гомологов метана (1) можно считать обратимыми — только при температуре выше 425° С значение константы превышает 1, при этом наблюдается сильная зависимость K_p от температуры. При температуре менее 375° С равновесие реакции сдвинуто в сторону исходных веществ. Реакции (7) гидрокрекинга алканов с $n \ge 3$ можно считать необратимыми, с ростом числа углеродных атомов необратимость возрастает.

Исходя из значений констант равновесия, реакциями, определяющими состав реакционной смеси в состоянии термодинамического равновесия, являются реакции конверсии СО (4) и метанирования СО (5), (6). Реакции образования элементарного углерода, (10) и (11) имеют близкие значения констант равновесия и термодинамически возможны в исследуемых условиях. Значи-

Компонент	Объемная доля компонента, %					
Romioneni	Ι	II	III	IV		
CH ₄	40.00	50.00	60.00	70.00		
C_2H_6	6.78	5.65	4.52	3.39		
C ₃ H ₈	17.50	14.58	11.66	8.75		
$n - C_4 H_{10}$	17.77	14.81	11.85	8.89		
$n - C_5 H_{12}$	7.92	6.60	5.28	3.96		
$n - C_6 H_{14}$	4.52	3.77	3.01	2.26		
$n - C_7 H_{16}$	1.60	1.34	1.07	0.80		
$n - C_8 H_{18}$	0.31	0.26	0.20	0.15		
CO ₂	3.38	2.81	2.27	1.69		
N ₂	0.22	0.18	0.14	0.11		
Метановый	2.58	2.31	2.05	1.79		
эквивалент $n_{\rm C}$						

тельный вклад в зауглероживание системы могут вносить реакция (9) термолиза гомологов метана, начиная с пропана.

Монооксид углерода, образовавшийся по реакциям конверсии (1) далее восстановливается водородом до метана по реакции (5). Сумма реакций (1) и (5) дают реакцию гидрокрекинга (7) с очень большой константой равновесия. Таким образом механизм процесса метанирования гомологов метана вероятнее всего заключается в следующем:

 первичные реакции — образования оксидов углерода (1) и (2), причем (2) термодинамически более вероятна;

 вторичные реакции – гидрокрекинга гомологов метана (7).

Расчеты показали, что при давлении 0.1 МПа, отношении пар : ПНГ от 1.3 до 1.7 и температуре на входе в реактор (350-375)°С преобладают экзотермические реакции и температура в реакторе повышается. Повышение температуры зависит от отношения пар : ПНГ – с повышением отношения пар : ПНГ ΔT уменьшается.

Рис. 4. Зависимость образования углерода от отношения $H_2O : C$ для различных составов ПНГ. Давление 2 МПа, температура на входе 400 С. *1* – состав I, *2* – состав II, *3* – состав III, *4* – состав IV (см. табл. 4).

НЕФТЕХИМИЯ том 59 № 6 выпуск 2 2019

Суммарный тепловой эффект зависит от температуры на входе в реактор – ΔT падает с ростом температуры. При начальной температуре 400°С ΔT становится отрицательной, следовательно, в этих условиях преобладают эндотермические реакции. Процесс становится эндотермическим в области температур на входе 380 ± 10 С при любом отношении пар : ПНГ.

Аналогичные зависимости получены и при давлении 0.5 – 2.0 МПа. Повышение температуры в значительном диапазоне параметров адиабатного процесса предриформинга свидетельствует о преобладании экзотермических реакций, вероятнее всего реакций (7), (5).

Уменьшение экзотермичности с увеличением отношения пар : газ связано с расходом теплоты реакций на нагрев дополнительного количества водяного пара.

Суммарный тепловой эффект зависит от давления и начальной температуры – с повышением давления и понижением начальной температуры ΔT увеличивается при любых отношениях пар : газ. Процесс становится экзотермичным при давлении выше 0.5 МПа. В интервале давлений 1.0–2.0 МПа прирост температуры становится незначительным и с дальнейшем ростом давления, повидимому, принимает постоянное значение (рис. 1). С повышением температуры равновесие реакций (5) и (6) сдвигается влево, что приводит к снижению экзотермичности процесса.

При низком отношении пар : газ в системе термодинамически возможно образование элементарного углерода (зауглероживание). Вероятность зауглероживания можно оценить по расчетной массе углерода, образующегося при конверсии 1000 м³ ПНГ.

С ростом отношения пар : газ во всем диапазоне давлений количество углерода уменьшается и при достижении определенного значения пар : газ углерод не образуется, что свидетельствует о подавлении реакций (9)–(11). Повышение начальной температуры процесса приводит к увеличению вероятности образования углерода.

При давлении 0.1 МПа зауглероживание наблюдается при всех отношениях пар:газ в диапазоне 1.3–1.7, при давлении 0.5 МПа углерод не образуется при отношении пар : газ больше 1.6.

При отношении пар : газ 1.5 с повышением давления вероятность образования углерода уменьшается и при давлении 2.0 МПа зауглероживания не происходит во всем интервале температур (рис. 2). Следует отметить уменьшение влияния температуры на образование углерода с ростом давления.

Степень конверсии C_{2^+} в CH_4 можно оценить по концентрации метана в газе, выходящем из реактора. Расчеты показали, что степень конверсии зависит от отношения пар : газ, температуры на

Отношение	Температура	Температура	١	e	Углерод,			
$H_2O: ras$ ($H_2O: C$)	на входе, °С	на выходе, °С	CH_4	H ₂	СО	CO ₂	кг/1000 м ³ газа	
Исходный газ состава І								
3.0 (1.16)	400	471	74.7	8.2	0.28	16.6	26.6	
3.1 (1.20)		469	74	8.1	0.28	17.0	5.4	
3.2 (1.24)		467	74.2	8.2	0.27	17.2	—	
	•		Исходный г	аз состава II				
2.0 (0.86)	400	482	78.4	8.1	0.25	12.1	145	
2.5 (1.08)		468	76.5	8.2	0.25	15.0	43.7	
2.6 (1.12)		466	76.2	8.0	0.24	15.5	22.9	
2.65 (1.14)		465	76.0	7.9	0.24	15.8	12.5	
2.7 (1.17)		463	75.7	7.8	0.24	16.0	2.3	
2.8 (1.21)	300	392	80.3	3.9	0.05	15.7	7.5	
	350	430	78.0	5.8	0.12	16.0	_	
	400	462	75.7	7.9	0.23	16.1	—	
3.0 (1.30)	400	459	75.4	8.2	0.21	16.1	—	
	•		Исходный га	аз состава III				
2.0 (0.98)	400	464	78.9	7.9	0.21	12.9	57.9	
2.1 (1.02)		462	78.5	7.7	0.21	13.5	37.9	
2.2 (1.07)		459	78.0	7.5	0.20	14.2	17.7	
2.3 (1.12)	350	424	79.6	5.4	0.10	14.3	5.4	
	370	436	79.1	6.1	0.13	14.6	_	
	400	457	77.6	7.4	0.20	14.7	_	
2.4 (1.14)	400	454	77.5	7.5	0.19	14.7	_	
2.5 (1.19)		453	77.3	7.7	0.18	14.7	_	
2.6 (1.24)		454	77.0	8.0	0.18	14.8	_	
2.7 (1.28)		452	76.8	8.1	0.17	14.8	—	
2.8 (1.33)		450	76.7	8.2	0.16	14.8	—	
3.0 (1.43)		447	76.4	8.5	0.15	14.8	—	
Исходный газ состава IV								
1.5 (0.84)	400	459	82.0	7.5	0.11	10.2	68.4	
1.6 (0.89)		456	81.5	7.3	0.16	11.0	49.5	
1.7 (0.95)		452	80.9	7.1	0.16	11.7	30.4	
1.8 (1.0)		451	80.3	7.1	0.16	12.5	10.9	
1.9 (1.06)		449	79.9	7.0	0.16	12.9	—	
2.0 (1.12)		447	79.7	7.2	0.15	12.9	_	

Таблица 5. Параметры адиабатического процесса предриформинга ПНГ. Давление 2.0 МПа

НЕФТЕХИМИЯ том 59 № 6 выпуск 2 2019

Рис. 5. Граница термодинамической вероятности образования свободного углерода. В области ниже кривых термодинамически вероятно образование углерода.

входе в реактор и давления. Концентрация метана в сухом конвертированном газе слабо зависит от отношения пар : газ и снижается с ростом температуры во всем диапазоне исследованных параметров.

С повышением давления степень конверсии C_{2+} растет, что приводит к увеличению концентрации метана (от 73.8% при 0.1 МПа до 82.7% при 2.0 МПа и отношении пар : газ 1.6), при этом концентрация водорода уменьшается, а диоксида углерода остается практически неизменной. Следует отметить, что в продуктах предриформинга практически отсутствует монооксид углерода (концентрация в пределах 0.1–0.2%).

Степень конверсии углеводородов C_{2+} во всем интервале технологических параметров составляет 100%. Расчеты показали, что при достижении термодинамического равновесия в продуктах предриформинга присутствуют следы этана, углеводороды C_{3+} в продуктах отсутствуют.

Из полученных данных следует, что при давлении 2.0 МПа и начальной температуры процесса 400°С для любого состава газа (метановый эквивалент в пределах 1.8–2.6) при отношении $H_2O: C = 1.06-1.24$ в системе преобладают экзотермические реакции, что приводит к повышению температуры в реакторе (рис. 3). Повышение температуры тем значительнее, чем больше метановый эквивалент ПНГ.

При давлении 0.1 МПа преобладание экзотермических реакций наблюдается только для состава ПНГ с метановым эквивалентом больше 2.25. Таким образом, повышение давления на стадии предриформинга позволяет проводить процесс в адиабатических условиях без подвода теплоты извне.

Состав основных продуктов предриформинга слабо зависит от метанового эквивалента (табл. 5). Концентрация метана в конвертированном газе снижается с 80% при $n_{\rm C} = 1.8$ до 74% при $n_{\rm C} = 2.6$, с одновременным незначительным повышением концентрации CO₂ и практически неизменной концентрацией водорода. Количество углерода

НЕФТЕХИМИЯ том 59 № 6 выпуск 2 2019

сильно зависит от избытка окислителя для любого состава газа как при давлении 2.0 МПа, так и при 0.1 МПа и при достижения определенного отношения H₂O : С образование элементарного vглерода становится термодинамически невозможным. Однако от давления зависит избыток окислителя. необходимый для предотврашения образования элементарного углерода. Так, для газа состава I ("жирный" ПНГ) требуемое отношение H₂O : C равно 1.43 и 1.24 при давлении 0.1 и 2.0 МПа соответственно. Из полученных данных следует, что повышение давления позволяет проводить процесс предриформинга с меньшим избытком окислителя.

Отношение H_2O : C, при котором исключена термодинамическая вероятность образования элементарного углерода (зауглероживание), зависит от метанового эквивалента n_C (рис. 5). Участки ниже кривых соответствуют условиям, при которых теоретически в системе возможно образование углерода. Области выше кривых показывают возможные значения избытка окислителя (отношение H_2O : C), при которых образование углерода теоретически невозможно. Рассчитанные значения H_2O : C лежат в пределах 1.28–1.43 для давления 0.1 МПа и 1.06–1.24 для давления 2.0 МПа.

ЗАКЛЮЧЕНИЕ

Термодинамически обоснованы технологические параметры низкотемпературной паровой конверсии гомологов метана в адиабатическом реакторе.

Установлена возможность переработки на стадии предриформинга различных по составу ПНГ с высокой степенью конверсии гомологов метана, минимальным избытком окислителя (отношение пар : газ) и соблюдением автотермичности процесса при давлении 2.0 МПа. Определены границы термодинамической вероятности образования фазы элементарного углерода при переработке попутных нефтяных газов. Показано, что в широком диапазоне состава ПНГ ($n_C = 1.8-2.6$) отношение пар : С не может быть меньше 1 : 1.

Результаты термодинамических исследований могут быть использованы для технологических расчетов стадии предрифрминга в процессе переработки ПНГ с целью получения синтез-газа для производства жидких углеводородных топлив в условиях, исключающих зауглероживание катализатора.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при поддержке Минобрнауки РФ в рамках государственного задания на проведение НИОКР, шифр заявки № 10.2980. 2017/4.6, с использованием оборудования ЦКП "Нанотехнологии" ЮРГПУ (НПИ).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Ильин Владимир Борисович, к.т.н., доцент, с.н.с., ORCID: https://orcid.org/0000-0001-8229-1697

Яковенко Роман Евгеньевич, к.т.н., доцент, ORCID: https://orcid.org/0000-0001-9137-7265

Белашов Добрыня Максимович, бакалавр, ORCID: https://orcid.org/0000-0002-8341-5978

Земляков Николай Дмитриевич, к.т.н., с.н.с., доцент, ORCID: https://orcid.org/0000-0001-9779-2064

Савостянов Александр Петрович, д.т.н., профессор, профессор, ORCID: https://orcid.org/0000-0002-5349-2443

СПИСОК ЛИТЕРАТУРЫ

- 1. Российский статистический ежегодник 2017: Стат. сб. М.: Росстат, 2017. 686 с.
- Справочник азотчика: Физико-химические свойства газов и жидкостей. Производство технологических газов. Очистка технологических газов. Синтез аммиака. 2-е изд., перераб. М.: Химия, 1986. 512 с.
- 3. Филипов А.В. // Neftegaz.ru. 2013. № 10. С. 22.
- 4. *Рачевский Б.С.* // Мир нефтепродуктов. 2008. № 7. С. 24.
- 5. Мордкович В.З., Синева Л.В., Кульчаковская Е.В., Асалиева Е.Ю. // Катализ в промышленности. 2015. № 5. С. 23.
- 6. Яковенко Р.Е., Нарочный Г.Б., Савостьянов А.П., Кирсанов В.А. // Химическое и нефтегазовое машиностроение. 2015. № 3. С. 11.
- Фейгин В.И., Брагинский О.Б., Заболотский С.А., Кукушкин И.Г., Маевский А.В., Масленников Н.И., Рыков Ю.Г. Исследование состояния и перспектив направлений переработки нефти и газа, нефте- и газохимии в РФ. М.: Экон-информ, 2011. 806 с.
- Usachev N.Y., Kharlamov V.V., Belanova E.P., Kazakov A.V., Starostina T.S., Kanaev A.S. // Petrol. Chemistry. 2011. V. 51. № 2. P. 96.
- 9. Cross J., Jones G., Kent. M.A. // Nitrogen + Syngas. 2016. № 341. P. 40.
- Кириллов В.А., Амосов Ю.И., Шигаров А.Б., Кузин Н.А., Киреенков В.В., Пармон В.Н., Аристович Ю.В., Грицай М.А., Светов А.А. // Теоритеческие основы химической технологии. 2017. Т. 51. № 1. С. 15.
- Алдошин С.М., Арутюнов В.С., Савченко В.И., Седов И.В., Макарян И.А. // Вестник Российской академии наук. 2016. Т. 86. № 8. С. 719.
- Ke Liu, Chunshan Song, Velu Subramani. Hydrogen and Syngas Production and Purification Technologies. A John Wiley & Sons, Inc., Publication, 2009. 523 p.

- Arutyunov V.S., Savchenko V.I., Sedov I.V., Nikitin A.V., Troshin K.Ya., Borisov A.A., Fokin I.G., Makaryan I.A., Strekova L.N. // New Potentialities for Utilization of Associated Petroleum Gases in Power Generation and Chemicals Production. 2017. V. 19. P. 265.
- Christensen T.S. // Applied Catalysis A: General. 1996.
 V. 138. № 2. P. 285.
- 15. *Роструп-Нильсон Т.* // Патент РФ № 2263627. 2005. № 31.
- Rostrup-Nielsen J., Rostrup-Nielsen T., Sehested J. // Fuel Chemistry Division Preprints. 2003. V. 48. № 1. P. 218.
- 17. *Мадсен С.В, Шпигель Е.* // Газохимия. 2010. № 11. С.56.
- Верниковская М.В., Снытников П.В., Кириллов В.А., Собянин В.А. // Нефтепереработка и нефтехимия. 2012. № 11. С. 7.
- 19. Кириллов В.А., Собянин В.А., Снытников П.В. // Нефть. Газ. Новации. 2014. № 8. С. 44.
- Aasberg-Petersen, Christensen N.S., Nielsen C.N.T. Dybkjær I. // Fuel Processing Technology. 2003. № 83. P. 253.
- 21. *Крылов О.В.* // Катализ в промышленности. 2007. № 2. С. 13.
- Keshavarz A., Soleimani M. // RSC Adv. 2016. № 6. P. 61536.
- 23. *Sperle T., Chen D., Lødeng R., Holmen A.* // Applied Catalysis A: General. 2005. V. 282. № 1–2. P. 195
- 24. Aasberg-Petersen K., Dybkjær I., Ovesen C.V., Schjødt N.C., Sehested J., Thomsen S.G. // J. of Natural Gas Science and Engineering. 2011. V. 3. № 2. P. 423.
- 25. Navarro Yerga R.M., Álvarez-Galván M.C., Mota N., Villoriadela Mano J.A., Fierro J.L.G., Al-Zahrani S.M. // Chem-CatChem. 2011. V. 3. № 3. P. 440.
- Zyryanova M.M., Snytnikov P.V., Shigarov A.B., Belyaev V.D., Kirillov V.A., Sobyanin V.A. // Fuel. 2014, V. 135. P. 76.
- 27. Головин Г.С., Рябцев И.И., Назаров Э.К. // Каталитическая конверсия углеводородов. 1974. № 1. С. 103.
- Рейхерт А.Л., Сенникова А.И., Краснопевцев Ю.Ф., Цветков В.Ф., Мешенко Н.Т., Веселов В.В., Назаров Э.К. // Получение водорода из углеводородного сырья. Сб. науч. тр. Киев: Наукова думка, 1979. С. 45.
- Косягин В.Г., Строкова Т.П., Рождественский В.П. // Каталитическая конверсия углеводородов. 1975. № 2. С. 42.
- 30. Кириллов В.А., Собянин В.А., Снытников П.В. // Нефть. Газ. Новации. 2014. № 8. С. 68.
- 31. Зырянова М.М., Бадмаев С.Д., Беляев В.Д., Амосов Ю.И., Снытников П.В., Кириллов В.А., Собянин В.А. // Катализ в промышленности. 2013. № 3. С. 22.
- 32. Усков С.И., Еникеева Л.В., Потемкин Д.И., Беляев В.Д., Снытников П.В., Губайдулин И.М., Кириллов В.А., Собянин, В.А. // Катализ в промышленности. 2017. № 1. С. 11.
- Рождественский В.П., Ерофеева В.И. // Каталитическая конверсия углеводородов. 1975. № 2. С. 97.
- 34. Степанов А.В. Получение водорода и водородсодержащих газов. Киев: Наукова думка, 1982. 312 с.
- Уэйлес С. Фазовые равновесия в химической технологии, в 2-х частях (пер. с англ.). М.: Мир, 1989. 304 с.
- 36. *Peng D.Y., Robinson D.B.* // Industrial & Engineering Chemistry Fundamentals. 1976. V. 15. P. 59.

НЕФТЕХИМИЯ том 59 № 6 выпуск 2 2019