УДК 662.6/9:678.04

ПОЛУЧЕНИЕ ИЗ УГЛЯ СИНТЕТИЧЕСКИХ РЕАКТИВНЫХ ТОПЛИВ, ВЗАИМОЗАМЕНЯЕМЫХ С НЕФТЯНЫМИ ТОПЛИВАМИ ТИПА ЛЖЕТ А-1 И Т-8В

© 2020 г. Л. С. Яновский¹, Н. И. Варламова¹, И. М. Попов¹, В. О. Самойлов², А. Б. Куликов², М. И. Князева², Р. С. Борисов², Д. Н. Рамазанов², *, А. Л. Максимов²

¹Центральный институт авиационного моторостроения им. П.И. Баранова, Москва, 111116 Россия ²Институт нефтехимического синтеза им. А.В. Топчиева РАН, Москва, 119991 Россия

*E-mail: ramazanov@ips.ac.ru
Поступила в редакцию 16.08.2019 г.
После доработки 04.09.2019 г.
Принята к публикации 06.09.2019 г.

Предложена и экспериментально проверена схема комбинированной переработки каменного угля с получением синтетического реактивного топлива. Установлено, что при применении подхода, включающего коксование угля с последующими газификацией, синтезом Фишера—Тропша и гидроизомеризацией получаемые керосиновые фракции характеризуются низкими значениями плотности $(0.741-0.751~{\rm kr/дm^3}$ при $20^{\circ}{\rm C})$ относительно уровня, заданного техническими требованиями к используемым сегодня маркам реактивных топлив Джет A-1 и T-8B. Применение для улучшения низкотемпературных свойств парафинистой фракции синтеза Фишера—Тропша (СФТ) процесса гидроизомеризации ($T=330-345^{\circ}{\rm C}$, $p_{\rm H_2}=72~{\rm fap}$) в присутствии катализатора $2^{\circ}{\rm Pt/Al-HMS}(10)$ позволило получить изопарафиновую фракцию с температурой начала кристаллизации до $-56^{\circ}{\rm C}$. Получаемая при коксовании угля каменноугольная смола была подвергнута глубокому гидрированию с получением нафтенового компонента реактивного топлива, характеризующегося при пределах кипения $150-250^{\circ}{\rm C}$ плотностью около $0.873~{\rm kr/дm^3}~(20^{\circ}{\rm C})$, а также низким содержанием серы и ароматических углеводородов (3 м. д. и $23~{\rm mac.}~\%$, соответственно). Компаундированием полученных изопарафиновой и нафтеновой фракций были получены экспериментальные образцы синтетических реактивных топлив, удовлетворяющие техническим требованиям, предъявляемым к топливам марок Джет A-1 и T-8B.

Ключевые слова: каменноугольный кокс, каменноугольная смола, синтетическое реактивное топливо, гидроизомеризация, гидродеароматизация

DOI: 10.31857/S0028242120010165

В связи с неизбежным истоплением запасов нефти развитие производства альтернативных топлив, в том числе для авиационных газотурбинных двигателей, является объективной необходимостью. За рубежом производятся в промышленном масштабе по стандарту ASTM D 7566-09 и допущены к применению на авиатехнике синтетические авиакеросины, производимые из угля и природного газа. Этим стандартом предусмотрено применение в качестве реактивного топлива, отвечающего требованиям стандарта ASTM D 1655 на топливо Jet A-1. смеси синтетического керосина 50: 50 со стандартным топливом Jet A-1. Добавление стандартного нефтяного топлива в синтетический авиакеросин объясняется, главным образом, тем, что синтетический авиакеросин имеет, как правило, пониженную, по сравнению с допустимой по ASTM D 1655 для топлива Jet A-1, плотность. Кроме того, синтетический авиакеро-

син без соответствующих присадок обладает повышенной окисляемостью и низкими противоизносными свойствами ввиду практически полного отсутствия гетероатомных соединений (в частности, сернистых). Добавление в него стандартного нефтяного авиакеросина позволяет устранить эти недостатки.

В поправке к стандарту ASTM 7566-09 от 1 июля 2011 г. разрешено применение смеси 50:50 синтетического топлива из биосырья и стандартного нефтяного топлива Jet A-1. Ожидается, что уже в ближайшее время для заправки российских самолетов в зарубежных авиапортах может быть предложено альтернативное топливо.

По зарубежным данным, в настоящее время промышленное производство реактивного топлива из угля является рентабельным. Промышленное производство синтетического реактив-

Таблица 1.	Основные	показатели	качества	каменно-
угольной с	молы (данн	ые производ	ителя)	

Показатель	Единица измерения	Значение
Плотность при 20°C	кг/м ³	1180-1220
Массовая доля воды	мас. %	4.0
Массовая доля золы	мас. %	< 0.1
Массовая доля веществ,	мас. %	<11
не растворимых в толуоле		
Массовая доля веществ,	мас. %	<4
не растворимых в хинолине		

ного топлива из природного газа станет рентабельным в ближайшие годы. Промышленное производство реактивного топлива из наземного биосырья может стать рентабельным уже через несколько лет, из водорослей — примерно через 10 лет [1].

Разработка прогрессивных технологий промышленного производства альтернативных топлив и их рационального применения на транспортных средствах (в том числе в авиации) в настоящее время являются актуальными для нашей страны задачами. Несмотря на то, что Россия занимает первое место в мире по экспорту нефти, следует принимать во внимание и наличие в нашей стране значительных ресурсов альтернативного углеродсодержащего сырья — природного газа, угля и биомассы.

Принципиально известны два основных подхода к получению синтетических жидких топлив из углей, которые опираются на технологии прямого гидроожижения угля по Бергиусу либо непрямого ожижения угля через газификацию с последующим получением синтетического жидкого топлива по СФТ [2-9]. Дополнительно следует указать на описанную в работах [10, 11] возможность гидрогенизационной переработки каменноугольной смолы, получаемой при коксовании углей, с получением высококачественных реактивных топлив. Ввиду того обстоятельства, что конкурентоспособность технологии прямого гидроожижения углей в настоящее время неочевидна, целесообразным представляется построение концепции переработки угля в топливо с опорой на комбинирование технологий коксования угля (с получением каменноугольной смолы) и технологии CTL (газификация с последующим СФТ).

В России имеется определенный научнотехнический задел по лабораторным технологическим регламентам получения альтернативных авиатоплив из природного газа и биомассы (биоэтанола) [12]. Учитывая актуальность вопроса, по инициативе Центрального института авиационного моторостроения им. П.И. Баранова (ЦИАМ) были проведены совместные исследования по отечественным альтернативным авиакеросинам из угля совместно с Институтом нефтехимического синтеза им. А.В. Топчиева РАН (ИНХС РАН). Опытные образцы реактивных топлив разрабатывались по техническим требованиям ЦИАМ, которые предусматривают соответствие синтезированного топлива по физико-химическим и эксплуатационным свойствам топливу ДжетА-1 (ГОСТ 32595), допущенному к применению на авиатехнике гражданского назначения, и топливу Т-8В (ГОСТ 12308), как потенциальному унифицированному реактивному топливу для перспективной авиатехники [13]. Исследования синтезированных образцов на соответствие техническим требованиям выполнялись

ЦИАМ, определяя этим доработку прототипа технологии получения топлива в нужном направлении.

Цель настоящей работы — экспериментальное установление особенностей получения синтетических реактивных топлив на основе угля путем раздельной переработки каменноугольного кокса и каменноугольной смолы.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Материалы и катализаторы. Каменноугольная смола по ТУ 2453-203-00190437-2005 для исследований была предоставлена Московским коксогазовым заводом. Основные показатели качества приведены в табл. 1.

В качестве модельного парафинистого сырья (воспроизводящего по составу среднедистиллятную фракцию СФТ) была использована фракция H-алканов C_9 – C_{20} ("мягкий парафин") с установки "Парекс", полученная с ПО "Киришинефтеоргсинтез". Состав фракции, определенный методом ГЖХ, приведен в табл 2.

Методика приготовления бифункционального платиносодержащего катализатора гидроизомеризации парафинистых фракций была описана ранее [14]. В качестве катализатора глубокого гидрирования дистиллята каменноугольной смолы использовали катализатор НВС-А (Ангарский завод катализаторов и органического сырья), подвергнутый предварительному осернению раствором диметилдисульфида (ДМДС) (1 мас. %) в прямогонной дизельной фракции.

Оборудование. Вакуумную дистилляцию каменноугольной смолы проводили с использованием стандартных лабораторных приборов для перегонки под вакуумом, в конструкцию которых были внесены некоторые модификации, учитывающие особенности перегоняемого сырья. Так, капилляр для подачи инертного газа вводили непосредственно в куб (двугорлую колбу); сечение капилляра было увеличено относительно обычно

применяемого ввиду вязкости сырья. Ввиду опасности резкого вскипания смолы, сопровождающегося выбросом жидкости из куба в приемник, вместо насадки Вюрца была использована насадка Кляйзена, горло которой, соосное с колбой, закрывали пробкой. Аллонж без отвода соединял воздушный холодильник с круглодонной двугорлой колбой, служащей приемником дистиллята. Перегонку вели в токе азота при остаточном давлении 20—25 мм рт. ст. с отбором фракции Н.К.—220°С (индекс указывает на остаточное давление); приведенная к атмосферному давлению температура конца кипения дистиллятной фракции около 380—400°С, выход дистиллятной фракции 40—45 мас. %.

Эксперименты по гидрооблагораживанию дистиллятной фракции каменноугольной смолы и по гидроизомеризации парафинистой фракции проводили с использованием проточных лабораторных установок высокого давления, снабженных реактором с неподвижным слоем гранулированного катализатора. Ректификацию катализатов, полученных на лабораторных установках, осуществляли с использованием лабораторных ректификационных колонн с регулируемым потоком флегмы.

Измерения. Состав исходных фракций и продуктов их гидрооблагораживания определяли методами ГЖХ (Кристаллюкс-4000М, газ-носитель - гелий, пламенно-ионизационный детектор, колонка SPB-1 $30 \times 0.25 \times 0.25$ (Supelco)) и ГХ-МС. Изучение состава сырья и продуктов методом ГХ-МС проводили на хромато-масс-спектрометре ThermoFocus DSQ II (капиллярная колонка Varian VF-5ms, 30 м, внутренний диаметр 0.25 мм, толщина фазы 0.25 мкм, газ-носитель гелий, режим работы: температура инжектора 270°C, начальная температура печи хроматографа 40°С, затем нагрев со скоростью 15°С/мин до 300°C, затем изотерма в течении 10 мин; режим работы масс-спектрометра: энергия ионизации 70 эВ, температура источника 230°C, сканирование в диапазоне 10-800 Да со скоростью 2 скан/с, разрешение единичное по всему диапазону масс.

Определение физико-химических свойств катализатов, полупродуктов и конечных образцов — прототипов топлив, проводили по стандартным методикам, регламентированным для испытаний реактивных топлив Джет А-1 и Т-8В по ГОСТ 32595-2013 и 12308-2013, соответственно. Основные методы, использованные для контроля свойств полупродуктов, приведены в табл. 3.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Схема переработки. Возможная схема комплексной переработки угля с получением моторного топлива, рассмотренная нами в настоящей

Таблица 2. Компонентный состав модельного парафинистого сырья

Компонент	Химическая формула	Концентрация, мас. %
н-Нонан	C ₉ H ₂₀	0.9
н-Декан	$C_{10}H_{22}$	5.4
н-Ундекан	$C_{11}H_{24}$	9.9
н-Додекан	$C_{12}H_{26}$	10.8
н-Тридекан	$C_{13}H_{28}$	13.1
н-Тетрадекан	$C_{14}H_{30}$	14.2
μ -Пентадекан	$C_{15}H_{32}$	13.9
н-Гексадекан	$C_{16}H_{34}$	11.7
н-Гептадекан	C ₁₇ H ₃₆	10.8
н-Октадекан	$C_{18}H_{38}$	6.3
н-Нонадекан	$C_{19}H_{40}$	2.5
Эйкозан	$C_{20}H_{42}$	0.5

Таблица 3. Основные методы испытания полупродуктов и экспериментальных образцов реактивных топлив

Показатель	Метод измерения
Плотность	ГОСТ 3900-85
Фракционный состав	ГОСТ 2177-99
Температура начала	ГОСТ 5066-91
кристаллизации	
Массовая доля ароматических	ΓΟCT EN 12916-2012
углеводородов	
Массовая доля нафталиновых	ΓΟCT EN 12916-2012
углеводородов	
Массовая доля общей серы	ГОСТ 32139-2013

работе, приведена на рис. 1. Согласно предложенной схеме, первой стадией является коксование каменного угля с получением каменноугольной смолы и каменноугольного кокса. Этот процесс широко известен и реализован в промышленности в крупных масштабах. Продукты коксования, полученные на первой стадии, в дальнейшем подвергают раздельной переработке.

Каменноугольная смола подвергается дистилляции с отбором необходимой фракции, дистиллят отправляется на гидрооблагораживание, предполагающее глубокую гидроочистку от гетероатомных соединений и глубокую гидродеароматизацию. Следует отметить, что в отношении гидрооблагораживания каменноугольной смолы (и ее фракций) могут быть применены схемы с различным количеством технологических стадий [11]. В нашем случае было использовано одностадийное гидрооблагораживание под высоким давле-

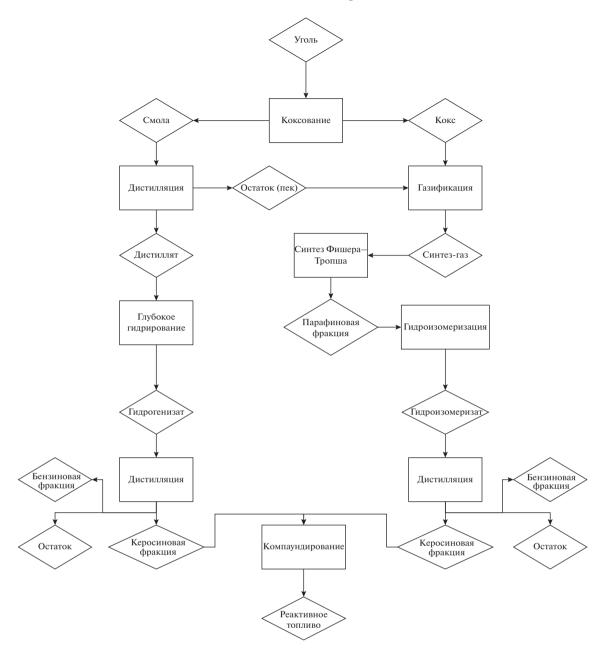


Рис. 1. Принципиальная схема переработки угля с получением моторного топлива.

нием, позволяющее после ректификации продукта получать нафтеновый компонент реактивного топлива. Остаток фракционирования каменно-угольной смолы (обычно называемый пеком) может быть использован для газификации наряду с коксом.

Каменноугольный кокс подвергается газификации с последующим превращением полученного синтез-газа во фракцию синтетических углеводородов по Фишеру—Тропшу. Известно, что в СФТ возможно управлять селективностью процесса (как в отношении классов получаемых соединений, так и в отношении распределения мо-

лекулярных масс продуктов) путем изменения свойств катализатора и условий процесса. СФТ при температурах 200—250°С и давлении синтезгаза 10—12 МПа позволяет получать фракции, практически нацело состоящие из парафинов нормального строения [15, 16].

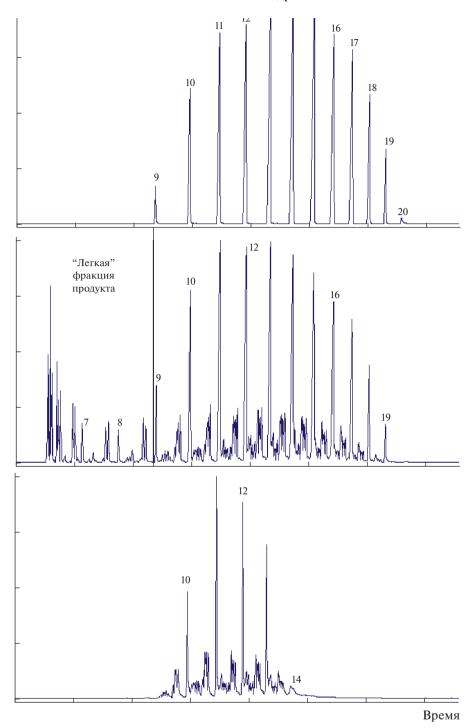
Парафинистые фракции — продукты СФТ—требуют дальнейшего облагораживания с целью улучшения своих низкотемпературных свойств. В рамках рассматриваемой концепции был применен процесс гидроизомеризации с получением изопарафинового компонента реактивного топлива. Полученные компоненты могут быть ком-

Показатель	Режим процесса (T , $^{\circ}$ C/ v , $^{-1}$)			
Выход в расчете на сырье процесса, мас. %:	345/1.5	345/1.0	340/1.0	335/1.0
Углеводородные газы C_1 – C_4	6.6	9.1	7.5	4.8
Жидкий продукт, в том числе:	93.4	90.9	92.5	95.2
бензиновая фракция (Н.К150°С)	28.1	42.4	33.6	25.8
средняя фракция (150+°C)	65.3	48.5	58.9	69.5
Соотношение изоалканы : алканы в жидком катализате	3.02	3.75	3.21	2.38
Плотность жидкого катализата (при 20° C), кг/дм 3	0.721-0.725			

Таблица 4. Влияние оперативных параметров процесса гидроизомеризации фракции μ -алканов C_9 — C_{20} на выход продуктов процесса и их качество. Соотношение водород : сырье = 1000 нл/л, давление водорода 72 бар

паундированы в различных соотношениях в зависимости от того, в какой марке топлива имеется необходимость.

Гидроизомеризация парафинистой фракции. Основным назначением процесса гидроизомеризации парафинистой фракции является улучшение низкотемпературных свойств продукта. В настоящем случае ввиду нацеленности на получение реактивных топлив, обеспечение низкой температуры начала кристаллизации продукта имеет критическую важность.


Гидроизомеризацию фракции нормальных парафинов C_9 — C_{20} проводили с использованием катализатора 2% Pt/Al-HMS(10), ранее эффективно примененном в процессе комбинированного гидрокрекинга—гидроизомеризации нормальных парафинов состава C_{19} — C_{38} [12]. В настоящей работе указанный катализатор был использован для гидроизомеризации более легкой фракции.

Хроматограмма сырья процесса и представительная хроматограмма стабильного гидрогенизата, позволяющие составить представления об изменениях химического состава, происходящих в результате превращения (T = 300 - 350°C, $p_{\rm H_2} = 50-80$ бар, v = 0.2-1.0 ч⁻¹, водород : сырье = = 500 - 1000 нл/л) в присутствии катализатора 2%Pt/Al-HMS(10), приведены на рис. 2. В средней фракции гидрогенизата ($C_9 - C_{20}$) пики, находящиеся на хроматограмме в интервалах между пиками н-алканов, отвечают алканам разветвленного строения, образуемым в результате гидроизомеризации, которая сопровождалась реакциями крекинга углеводородов (УВ), приводящих к образованию "легкой" части гидрогенизата (нормальные и разветвленные алканы $C_5 - C_8$). Схожий вид хроматограммы в интервалах, отвечающих группам УВ с одинаковым числом атомов углерода (например, между пиками н-гептана и н-октана и между пиками н-октана и н-нонана), указывающий на аналогичный состав изомеров, позволяет предположить, что изоалканы легкой фракции были образованы в том числе в результате вторичной изомеризации легких *н*-алканов —

продуктов гидрокрекинга более тяжелых УВ. Выделяемая ректификацией керосиновая фракция $150-250^{\circ}\mathrm{C}$ содержала алканы нормального и разветвленного строения с числом атомов углерода от $\mathrm{C_9}$ до $\mathrm{C_{14}}$.

Выход газообразных продуктов крекинга при гидроизомеризации мягкого парафина в присутствии катализатора 2% Pt/Al-HMS(10) при T = 335 - 345°C и $p_{\rm H_2} = 72$ бар колебался в пределах 4-9 мас. % в расчете на сырье процесса (табл. 4). В целом увеличение жесткости режима (повышение температуры и снижение объемной скорости подачи сырья) приводило к росту степени изомеризации н-алканов сырья, сопровождаемому ростом выхода продуктов крекинга — как газообразных, так и легкой бензиновой фракции. Таким образом, оптимизация условий реакции в данном случае предполагает поиск режима, отвечающего максимальной степени изомеризации при минимальном выходе продуктов гидрокрекинга. С другой стороны, в составе реактивных топлив, вырабатываемых из нефти, присутствует некоторое количество алканов нормального строения - следовательно, выбор режима гидроизомеризации в данном случае должен быть основан на минимально допустимой степени изомеризации, обеспечивающей приемлемые низкотемпературные свойства целевой фракции гидрогенизата.

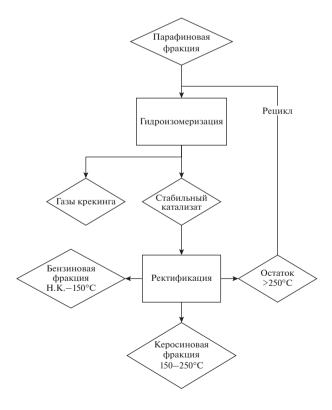
Фракционирование катализата приводит к трем изопарафиновым фракциям: бензиновой (H.K.—150°C), керосиновой (150—250°C) и остаточной (>250°C). Согласно приведенным в табл. 5 данным, соотношение изоалканы: *н*-алканы в целевой фракции гидрогенизата 150—250°C (выделяемой ректификацией) заметно выше, чем тоже соотношение, рассчитанное по результатам ГЖХ для стабильного гидрогенизата в целом: так, из катализата с упомянутым соотношением 1.9 была выделена керосиновая фракция с соотношением 2.7 и температурой начала кристаллизации —41°C. Такой уровень низкотемпературных свойств недостаточен для компонента реактив-

ного топлива, хотя и может быть скорректирован в результате последующего компаундирования с более низкозастывающей нафтеновой фракцией. Керосиновая фракция, выделяемая из гидрогенизата с соотношением изоалканы: *н*-алканы = 3.0,

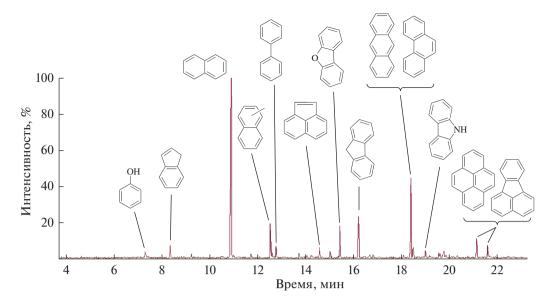
характеризовалась температурой начала кристаллизации -51° C, что делает ее пригодной для компаундирования топлива Джет А-1 (температура начала кристаллизации согласно ГОСТ не выше -47° C).

Показатель	Соотношение изоалканы : <i>н</i> -алканы в сырье ректификации			
	1.9	3.0	3.2	
Выход (плотность) фракций при ректификации, мас. % (кг/дм3)				
H.K150°C	32.9 (0.674)	27.6 (0.674)	30.5 (0.669)	
150-250°C	53.4 (0.751)	59.9 (0.751)	58.5 (0.741)	
>250°C	13.7 (0.773)	12.5 (0.773)	11.1 (0.770)	
Фракция 150—250°C				
Соотношение изоалканы: н-алканы	2.7	3.8	4.0	
Температура начала кристаллизации, °С	-41	-51	-56	

Таблица 5. Материальный баланс фракционирования гидроизомеризатов и свойства получаемых фракций


Легкая фракция не содержит серы, олефинов и ароматических углеводородовиполностью состоит из нормальных изопарафинов. Ввиду низкого содержания гетероатомных соединений легкая часть подобных фракций может быть вовлечена в производство изомеризата; при этом оптимальным представляется их ввод через узел фракционирования катализатов изомеризации: в этом случае отделяемые изопарафины образуют изомеризат, а парафины нормального строения возвращаются на изомеризацию. "Тяжелая" часть (тяжелее н-гексана) в этом случае может быть использована для производства углеводородных растворителей.

Получаемый при ректификации катализатов остаток (>250°C) по низкотемпературным свойствам может рассматриваться как компонент летних и некоторых дизельных топлив: выделенная из гидроизомеризата с соотношением изоалканы : μ -алканы = 3.2 фракция имела температуру начала кристаллизации —19°C. Также целесообразным представляется организация схемы с рециклом остатка ректификации (рис. 3), что и было реализовано нами в отдельном эксперименте: остаток ректификации >250°C был смешан с сырьем гидроизомеризации в балансовом количестве (выход остатка 12.5 мас. % на сырье гидроизомеризации при T = 345°C, $p_{\rm H_2} = 72$ бар и v = 1.5 ч $^{-1}$). Полученное сырье было подвергнуто конверсии в том же режиме, что и исходная фракция μ -алканов.


При сравнении результатов, полученных при работе на исходном сырье и сырье с добавлением остатка ректификации, нами не было обнаружено значительных различий: в обоих случаях выход углеводородных газов крекинга и жидкого катализата, фракционный состав жидкого катализата и соотношение изоалканы : *н*-алканы в целевой фракции 150—250°С оставалось одинаковым (в пределах колебаний значений между отдельными катализатами). Таким образом, остаток ректификации можно подавать на рецикл для получения дополнительных количеств легких фракций

H.K.-150°C и 150-250°C — или использовать как компонент летних и некоторых зимних дизельных топлив.

Фракционирование и гидрооблагораживание каменноугольной смолы. Выход дистиллятной фракции, отбираемой до температуры 230°С (остаточное давление 3 мм. рт. ст.), составлял 44 мас. % на исходную каменноугольную смолу. Состав полученного дистиллята приведен на рис. 4 и в табл. 6. Полученная дистиллятная фракция состоит главным образом из би- и трициклических аренов: основными компонентами являются инден, наф-

Рис. 3. Схема гидроизомеризации парафиновой фракции C_9 — C_{20} с рециклом тяжелой фракции гидрогенизата.

Рис. 4. Хроматограмма дистиллята, полученного вакуумной перегонкой каменноугольной смолы (получена методом $\Gamma X/MC$).

талин, метилнафталины, бифенил, аценафтен, флуорен, антрацен, фенантрен с некоторым содержанием тетрациклических УВ—пирена и флуорантена. Фракция богата гетероатомными соединениями серы (бензотиофен, дибензотиофен), азота (карбазол и некоторое количество хинолина) и кислорода (фенол и дибензофуран). Общее содержание серы в полученном дистилляте составило около 0.34 мас. %.

Гидрирование дистиллятной фракции КУС было осуществлено в присутствии катализатора НВС-А, известного высокой активностью в отношении гидродеароматизациивысокоароматизированногосернистого сырья [17–18]. Условия процесса: $T=390^{\circ}\mathrm{C},\ p_{\mathrm{H}_2}=200\ \mathrm{бар},\ v=0.5\ \mathrm{g}^{-1},\ \mathrm{водород}$: сырье = 2500 нл/л. Основные свойства стабильного катализата, выход которого составил 94 мас. %, приведены в табл. 7.

Гидрирование дистиллятной фракции каменноугольной смолы сопровождалось глубокой гидроочисткой: содержание серы в продукте составляло всего 3 м. д. (табл. 7). Полученная фракция состояла, главным образом, из насыщенных углеводородов, по фракционному составу отвечающих интервалу 112—315°С. Основные компоненты полученной фракции приведены на хроматограмме (рис. 5).

Фракционирование катализата осуществлялось с отбором трех фракций: легкой бензиновой (Н.К.—150°С), целевой керосиновой (150—250°С) и остаточной (>250°С). Следует отметить, что в полученных дистиллятных фракциях би- и полициклические арены, являющиеся нежелательными компонентами реактивных топлив, отсут-

ствовали, концентрируясь в остаточной фракции >250°C (табл. 8).

Гидрирование дистиллятной фракции каменноугольной смолы сопровождалось заметным облегчением фракционного состава (табл. 7): приведенная температура конца кипения дистиллятной фракции КУС составляла около 400°С, в то время как 95 об. % отгонки стабильного гидрогенизата отвечала температура 315°С. Исходя из этого, представляется целесообразным отправлять остаточную фракцию на рецикл: в этом случае достигается как получение дополнительных количеств легких фракций, так и разбавлениевысокоароматизированного сырья гидрирования фракцией, богатой насыщенными УВ.

Основными компонентами легкой фракции гидрогенизата (H.K.—150°C) являются циклогексан и его алкилзамещенные гомологи, причем содержание серы в бензиновой фракции также не превышало 3 м. д. Такое сочетание свойств обусловливает привлекательность этой фракции как сырья для каталитического риформинга.

Компаундирование полученных топливных фракций. Ввиду низких значений плотностей выделенных из гидроизомеризатов керосиновых (изоалкановых) фракций, находящихся в пределах 0.741—0.751 кг/дм³ в зависимости от степени изомеризации продукта, для достижения приемлемых значений показателя необходимо компаундирование фракций-гидроизомеризатов с более плотными (нафтеновыми) керосиновыми фракциями гидрирования КУС. В зависимости от соотношения компонентов при компаундировании плотность компаунда может меняться в интервале от 0.741 до 0.880 кг/дм³ (рис. 6), что от-

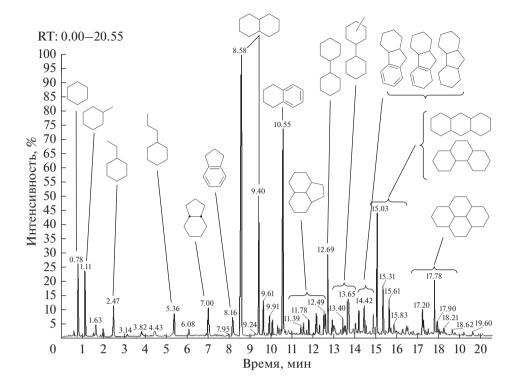
Таблица 6. Компонентный состав дистиллята, полученного вакуумной перегонкой каменноугольной смолы (Γ X/MC, полуколичественный анализ по времени выхода, рис. 4)

Компонент	Содержание, мас. %
Фенол	0.6
Инден	2.0
Крезол	0.4
Нафталин	35.8
Бензтиофен	0.4
Метилнафталины	5.7
Индол	0.6
Бифенил	0.9
Нафталины- C_2	0.9
Аценафтен	1.4
Винилнафталин	1.1
Дибензофуран	3.3
Флуорен	5.5
Гидроксифлуорен + фенален	0.7
Ксантен	0.5
Дибензотиофен	0.6
Фенантрен	13.8
Антрацен	12.3
Карбазол	5.9
Метилантрацен + метилфенантрен	1.5
Бензофлюорен	1.0
Фенилнафталин	0.2
Пирен + флюорантен	4.8

крывает возможность для выработки топлива с любой плотностью из находящихся внутри указанного интервала — как Джет А-1 (плотность при

Таблица 7. Основные свойства жидкого продукта гидрирования дистиллятной фракции КУС

Показатель	Значение
Плотность при 20°С, кг/м ³ (расчетная)	0.901
Фракционный состав по ГОСТ 2177-99:	
H.K.	112
5%	147
10%	168
20%	191
30%	202
40%	212
50%	222
60%	236
70%	256
80%	276
90%	296
95%	315
Групповой углеводородный состав (ВЭЖХ), мас. %	
насыщенные	77.35
моноароматические	21.39
диароматические	1.19
полиароматические	0.06
Содержание серы, мг/кг	3


 20° С не менее $0.775~\text{кг/дм}^{3}$) так и T-8B (плотность при 20° С не менее $0.800~\text{кг/дм}^{3}$).

Компаундированием фракций в различных соотношениях были получены два образца реактивных топлив, показатели качества которых были определены в объеме лабораторных испытаний.

Таблица 8. Материальный баланс фракционирования продукта гидрирования дистиллятной фракции КУС и свойства получаемых фракций*

Материальный баланс		Свойства фракций				
		плотность	групповой углеводородный состав, мас. %			
ОТРЕВ	мас. % на сырье	при 20°C, кг/дм ³	парафино- нафтеновые	МАУ	ДАУ	ПАУ
Гидрогенизат дистиллятной фракции КУС	100.0	0.901	77.35	21.39	1.19	0.06
Получено						
H.K150°C	5.1	0.791	91.75	8.23	0.00	0.00
150-250°C	62.5	0.873	77.11	22.89	0.00	0.00
Остаток	31.6	0.932	72.20	23.85	3.76	0.19


^{*} Потери 0.8%.

Рис. 5. Хроматограмма жидкого продукта глубокого гидрирования дистиллятной фракции КУС (получена методом ГХ/МС).

Результаты исследований опытных образцов на соответствие техническим требованиям приведены в табл. 9.

Опытный образец № 1 реактивного топлива, синтезированного из угля, полностью соответствует требованиям ГОСТ 32595-2013 к топливу Джет А-1. Опытный образец № 2 полностью соот-

Рис. 6. Зависимость плотности компаунда, получаемого при смешении керосиновых фракций (150—250°С), выделенных из гидроизомеризата и продукта гидрирования дистиллятной фракции КУС.

ветствует требованиям ГОСТ 12308-2013 для топлива Т-8В.

Основываясь на полученных данных по физико-химическим и эксплуатационным показателям опытных образцов синтетических реактивных топлив, можно с большой долей вероятности предположить, что их применение на авиационной технике возможно как в смеси с товарными образцами реактивного топлива из нефтяного сырья, так и индивидуально с введенными противоизносной и антиокислительной присадками.

выводы

В работе предложена схема комбинированной переработки каменного угля с получением синтетического реактивного топлива, применение которой проверено экспериментально. Показано, что при применении стандартного подхода, включающего коксование угля с последующей газификацией и синтезом Фишера—Тропша, получаемые керосиновые фракции характеризуются низкими значениями плотности (0.741—0.751 кг/дм³ при 20°С) относительно уровня, заданного техническими требованиями к используемым сегодня маркам реактивных топлив Джет А-1 и Т-8В. Для переработки парафинистой фракции синтеза Фишера—Тропша в компонент реактивного топ-

Таблица 9. Показатели качества экспериментальных образцов синтетических реактивных топлив, полученных компаундированием

		Нормы ГОСТ 32592	Нормы ГОСТ 12308	Фактические данные		
No	Наименование показателя	для топлива ДЖЕТ А-1	для топлива Т-8В	образец № 1	образец № 2	
1	Плотность при 20°С, кг/м ³	775-840 (при 15°C)	>800	788	812	
2	Фракционный состав:					
	 температура начала перегонки, °C 	_	>165	142	165	
	-10% отгоняется при температуре, °C	<205	<185	162	175	
	-50% отгоняется при температуре, °C	_	_	192	206	
	-90% отгоняется при температуре, °C	_	_	222	251	
	− 98% отгоняется при температуре, °C	<300	<280	241	262	
	– остаток от разгонки, %	<1.5	_	1.5	0.5	
	– потери от разгонки, %	<1.5	_	0.5	0.5	
3	Кинематическая вязкость, мм ² /с, при температуре:					
	20°C	_	>1.5	1.89	2.10	
	−20°C	<8		4.85	4.9	
	−40°C	_	<16	9.94	10.2	
4	Низшая теплота сгорания, кДж/кг	>42800	>42900	43400	43190	
5	Высота некоптящего пламени, мм	>25	>20	25	24	
6	Кислотность, $MF KOH ha/100 cm^3$ топлива:	<0.1	<0.7	0.27	0.31	
7	Иодное число, г иода на 100 г топлива	_	<0.9	0.13	0.32	
8	Температура вспышки в закрытом тигле, °C	>38	>45	44	45	
9	Температура начала кристаллизации, °С	<-50	<-0	-60	-59	
0	Термоокислительная стабильность в статических условиях:					
	а) массовая концентрация осадка, ${\rm mr}/100{\rm cm}^3$ топлива	_	<6	2.9	1.2	
	б) массовая концентрация растворимых смол, мг/100 см 3 топлива	-	Не нормируется. Определение обязательно	5.0	9.5	
	в) массовая концентрация нерастворимых смол, мг/ 100 см^3 топлива	-	Не нормируется. Определение обязательно	2.4	1.6	
1	Массовая доля ароматических углеводородов, $\%$	<25	<22	9	16	
2	Содержание фактических смол, $M\Gamma/100 \text{ см}^3$ топлива	<7	<4	2	3	
3	Массовая доля общей серы, %	<0.25	<0.10	Отс.	Отс.	
4	Массовая доля меркаптановой серы, %	< 0.003	< 0.001	Отс.	Отс.	
5	Испытание на медной пластинке	Выдерживает	Выдерживает	Выдерживает	Виперуира	

Таблица 9. Окончание

		Нормы ГОСТ 32592	Нормы I OCT 12308		Фактические данные	
№	Наименование показателя для топлива ДЖЕТ A-1		для топлива Т-8В	образец № 1	образец № 2	
16	Содержание водорастворимых кислот и щелочей	_	Отс.	Отс.	Отс.	
17	Зольность, %	_	< 0.003	0.0018	0.0019	
18	Содержание механических примесей и воды	_	Отс.	Отс.	Отс.	
19	Массовая доля сероводорода	_	Отс.	Отс.	Отс.	
20	Массовая доля нафталиновых углеводородов, %	_	<2.0	0.3	0.9	
21	Взаимодействие с водой, баллы, не более:					
	а) состояние поверхности раздела б) состояние разделенных фаз	1b -	1 1	1 1	1 1	
22	Удельная электрическая проводимость без антистатической присадки при температуре 20°С, пСм/м	<10	<10	0	0.2	
23	Термоокислительная стабильность при контрольной температуре не ниже 275°C:	При 260°C				
	а) перепад давления на фильтре, кПа (мм рт. ст.)	<3.3 (25)	<3.3 (25)	0	0	
	б) цвет отложений на трубке, баллы по цветовой шкале (при отсутствии нехарактерных отложений)	<3	<3	<1	<1	

лива был успешно применен процесс гидроизомеризации ($T=330-345^{\circ}$ С, $p_{\rm H_2}=72$ бар) в присутствии катализатора 2% Pt/Al-HMS (10), ранее эффективно использованного для гидрокрекинга—гидроизомеризации более тяжелых парафинистых продуктов ($C_{19}-C_{38}$) синтеза Фишера—Тропша.

Получаемая при коксовании угля каменно-угольная смола была переработана с получением нафтенового компонента реактивного топлива, характеризующегося при пределах выкипания $150-250^{\circ}\mathrm{C}$, плотностью около $0.873~\mathrm{kr/дm^3}$ (при $20^{\circ}\mathrm{C}$). Схема переработки включает фракционирование с получением дистиллятной фракции (выход 44 мас. % на исходную смолу при температуре конца отбора $230^{3\circ}\mathrm{C}$), сопровождаемое глубоким гидрированием в присутствии промышленного катализатора HBC-A ($T=390^{\circ}\mathrm{C}$, $p_{\mathrm{H_2}}=200~\mathrm{fap}$). Полученный продукт характеризуется высоким содержанием насыщенных углеводородов (77 мас. %) и низким содержанием серы (3 мг/кг).

Компаундированием полученных изопарафиновой и нафтеновой фракций были получены экспериментальные образцы синтетических реактивных топлив, исследованные в объеме лабораторных испытаний. Результаты испытаний демонстрируют принципиальную возможность получения реактивных топлив, удовлетворяющих техническим требованиям, предъявляемым к топливам марок Джет А-1 и Т-8В.Лабораторный технологический регламент получения из угля синтетических реактивных топлива типа Т-8В и Джет А-1 может служить основой для разработки промышленной технологии производства из угля реактивных топлив типа Т-8В и Джет А-1.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках Государственного задания ИНХС РАН.

КОНФЛИКТ ИНТЕРЕСОВ

Один из авторов, Максимов А.Л., является главным редактором журнала "Нефтехимия". Остальные

авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Яновский Леонид Самойлович, д.т.н., профессор, ORCID – https://orcid.org/0000-0002-5846-062X

Варламова Наталья Ивановна, ORCID – https://orcid.org/0000-0002-5198-2863

Попов Иван Михайлович, ORCID https://orcid.org/0000-0002-3548-8961

Самойлов Вадим Олегович, к.х.н., ORCID - https://orcid.org/0000-0003-2455-8765

Куликов Альберт Борисович, к.х.н, доцент, ORCID – https://orcid.org/0000-0003-1756-282X

Князева Мария Игоревна, к.х.н., ORCID https://orcid.org/0000-0001-9054-0905

Борисов Роман Сергеевич, к.х.н., ORCID https://orcid.org/0000-0002-8203-7055

Рамазанов Джамалутдин Нажмутдинович, к.х.н., ORCID – https://orcid.org/0000-0002-6281-8858

Максимов Антон Львович, д.х.н., проф. РАН, ORCID – https://orcid.org/0000-0001-9297-4950

СПИСОК ЛИТЕРАТУРЫ

- 1. Aircraft Commerce. 2011. IV-V. Issue N75. P. 21.
- 2. Williams R.H., Larson E.D., Guangjian L., Kreutz T.G. // Energy Procedia. 2009. V. 1. № 1. P. 4379.
- Hook M., Aleklett K. // Int. J. Energy Res. 2010. V. 34. P. 848.
- Малолетнев А.С., Шпирт М.Я. // Рос. хим. журн. (Ж. Рос. хим. об-ва им. Д.И. Менделеева). 2008. Т. LII. № 6. С. 44.

- Mochida I., Okuma O., Yoon S.-H. // Chem. Rev. 2014.
 V. 114. P. 1637.
- Химическая технология твердых горючих ископаемых. Под ред. Макарова Г.Н. и Харламповича Г.Д. М.: Химия. 1986. 496 с.
- Choudhary S., Thakur A., Gupta A., Ambekar S.B. // Int. Research J. of Engineering and Technology. 2016. V. 3. P. 2704.
- 8. Sadeqzadeh Boroujeni M. // Proceedings of the World Congress on Engineering and Computer Science 2008 (WCECS 2008), October 22–24. San Francisco, USA. 2008.
- 9. *Зорина Г.И., Брун-Цеховой А.Р.* Современное состояние технологии газификации угля за рубежом. М.: ЦНИИТЭнефтехим, 1986. 50 с.
- Balster L.M., Corporan E., DeWitt M.J., Timothy Edwards J. et al. // Fuel Proc Technol. 2008. V. 89. № 4. P. 364.
- 11. Tao Kan, Wang H., He H., Li C., Zhang S. // Fuel. 2011. V. 90.P. 3404.
- Яновский Л.С., Федоров Е.П., Варламова Н.И., Попов И.М., Бородако П.В., Пацина М.Н. // Двигатель. 2012. Т. 80. С. 6.
- 13. Федоров Е.П., Варламова Н.И., Яновский Л.С., Попов, И.М. // Двигатель. 2015. Т. 102. С. 8.
- 14. Лысенко С.В., Куликов А.Б., Онищенко М.И. и др. // Вестник Московского университета. Серия 2: Химия. 2015. Т. 56. № 6. С. 409.
- Куликова М.В., Дементьева О.С., Кузьмин А.Е., Чудакова М.В. // Наногетерогенный катализ. 2016. Т. 1. № 2. С. 136.
- 16. *Кузьмин А.Е., Куликова М.В., Дементьева О.С.* // Наногетерогенный катализ. 2018. Т. 3. № 1. С. 40.
- 17. *Мишин Н.Н., Куликов А.Б., Максимов А.Л.* // Нефтехимия. 2014. Т. 54. № 5. С. 371.
- Mishin N.N., Kulikov A.B., Maksimov A.L. // Petrol. Chem. 2014. V. 54. P. 366.