УДК 541.128.13:524.941.8'952:547.211:546.34'65

КАТАЛИТИЧЕСКИЕ МАТЕРИАЛЫ НА ОСНОВЕ ГИДРОТАЛЬКИТОПОДОБНЫХ ГИДРОКСИДОВ AI, Mg, Ni, Co. ВЛИЯНИЕ СООТНОШЕНИЯ НИКЕЛЬ : КОБАЛЬТ НА РЕЗУЛЬТАТЫ КИСЛОРОДНОЙ И УГЛЕКИСЛОТНОЙ КОНВЕРСИИ МЕТАНА В СИНТЕЗ-ГАЗ

© 2020 г. А. Г. Дедов^{1, 2, 4}, А. С. Локтев^{1, 2, 4}, *, **, В. П. Данилов², О. Н. Краснобаева², Т. А. Носова², И. Е. Мухин¹, А. Е. Баранчиков², Х. Э. Ёров³, М. А. Быков³, И. И. Моисеев^{1, 2, 4}

¹Российский государственный университет нефти и газа (Научно- исследовательский университет) имени И.М. Губкина, Москва, 119991 Россия

²Институт общей и неорганической химии им. Н.С. Курнакова РАН, Москва, 119991 Россия ³Московский государственный университет имени М.В. Ломоносова, Москва, 119991 Россия ⁴Институт нефтехимического синтеза имени А.В. Топчиева РАН, Москва, 119991 Россия *E-mail: al57@rambler.ru.

***E-mail: genchem@gubkin.ru* Поступила в редакцию 07.10.2019 г. Принята к публикации 14.10.2019 г.

Катализаторы кислородной и углекислотной конверсии метана получены на основе гидроксосолей $[AlMg_2Ni_xCo_y(OH)_{6.08}][(NO_3) \cdot nH_2O]$, где x, y = 0; 0.005, 0.01, 0.02; 0.03, 0.035, 0.04, имеющих гидроталькитоподобную структуру, с суммарным содержанием Ni и/или Co не более 2 мас. %. Показано, что Ni–Co-катализаторы с x = 0.03-0.035, y = 0.005-0.01 позволяют достигнуть выхода синтез-газа 97–99% в обоих процессах. Даже при незначительном содержании кобальта катализаторы практически не образуют углеродных нанотрубок и других углеродных отложений.

Ключевые слова: синтез-газ, кислородная конверсия метана, углекислотная конверсия метана, кобальт, никель, Al-Mg-гидроталькит

DOI: 10.31857/S0028242120020045

Получение синтез-газа (СГ) из природного газа – важная высокозатратная стадия переработки газового сырья в продукты нефтехимии. Содержащийся в СГ водород рассматривают и как экологически чистое топливо [1–6]. Перспективные процессы получения СГ кислородной конверсией метана (ККМ) и углекислотной конверсией метана (УКМ) выступают ближайшими конкурентами действующему процессу паровой конверсии метана. К достоинствам ККМ можно отнести соотношение $H_2/CO = 2$ в получаемом СГ, позволяющее синтезировать метанол и углеводороды по Фишеру-Тропшу, и экзотермичность. Процесс УКМ ($H_2/CO = 1$) привлекает возрастающее внимание как способ утилизации основного парникового газа – диоксида углерода. Кроме того, для проведения данного процесса возможно использование возобновляемого сырья — биогаза [7].

Известны эффективные катализаторы получения синтез-газа — нанесенные на оксидные носители никель, кобальт, металлы платиновой группы и их различные комбинации [1-6]. Использование металлов платиновой группы сдерживается их высокой стоимостью. Катализаторы на основе никеля, значительно более активны при сравнительно невысоких температурах. чем кобальтовые, склонны к потере активности за счет блокировки активных центров поверхностным углеродом или за счет взаимодействия никеля с носителем, ведущим к образованию неактивных соединений. Допирование никельсодержащих катализаторов платиновыми металлами уменьшает зауглероживание катализаторов, а подбор оптимального носителя способствует стабилизации никелевых активных центров [1-6]. Добавки кобальта также позволяют уменьшить зауглероживание катализатора [8].

Одной из причин дезактивации никелевых катализаторов, нанесенных на оксид алюминия, принято считать образование шпинели $NiAl_2O_4$ [1–4]. Однако при использовании смешанных алюмомагниевых носителей никель не дезактивируется [9–11] и характеристики полученных катализаторов часто превосходят характеристики контактов, содержащих платиновые металлы. Считается, что восстановление шпинели NiAl₂O₄ способствует образованию стабильных и активных никелевых частиц [9], а оксид магния способствует равномерному диспергированию никеля за счет ингибирования образования шпинели NiAl₂O₄ и формирования твердого раствора NiO-MgO [11].

Эффективным носителем никелевых и кобальтовых катализаторов ККМ и УКМ оказались оксидные системы на основе слоистого материала -Al-Mg-гидроталькита [12-26]. Высокие показатели: степень конверсии реагентов, селективность, стабильность образования синтез-газа и устойчивость к зауглероживанию связывают с формированием наноразмерных частиц никеля, присутствием оксида магния и алюмомагниевой шпинели. Добавление кобальта в никельсодержащие контакты в ряде случаев уменьшает зауглероживание катализаторов. Большинство описанных катализаторов этого типа содержит значительное количество никеля и/или кобальта и, в целом, не свободны от зауглероживания. Известные катализаторы УКМ на основе алюмомагниевых гидроталькитов, содержащие менее 5 мас. % никеля, обеспечивают конверсии метана и СО₂ менее 90% при заметном зауглероживании [15]. Введение лантана в 2% никелевый катализатор позволяло достигнуть конверсии метана и СО₂ около 90%, но не устраняло формирование углеродных нановолокон и нанотрубок [23, 24].

Нами разработаны катализаторы, получаемые термолизом имеющих гидроталькитоподобную структуру гидроксосолей общей формулы $[AlMg_2Ni_xCo_v(OH)_{6.08}][(NO_3) \cdot nH_2O],$ где x = 0, 0.02, 0.04; y = 0, 0.02, 0.04, суммарно содержащие не более 2 мас. % Ni и/или Co [27]. Ni-coдержащие катализаторы позволили достичь выхода синтез-газа 90% в кислородной и 97% в углекислотной конверсии метана. При этом в ходе УКМ образуется лишь незначительное количество углеродных нанотрубок, а совместное содержание никеля и кобальта в составе катализатора полностью предотвращает их образование в углекислотной конверсии метана. В то же время катализатор, содержащий по 1 мас. % никеля и кобальта был менее активен в УКМ; а катализатор, содержащий только 2 мас. % кобальта показал неудовлетворительные результаты [27].

Катализатор, содержащий 2% Ni после кратковременного разогрева до 950°С в потоке метанкислородной смеси (CH₄/O₂ = 2; скорость подачи 12 л/г катализатора в ч), продолжает стабильно работать в реакции ККМ при 900°С на протяжении 50 ч, демонстрируя высокий (более 90%) выход синтез-газа [28]. На микрофотографиях ката-

НЕФТЕХИМИЯ том 60 № 2 2020

лизатора после ККМ отсутствуют признаки зауглероживания.

Тот же катализатор в реакции УКМ стабильно работал на протяжении 60 ч, показывая высокий (более 95%) выход синтез-газа. На микрофотографиях поверхности катализатора после УКМ фиксируются фрагментарные скопления частиц никеля или его оксида, а также связанные с ними незначительные углеродные отложения. Рентгенограммы катализатора после ККМ и УКМ идентичны и позволяли зафиксировать лишь образование фаз MgO и шпинелей, содержащих наряду с алюминием магний или никель.

Вероятной причиной стабильности катализатора в ККМ и УКМ служат малые размеры формируемых никелевых частиц, не дающих рефлексов на рентгенограммах. Такой эффект наблюдали в УКМ на содержащих 10% никеля алюмомагниевых гидроталькитных катализаторах. При размерах частиц никеля менее 15 нм закоксовывание катализатора прекращается [17].

В связи с тем, что смешанный никель-кобальтовый катализатор не подвергался зауглероживанию в реакции УКМ, а также с учетом литературных данных, указывающих на активность в ККМ и УКМ содержащих кобальт катализаторов на основе алюмомагниевых гидроталькитов, представляло интерес изучить влияние на протекание реакций ККМ и УКМ соотношения никель: кобальт в алюмомагниевых катализаторах на основе алюмомагниевого гидроталькита.

Цель работы:

• синтез и исследование катализаторов кислородной и углекислотной конверсии метана на основе никель-кобальтовых алюмомагниевых гидроксосолей гидроталькитоподобной структуры, суммарно содержащих 2 мас. % смеси никеля и кобальта при варьировании их соотношения,

• определение влияния соотношения никель: кобальт в синтезированных катализаторах на результаты ККМ и УКМ,

• сопоставление результатов ККМ и УКМ с ранее полученными результатами [27].

Использование подобных катализаторов ККМ и УКМ с варьируемым соотношением никеля и кобальта при их суммарном содержании, не превышающем 2 мас. %, ранее не описано.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Предшественники катализаторов: никель-кобальтовые алюмомагниевые гидроксосоли, синтезировали по следующей методике: к раствору, содержащему нитраты алюминия, магния, кобальта и никеля в заданных количествах, при 60°С и перемешивании по каплям добавляли раствор, содержащий гидроксид и карбонат калия в мольном соотношении 2 : 1, до изменения pH от 1 до 10. Полученный осадок отмывали водой до отсутствия ионов калия (по реакции с тетрафенилборатом). Для установления фазового и химического состава синтезированных гидроксосолей использовали методы химического и рентгенофазового анализа (дифрактометр ДРОН-2.0, Си K_{α} -излучение), а для контроля условий их образования — рН-метрическое титрование растворов на прецизионном цифровом рН-метре ОР-208 РАДЕЛИКС (Венгрия). Методики определения элементов приведены в [29]. Получены четыре однофазных образца гидроталькитоподобных гидроксосолей, которые, по данным химического и рентгенофазового (РФА) анализов имеют следующие составы:

1. $[AlMg_2Ni_{0.01}Co_{0.03}(OH)_{6.08}][(NO_3) \cdot nH_2O]$

2.
$$[AlMg_2Ni_{0.03}Co_{0.01}(OH)_{6.08}][(NO_3) \cdot nH_2O]$$

- 3. $[AIMg_2Ni_{0.005}Co_{0.035}(OH)_{6.08}][(NO_3) \cdot nH_2O]$
- 4. $[AlMg_2Ni_{0.035}Co_{0.005}(OH)_{6.08}][(NO_3) \cdot nH_2O]$

Синтезированные гидроксосоли нагревали от 20 до 400°С со скоростью 100 град/ч, затем выдерживали 2 ч при 400°С и 2 ч при 500°С.

Каталитические свойства образцов в ККМ и УКМ исследовали в обогреваемом кварцевом реакторе проточного типа с карманом для термопары. Конец термопары располагали в центре слоя катализатора. Порошки прекурсоров катализаторов таблетировали, измельчали и отбирали фракцию с размером гранул 0.5-1 мм. Катализатор (0.2 г, высота слоя 1 мм) размещали на подложке из кварцевого волокна. При проведении ККМ свободный объем реактора заполняли кварцевой крошкой. В реактор подавали неразбавленные инертным газом смеси CH_4 с O_2 или CO_2 (OAO "Московский газоперерабатывающий завод", чистота 99.9%) в соотношении $CH_4/O_2 = 2;$ $CH_4/CO_2 = 1$ со скоростью соответственно 11–12 и 15–16 л (г катализатора ч)⁻¹ и разогревали катализатор до заданной температуры. После проведения анализа приводили температуру к заданным значениям. Состав продуктов анализировали методом ГЖХ по известной методике [5, 8].

Фазовый состав катализаторов после ККМ и УКМ изучали методом рентгенофазового анализа (РФА) порошков на дифрактометре Rigaku Mini-Flex 600 (Япония), детектор с графитовым монохроматором и медным антикатодом, Cu K_{α} излучение, $\lambda = 1.54187$ Å, использовали базу международного центра дифракционных данных (International Center for Diffraction Data – ICDD).

Морфологию катализаторов после использования в ККМ и УКМ изучали при помощи растрового электронного микроскопа (РЭМ) Carl Zeiss NVision 40 при увеличении до 200000× с использованием детекторов вторичных (SE или InLens; ускоряющее напряжение 7 кВ) и обратно рассеянных (ESB; ускоряющее напряжение 1 кВ) электронов.

Синтезированные и использованные в катализе ККМ и УКМ материалы сложнооксидной структуры, полученные термолизом соответствующих гидроксосолей, характеризуются следующим мольным соотношением содержащихся в них ионов металлов:

1. Al : Mg : Ni : Co = 1 : 2 : 0.01 : 0.03 (далее обозначен Ni0.01Co0.03ГТ);

2. Al : Mg : Ni : Co = 1 : 2 : 0.03 : 0.01 (далее обозначен Ni0.03Co0.01ГТ);

3. Al : Mg : Ni : Co = 1 : 2 : 0.005 : 0.035 (далее обозначен Ni0.005Co0.035ГТ);

4. Al : Mg : Ni : Co = 1 : 2 : 0.035 : 0.005 (далее обозначен Ni0.035Co0.005ГТ).

Для сравнения использованы результаты ранее проведенных экспериментов по ККМ и УКМ, в которых материалы, полученные по аналогичной методике, имели следующее мольное соотношение содержащихся в них ионов металлов [27]:

Al : Mg : Ni = 1 : 2 : 0.04 (далее обозначен Ni Γ T);

Al : Mg : Ni : Co = 1 : 2 : 0.02 : 0.02 (далее обозначен Ni0.02Co0.02ГТ);

Al : Mg : Co = 1 : 2 : 0.04 (далее обозначен СоГТ).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Определенные методом рентгенофазового анализа (рис. 1) межплоскостные расстояния у исходных гидроксосолей d = 1.49 (113); 1.51(110); 1.98 (018); 2.33 (015) 2.59 (009); 3.88(006); 7.76 (003) Å характерны для классического гидроталькитоподобного соединения, кристаллизующегося в гексагональной сингонии с параметрами элементарной ячейки: C = 23.28 Å, a = 3.02 Å.

После прокаливания при 500°С по данным РФА (рис. 2) все образцы представляют собой смесь плохо окристаллизованных и аморфных фаз, предположительно, Al_2O_3 , MgO, NiO, CoO, Co_2O_3 . Последние три оксида затруднительно надежно обнаружить рентгенографически из-за их малого содержания в образцах.

В табл. 1 приведены результаты по ККМ на синтезированных катализаторах Ni0.035Co0.005ГТ, Ni0.03Co0.01ГТ, Ni0.01Co0.03ГТ, Ni0.005Co0.035ГТ (опыты 5–14, 20–29). Для сравнения в таблицу включены результаты ранее проведенных экспериментов на катализаторах NiГT, Ni0.02Co0.02ГТ, CoГT [27] (опыты 1–4, 15–19, 30–34). Катализаторы расположены по мере уменьшения содержания никеля и возрастания содержания кобальта.

Соотношение никеля и кобальта в составе катализатора существенно влияет на результаты ККМ (табл. 1). Не содержавший кобальта катализатор NiГT (опыты 1–4), разогретый в течение часа в метан-кислородной смеси до 950°C, первона-

Рис 1. Пример дифрактограммы порошка синтезированного образца гидроксосоли № 1 — $[AIMg_2Ni_{0.01}Co_{0.03}(OH)_{6.08}][(NO_3) \cdot nH_2O];$ образцы № 2-4 изоморфны образцу № 1.

Рис. 2. Пример дифрактограммы порошка прокаленного образца гидроксосоли № 1 – $[AlMg_2Ni_{0.01}Co_{0.03}(OH)_{6.08}][(NO_3) \cdot nH_2O];$ образцы № 2-4 изоморфны образцу № 1.

чально не показал высокого выхода синтез-газа (опыт 1). Но после выдержки при 950°С (опыт 2) конверсия метана и выход синтез-газа возросли до 89–90% и существенно не снижались даже с понижением температуры в слое катализатора (опыты 3, 4). Не содержавший никеля катализатор СоГТ и содержавший эквимолярные количества никеля и кобальта Ni0.02Co0.02ГТ (опыты 30–34 и 15–19, табл. 1) были малоактивны в ККМ даже при продолжительном контакте с метан-кислородной смесью при 950°С (опыты 15 и 30, табл. 1) [27]. Конверсия метана и выход СГ

НЕФТЕХИМИЯ том 60 № 2 2020

были невысокими и заметно уменьшались со снижением температуры. Это указывало на неэффективность в ККМ кобальтсодержащих катализаторов на основе алюмомагниевого гидроталькита, содержащих 2 мас. % Со или по 1 мас. % Со и Ni [27].

В то же время синтезированный в настоящей работе катализатор Ni0.035Co0.005ГТ, содержаший 1.75% Ni и 0.25% Со (был разогрет в течение часа в метан-кислородной смеси до 900°С), уже при этой температуре показал высокие значения конверсии метана (86%), выхола волорола (71%) и СО (80%) (опыт 5 табл. 1). С ростом температуры (опыты 6, 7 табл. 1) конверсия метана, выход водорода и СО возрастали и при 950°С достигли значений, близких к 100%. Последующее снижение температуры (опыты 8 и 9 табл. 1) привело к уменьшению лостигнутых показателей. олнако даже при 850°С сохранялись высокие значения: конверсия метана (96%), выход водорода (91%) и СО (93%). Таким образом, введение небольшого количества кобальта (Ni/Co = 7) при суммарном содержании никеля и кобальта 2 мас. % положительно влияет на результаты ККМ.

Катализатор Ni0.03Co0.01ГТ, содержащий 1.5% Ni и 0.5% Co (Ni/Co = 3), в аналогичных условиях показал близкие результаты (опыты 10–14 табл. 1). Видно, что увеличение содержания кобальта с 0.25 до 0.5 мас. % с одновременным уменьшением содержания никеля с 1.75 до 1.5 мас. % не приводит к ухудшению результатов ККМ.

Но надо отметить, что дальнейший рост содержания кобальта при одновременном уменьшении содержания никеля значительно ухудшает результаты ККМ. Катализаторы, содержащие по 1 мас. % кобальта и никеля, (Ni0.02Co0.02ГТ, опыты 15–19 табл. 1), 1.5% кобальта и 0.5% никеля (Ni0.01Co0.03ГТ, опыты 20–24 табл. 1) и 1.75% кобальта и 0.25% никеля (Ni0.005Co0.035ГТ, опыты 25–29 табл. 1), так же, как и не содержавший никеля СоГТ, показали низкое значение конверсии метана и выхода синтез-газа.

Исследования катализаторов с варьируемым соотношением никель/кобальт после ККМ методами РЭМ и РФА показали (рис. 3), что их текстура и фазовый состав примерно одинаковы: слоистая структура с эпизодическими вкраплениями на поверхности частиц, содержащих никель или кобальт, вероятно, в форме оксидов. Фиксировали образование фаз MgO и шпинелей, содержаших наряду с алюминием магний и. возможно. никель и кобальт. Фаза диоксида кремния принадлежит частицам подложки - кварцевого волокна. Отсутствие на порошкограммах рефлексов металлических никеля, кобальта и их оксидов может быть связано с малыми размерами частиц и процедурой охлаждения катализаторов в смеси с высоким содержанием кислорода. Возможно

Таблица 1. Результаты ККМ

№ опыта	<i>T</i> , °C	Конверсия СН ₄ ,%	Выход, %									
			СО	H ₂	CO ₂	C ₂₊						
ΝίΓΤ*												
1	950	34	7	14	16	9						
2	950	90	90	90	Следы	0						
3	920	89	89	89	Следы	0						
4	900	89	89	89	Следы	0						
Ni0.035Co0.005ΓΤ												
5	900	86	80	71	6	0						
6	920	99	96	95	1	0						
7	950	100	98	98	Следы	0						
8	900	99	95	95	Следы	0						
9	850	96	93	91	1	0						
Ni0.03Co0.01ГT												
10	900	77	70	60	6	0						
11	920	97	95	93	Следы	0						
12	950	99	98	99	0	0						
13	900	99	97	94	Следы	0						
14	850	97	95	89	1	0						
Ni0.02Co0.02FT*												
15	950	36	7	15	16	8						
16	920	32	6	14	18	6						
17	900	28	5	12	17	5						
18	850	23	3	6	17	4						
19	800	23	3	6	17	3						
Ni0.01Co0.03IT												
20	900	33	0	5	27	6						
21	920	23	0	8	20	3						
22	950	37	2	17	30	2						
23	900	37	1	13	32	3						
24	850	31	0	4	27	4						
Ni0.005Co0.035ГТ												
25	900	34	2	9	26	4						
26	920	34	1	12	29	3						
27	950	38	5	17	28	1						
28	900	36	3	14	29	2						
29	850	35	1	8	30	3						
		Co	ГТ*		1 1							
30	950	33	5	13	19	8						
31	920	32	3	10	20	7						
32	900	30	2	8	21	6						
33	850	25	2	6	19	4						
34	800	25	2	6	21	2						

* Данные работы авторов [27].

также вхождение никеля и кобальта в структуру шпинелей, изоморфных алюмомагниевой.

Таким образом, наблюдавшиеся отличия в каталитических свойствах, видимо, определяются присутствием неоптимального избыточного по отношению к никелю количества кобальта, ухудшающего результаты ККМ, возможно, из-за высокой окислительной активности оксидов кобальта в присутствии кислорода, подаваемого в реактор наряду с метаном.

В табл. 2 приведены результаты УКМ на синтезированных катализаторах Ni0.035Co0.005ГТ, Ni0.03Co0.01ГТ, Ni0.01Co0.03ГТ, Ni0.005Co0.035ГТ (опыты 6–17, 24–34). Для сравнения в таблицу включены результаты ранее проведенных экспериментов по УКМ на катализаторах NiГТ, Ni0.02Co0.02ГТ, CoГТ [27] (опыты 1–5, 18–23, 35–38). Катализаторы расположены по мере уменьшения содержания никеля и возрастания содержания кобальта.

Как и в опытах по ККМ, соотношение никеля и кобальта в составе катализатора существенно влияет на результаты УКМ. Не содержащий кобальт катализатор NiГT нагревали в потоке реагентов УКМ до 800°C, затем температуру пошагово повышали до 950°C, затем снижали до 850°C. При 800 и 850°C катализатор был неактивен, но резко улучшил результаты УКМ по достижении 900°C (опыты 1, 2 табл. 2). С дальнейшим ростом температуры результаты УКМ улучшались. Значения конверсии метана (95%) и CO₂ (99%), выходов CO и водорода (соответственно 97 и 95%) при 950°C (опыт 4), незначительно отличались от результатов, полученных при 900 и 920°C (опыты 2, 3 табл. 2).

Последующее снижение температуры УКМ до 850°С (опыт 5 табл. 2) не вызвало резкого уменьшения конверсии реагентов и выхода синтез—газа, составивших 89%, что значительно превосходит результаты, полученные при той же температуре при разогреве катализатора. Видимо, с нагревом катализатора NiГT в потоке реагентов до 850°С не происходило заметного формирования активных металлических центров, а образовавшиеся при более высокой температуре активные центры УКМ эффективно функционировали и при последующем охлаждении.

С учетом этих результатов, допированный кобальтом (Ni/Co = 7) катализатор Ni0.035Co0.005ГТ, содержавший 1.75% Ni и 0.25% Co, разогревали в метан-углекислотной смеси сразу до 900°С и уже через 30 мин зафиксировали образование синтез-газа (опыт 6 табл. 2). А через 50 мин значения конверсии метана и CO₂ достигли 94 и 97%, выходы водорода и CO 92% (опыт 7 табл. 2). С дальнейшим повышением температуры (опыты 8, 9 табл. 2) конверсии метана и CO₂, выходы водорода и CO возрастали и при 950°С до-

стигли значений, близких к 100%. Последующее снижение температуры (опыты 10 и 11 табл. 2) привело к некоторому уменьшению достигнутых показателей; однако даже при 850° C сохранялись высокие значения конверсии метана (96%), CO₂ (93%), выхода водорода (85%) и CO (93%). Таким образом, катализатор, суммарно содержавший 2 мас. % никеля и кобальта в соотношении Ni/Co = 7, показал результаты УКМ, не уступающие достигнутым на аналоге, не содержавшем кобальт.

Уменьшение соотношения Ni/Co до 3 (катализатор Ni0.03Co0.01ГТ) не привело к значительному уменьшению конверсии метана и CO₂, выходов водорода и CO (опыты 12-17 табл. 1).

Однако при соотношении Ni/Co = 1 (опыты 18–23 табл. 2) значимые результаты УКМ достигались лишь при 950°С (опыт 22 табл. 2) и почти не менялись со снижением температуры до 850°С (опыт 22 табл. 2). То есть Ni0.02Co0.02ГТ, практически не катализировавший реакцию ККМ, оказался заметно более эффективным катализатором УКМ, хотя и уступал катализаторам с меньшим содержанием кобальта. Вероятно, при отсутствии кислорода в исходной газовой смеси металлические активные центры катализаторов более стабильны, несмотря на высокое содержание кобальта, способного поставлять активный решеточный кислород.

С дальнейшим снижением содержания никеля в катализаторе Ni0.01Co0.03ГТ (Ni/Co = 0.33) даже при 950°С не удавалось достичь высоких значений конверсии реагентов и выхода синтез-газа (опыты 24–28 табл. 2) Но и при меньших соотношениях Ni/Co = 0.17 и 0 реакция УКМ при 900– 950°С все-же протекала в заметной степени (опыты 25–34 табл. 2). Выходы СО были заметно выше, чем при использовании этих же катализаторов в ККМ. Таким образом, высокое содержание кобальта (Ni/Co < 1) и даже полное отсутствие никеля затрудняет, но не подавляет формирование металлических активных центров катализаторов УКМ.

На поверхности содержавших кобальт катализаторов после использования в УКМ по данным РЭМ и РФА углеродные нанотрубки не формировались (рис. 4), тогда как на катализаторе NiГT после проведения УКМ обнаружено небольшое количество углеродных нанотрубок в местах локализации никельсодержащих частиц [28]. На микрофотографиях катализаторов фиксировали фрагменты, соотносимые с присутствием на поверхности катализаторов частиц никеля и кобальта. По данным РФА, в структуре всех катализаторов после УКМ присутствует шпинель MgAl₂O₄. Катализаторы с малым содержанием кобальта после УКМ содержали фазы металлических частиц с размерами 14 нм в случае Ni0.035Co0.005ГТ и 12 нм в случае Ni0.03Co0.01ГТ

Рис. 3. РЭМ-микрофотографии (слева) и дифрактограммы порошков (справа) после катализа ККМ.

КАТАЛИТИЧЕСКИЕ МАТЕРИАЛЫ

		Конвер	осия, %	Выход, %							
№ опыта	<i>T</i> , °C	CH ₄	CO ₂	CO	H ₂						
		Nil	TT*	I							
1	850	1	11	5	1						
2	900	93	93	92	93						
3	920	94	94	94	94						
4	950	95	99	97	95						
5	850	89	89	89	89						
Ni0.035Co0.005ΓT											
6	900 (30 мин)	14	31	15	17						
7	900 (50 мин)	94	97	92	92						
8	920	95	97	95	96						
9	950	96	98	97	99						
10	900	93	96	94	95						
11	850	90	93	90	85						
Ni0.03Co0.01ΓT											
12	900 (50 мин)	80	84	68	47						
13	920	97	97	96	97						
14	900	93	97	92	91						
15	920	96	98	97	99						
16	950	96	98	97	99						
17	850	90	93	91	88						
	I	Ni0.02C	о0.02ГТ*	I	I						
18	800	6	14	3	Следы						
19	850	6	18	3	2						
20	900	14	30	12	6						
21	920	28	45	28	18						
22	950	81	85	83	81						
23	850	79	83	81	79						
	1	Ni0.01C	о0.03ГТ	1	I						
24	900	1	7	0	2						
25	920	8	18	3	9						
26	950	14	29	11	16						
27	900	11	24	6	13						
28	850	10	20	1	7						
	I	Ni0.005C	со0.035ГТ	1	I						
29	900	3	10	0	3						
30	920	9	22	4	9						
31	950	20	37	16	15						
32	920	28	45	28	18						
33	900	9	25	3	8						
34	850	4	10	0	3						
CoΓT*											
35	950 (40 мин)	28	47	29	22						
36	920	27	42	28	18						
37	900	24	40	23	22						
38	850	13	26	13	12						

Таблица 2. Результаты УКМ

* Данные работы [27].

Рис. 4. РЭМ-микрофотографии (слева) и дифрактограммы порошков (справа) после катализа УКМ.

(размеры частиц оценены с использованием уравнения Шеррера). Малоактивные катализаторы УКМ не содержат фиксируемых методами РЭМ и РФА металлических частиц. На поверхности катализатора Ni0.005Co0.035ГТ наблюдаются кристаллы треугольной формы оксидов кобальта.

Таким образом, активные в УКМ допированные небольшим количеством кобальта катализаторы не склонны к образованию поверхностного углерода и содержат металлические активные центры размером менее 15 нм, которые не подвергаются закоксовыванию [17]. Эти катализаторы могут оказаться более стабильными в УКМ и ККМ, чем не содержавший кобальта катализатор NiГT, показавший стабильные результаты в ККМ и УКМ, но на поверхности которого после проведения УКМ образовалось небольшое количество углеродных нанотрубок [28].

ЗАКЛЮЧЕНИЕ

Синтезированы и исследованы в реакциях кислородной и углекислотной конверсии метана в синтез-газ катализаторы, приготовленные на основе гидроксосолей [AlMg₂Ni_xCo_v(OH)_{6.08}][(NO₃)nH₂O], где x, y = 0.005, 0.01, 0.03, 0.035, имеющих гидроталькитоподобную структуру. Суммарное содержание Ni и Co в катализаторах (2 мас. %) меньше, чем у большинства описанных аналогов. Показано, что Ni–Co-катализаторы с x = 0.03-0.035, y = 0.005 - 0.01 (соотношение Ni/Co = 3-7) позволяют достичь выход синтез-газа 97-99% и в кислородной, и в углекислотной конверсии метана. Полученные результаты ККМ и УКМ превосходят показатели, достигнутые на аналогичном катализаторе, не содержащем кобальта, изученном ранее [27, 28]. Созданные катализаторы ККМ и УКМ практически не образуют углеродных нанотрубок и других углеродных отложений.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при поддержке Президиума РАН, программа № 14 "Физическая химия адсорбционных явлений и актинидных наночастиц" и Министерства науки и высшего образования Российской Федерации в рамках выполнения государственного задания, тема № FSZE-2017-0008 (проект 4.6718.2017/ВУ).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Дедов Алексей Георгиевич, академик РАН, д.х.н., профессор, зав. кафедрой РГУ нефти и газа (НИУ)

НЕФТЕХИМИЯ том 60 № 2 2020

им. И.М. Губкина, ORCID – https://orcid.org/0000-0002-2736-1661

Локтев Алексей Сергеевич, д.х.н., профессор, профессор РГУ нефти и газа (НИУ) им. И.М. Губкина, ORCID – https://orcid.org/0000-0002-5841-8085

Данилов Вячеслав Петрович, г.н.с. ИОНХ им. H.C. Курнакова РАН, ORCID – https://orcid.org/0000-0003-2362-2606

Мухин Игорь Евгеньевич, аспирант, ORCID – https://orcid.org/0000-0003-3570-502X

Баранчиков Александр Евгеньевич, к.х.н., зав. лабораторией ИОНХ им. Н.С. Курнакова РАН, ORCID – https://orcid.org/0000-0002-2378-7446

Еров Хурсанд Эльмуродович, аспирант, ORCID – https://orcid.org/0000-0002-7523-3410

Краснобаева Ольга Ниловна, к.х.н., с.н.с. ИОНХ РАН, ORCID – https://orcid.org/0000-0002-5107-4937

Носова Татьяна Афанасьевна, к.х.н., с.н.с. ИОНХ РАН, ORCID – https://orcid.org/0000-0002-5194-0284

Быков Михаил Арнольдович, н.с. МГУ им. М.В. Ломоносова, ORCID – https://orcid.org/0000-0002-5000-9199

Моисеев Илья Иосифович, академик РАН, д.х.н., профессор, профессор РГУ нефти и газа (НИУ) им. И.М. Губкина, ORCID – https://orcid.org/0000-0001-7060-9442

СПИСОК ЛИТЕРАТУРЫ

- 1. *Liu K., Song C., Subramani V.* Hydrogen and Syngas Production and Purification Technologies. Wiley-Interscience, 2009. 533 p.
- 2. Holmen A. // Catal. Today. 2009. V. 142. P. 2.
- Enger B.C., Lødeng R., Holmen A. // Appl. Cat. A. 2008. V. 346. P. 1.
- Zeng S., Zhang X., Fu X., Zhang L., Su H., Pan H. // Appl. Cat. B. 2013. V. 136–137. P. 308.
- Dedov A.G., Loktev A.S., Komissarenko D.A., Parkhomenko K.V., Roger A.-C., Shlyakhtin O.A., Mazo G.N., Moiseev I.I. // Fuel Processing Technology. 2016. V. 148. P. 128.
- 6. Усачев Н.Я., Харламов В.В., Беланова Е.П., Казаков А.В., Старостина Т.С., Канаев С.А. // Нефтехимия. 2011. Т. 51. № 2. С. 107.
- Zhenghong B., Fei Y. // Advances in Bioenergy. 2018. V. 3. P. 43.
- Дедов А.Г., Локтев А.С., Иванов В.К., Быков М.А., Мухин И.Е., Лиджиев М.М., Рогалева Е.В., Моисеев И.И. // ДАН. 2015. Т. 461. № 4. С. 426 [Doklady Physical Chemistry. 2015. V. 461. Part 2. P. 73].
- 9. Rostrup-Nielsen, J.R., Bak Hansen, J.H. // J. of Catalysis. 1993. V. 144. № 1. P. 38.
- Basile F., Basini L., D'Amore M., Fornasari G., Guarinoni A., Matteuzzi D., Del Piero G., Trifiro F., Vaccari A. // J. of Catalysis. 1998. V. 173. P. 247.
- 11. Yejun Q, Jixiang C, Zhang J. // J. of Fuel Chemistry and Technology. 2006. V. 34. № 4. P. 450.

- 12. *Lee K.M., Lee W.Y.* // Catal. Lett. 2002. V. 83. № 1–2. P. 65.
- Takehira K., Shishido T, Wan P., Kosaka T., Takaki K. // J. of Catalysis. 2004. V. 221. P. 43.
- Maniecki T.P., Bawolak-Olczak K., Mierczyński P., Maniukiewicz W., Józwiak W.K. // Chemical Engineering J. 2009. V. 154. P. 142.
- 15. *Guo J., Lou H., Zhao H., Chai D., Zheng X.* // Applied Catalysis A: General. 2004. V. 273. P. 75.
- Bhattacharyya A, Chang V. W., Schumacher D.J. // Applied Clay Science. 1998. V. 13 . P. 317.
- Shishido T., Sukenobu M., Morioka H., Furukawa R., Shirahase H., Takehira K. // Catalysis Letters. 2001. V. 73. № 1. P. 21.
- Tsyganok A.I., Tsunoda T., Hamakawa S., Suzuki K., Takehira K., Hayakawa T. // J. of Catalysis. 2003. V. 213. P. 191.
- Hou Z., Yashima T. // Applied Catalysis A: General. 2004. V. 261. P. 205.
- Perez-Lopez O.W., Senger A., Marcilio N.R., Lansarin M.A. // Applied Catalysis A: General. 2006. V. 303. P. 234.
- Serrano-Lotina A., Rodriguez L., Muñoz G., Daza L. // J. of Power Sources. 2011. V. 196. P. 4404.

- Serrano-Lotina A., Martin A.J., Folgado M.A., Daza L. // International J. of Hydrogen Energy. 2012. V. 37. P. 12342.
- Serrano-Lotina A., Daza L. // J. of Power Sources. 2013. V. 238. P. 81.
- 24. Serrano-Lotina A., Daza L. // Applied Catalysis A: General. 2014. V. 474. P. 107.
- De Souza G., Ruoso C., Marcilio N.R., Perez-Lopez O.W. // Chemical Engineering Communications. 2016. V. 203. P. 783.
- Tanios C., Bsaibes S., Gennequin C., Labaki M., Cazier F., Billet S., Tidahy H.L., Nsouli B., Aboukaïs A., Abi-Aad E. // International J. of Hydrogen Energy. 2017. V. 42. Issue 17. P. 12818.
- Dedov A.G., Loktev A.S., Danilov V.P., Krasnobaeva O.N., Nosova T.A., Mukhin I.E., Tyumenova S.I., Baranchikov A.E., Ivanov V.K., Bykov M.A., Moiseev I.I. // Petrol. Chemistry. 2018. V. 58. № 5. P. 418.
- A.G. Dedov, A.S. Loktev, I.E. Mukhin, A.E. Baranchikov, V.K. Ivanov, M.A. Bykov, E.V. Solodova, I.I. Moiseev. // Petrol. Chemistry. 2019. V. 59. № 4. P. 385.
- 29. Краснобаева О.Н., Беломестных И.П., Исагулянц Г.В. и др. // Журн. неорган. химии. 2007. Т. 52. № 2. С. 181 [Russ. J. Inorg. Chem. 2007. V. 52. № 2. P. 141].