УДК 547.1'13:547.732

КОМПЛЕКСООБРАЗОВАНИЕ ТИОФЕНОВЫХ СОЕДИНЕНИЙ С ПЕРЕХОДНЫМИ МЕТАЛЛАМИ – КЛЮЧ К ПОНИМАНИЮ МЕХАНИЗМОВ ОБЕССЕРИВАНИЯ НЕФТЕПРОДУКТОВ (ОБЗОР)

© 2020 г. А. Л. Максимов^{1, 2, *}, А. И. Нехаев¹

¹Институт нефтехимического синтеза им. А.В. Топчиева РАН, Москва, 119991 Россия ²Московский государственный университет имени М.В. Ломоносова. химический факультет, Москва, 119991 Россия *E-mail: max@ips.ac.ru Поступила в редакцию 28.08.2019 г. После доработки 12.09.2019 г. Принята к публикации 14.10.2019 г.

Обобщены результаты исследований в активации связей С–Н и С–S тиофенов и их производных соединениями переходных металлов. Рассмотрены разнообразные способы координации тиофена с металлом, которые зависят от конкретного металла и окружающих его лигандов, а также трансформация тиофеновых соединений под действием комплексов переходных металлов.

Ключевые слова: тиофен, бензотиофен, дибензотиофен, комплексы переходных металлов, активация связей С–Н и С–S

DOI: 10.31857/S0028242120020070

Гетерогенные катализаторы на основе сульфидов никеля, молибдена и кобальта довольно эффективны для удаления большинства соединений серы из нефтепродуктов в процессе гидрообессеривания [1-8]. Тиофены (Т) довольно инертны, поскольку атом серы в них является очень слабым донором и они становятся еще менее активны, когда есть заместители рядом с серой. Тиофеновые соединения, особенно алкилзамещенные бензотиофены (БТ) и дибензотиофены (ДБТ), представляют собой группу сернистых соединений, которые трудно удаляются из нефтепродуктов [9, 10]. Две метильные группы в положениях 4 и 6 ДБТ стерически препятствуют взаимодействию металла со связями C-S. Скорости обессеривания 4,6-Ме₂ДБТ на промышленных Co-Mo-Al-катализаторах в 10-15 раз меньше, чем ДБТ [11, 12].

Понимание механизма активации тиофеновых соединений может привести к открытию новых каталитических систем для гидрообессеривания. Однако трудно добиться понимания, что именно происходит при обессеривании на молекулярном уровне, поскольку в промышленности применяются гетерогенные катализаторы [13]. Поэтому большое количество работ посвящено исследованию роли соединений переходных металлов в активации связей С–Н и С–S тиофенов и их производных. Если раньше исследования ограничивались синтезом комплексных соединений производных тиофена и установлением их структуры и свойств, то в последнее время с появлением мощных компьютеров и программного обеспечения стало возможным проводить моделирование процесса комплексообразования, главным образом, с помощью теории функционала плотности (DFT).

В последнее время появляются сообщения о возможном практическом применении комплексных соединений, содержащих тиофеновый фрагмент. Например, комплексы меди проявляют биологическую активность и имеют перспективу в лечении, в частности, рака [14, 15] и птичьего гриппа [15]. Получены пористые органические полимеры, содержащие Т, для удаления ионов Cu(II) [16], тиофенсодержащие вещества для селективного определения ионов Ag⁺, Cu²⁺ и Fe³⁺ в присутствии ионов Na⁺, K⁺, Ca²⁺ и Mg²⁺ в природной воде [17]. Электроактивную устойчивую полимерную пленку, полученную из комплекса Ru, можно использовать в качестве датчиков в соответствии с ее окислительно-восстановительными свойствами [18].

Ранее опубликован ряд обзоров, обобщающих достижения в области взаимодействия сернистых соединений, в том числе производных T, с комплексами переходных металлов [19–28].

Рис. 1. Интермедиат из реакции $\{(h^5-C_5Me_5)Ru\}_3(\mu-H)_3(\mu_3-H)_2$ с БТ [29] — рутенатиациклогексадиено-вый комплекс.

В настоящем обзоре мы систематизировали способы взаимодействия комплексов переходных металлов с тиофеновыми соединениями не по способу координации, а по металлу.

ЖЕЛЕЗО И РУТЕНИЙ

Связь С-Ѕ в БТ и ДБТ расщепляется при действии трехъядерного пентагидридного комплекса рутения { $(\eta^5-C_5Me_5)Ru$ }₃(µ-H)₃(µ₃-H)₂ [29]. Конечные продукты реакции с БТ – µ₃-сульфидотрирутениевый комплекс и этилбензол. Как правило, весьма трудно зафиксировать возникновение металлациклов из-за активации связи С-S и повышения донорной координационной способности атома серы. Тем не менее удалось получить промежуточный темно-зеленый рутенатиациклогексадиеновый комплекс (рис. 1), который образуется в результате окислительного присоединения связи C-S в БТ к одному из трех рутениевых центров. Через 90 мин его выход достигает 90%. Интермедиат был выделен из реакционной смеси охлаждением до -30°С и охарактеризован спектрами ¹Н и ¹³С ЯМР.

Однако в реакции с ДБТ никаких интермедиатов выделить не удалось, только конечные продукты — μ_3 -сульфидотрирутениевый комплекс и дифенил. Очевидно, это связано с тем, что стерические препятствия вокруг атома серы в ДБТ гораздо больше, чем в БТ.

Fe₃(CO)₁₂ реагирует с T и БT, но не с ДБТ [30–32]. Фотохимическая реакция Fe(CO)₅ с ДБТ тоже не происходит. Карбонилы железа и рутения разрывают связи C–S в ДБТ, если он имеет азотсодержащие заместители. В то время как для проведения реакции с карбонилом рутения достаточно нагревания до 100°C, пентакарбонил железа требует УФ-облучения [33–35].

Из Т и дигидридного комплекса рутения [$RuH_2(\eta^2-H_2)_2(PCy_3)_2$] при комнатной температуре образуется η^4 -тиоаллильное соединение [$RuH(\eta^4(S,C)-SC_4H_5)(PCy_3)_2$], которое под действием H_2 снова дает исходный дигидридный 173

комплекс. Вещество [RuH₂(η^2 -H₂)₂(PCy₃)₂] может использоваться в качестве предшественника катализатора гидрирования T до тетрагидротиофена, 2-МеТ и БТ – до 2,3-дигидропроизводных в мягких условиях (80°С, 3 атм H₂). ДБТ в этих условиях не восстанавливается, давая S-координированный комплекс [RuH₂(η^2 -H₂){ η^1 (S)–C₁₂H₈S}(PCy₃)₂] [36]. В катионе [Ru(NH₃)₅(H₂O)]²⁺ ДБТ и в меньшей степени 4,6-Me₂ДБТ способны замещать координированную молекулу воды [37]. Хиральный комплекс рутения позволяет проводить энантиоселективное гидрирование замещенных тиофенов и ДБТ. При этом не наблюдаются реакции внедрения металла в связи C–S, гидрогенолиза и гидрообессеривания [38].

ДБТ выполняет роль мостикового лиганда в комплексе [CpRu(CO)₂(μ_2 - η^1 -S: η^6 -ДБТ)RuC₅Me₅]²⁺ [39]. ДБТ связывается с рутением прочнее, чем БТ или замещенные тиофены [40, 41].

Свойства η⁴-бис- и η⁴-монотиофеновых комплексов железа, которые трудно получить экспериментально, исследованы методом DFT [42]. Расчеты показывают, что могут существовать устойчивые комплексы железа с тиенильными мостиками, имеющие одномерную супермолекулярную архитектуру. Определены частоты поглощения комплексов в инфракрасной, видимой и ультрафиолетовой областях. Тиофеновые комплексы железа устойчивее, чем никелевые и кобальтовые.

КОБАЛЬТ, РОДИЙ И ИРИДИЙ

Исследовательская группа Джонса (W.D. Jones) из Рочестерского университета (США) провела подробное изучение реакций внедрения по связи С-S в T, БТ и ДБТ фрагментов, содержащих Rh, Со и Ir в состоянии 1+ [43-48]. Авторы полагали, что результаты экспериментов с дейтерированным комплексом [44] дают доказательства для возникновения интермедиата с координацией Т через серу в качестве непосредственного предшественника расщепления связи С-Ѕ за счет последующей миграции α-углерода к металлу. Кроме того, η²-координация по двойной связи Т приводит к получению продуктов активации связей С–Н, которые термодинамически менее выгодны, но кинетически значимы. Поскольку сера может быть извлечена из Т после этого начального этапа, не следует пренебрегать возможностью такого пути в качестве дополнительного механизма для гидрообессеривания нефтепродуктов.

Тиофен образует комплексы с плоским шестичленным кольцом, в то время как металлациклы из алкилзамещенных тиофенов, БТ и ДБТ изогнуты. Во всех случаях комплексы тиофеновых производных содержат диеновый фрагмент между металлом и серой (рис. 2). В работе [46] приведены рентгеноструктурные данные для 14 комплексов родия с Т, БТ, ДБТ и их производными. Электронное влияние заместителей в тиофеновых производных незначительно, а стерические эффекты велики. Так, например, связь С–S в тетраметилтиофене, 4,6-Me₂- и 4,6-Et₂ДБТ не расщепляется. Получаются лишь лабильные комплексы со связью M–S.

Выполненные через 11 лет расчеты по методу DFT взаимодействия фрагмента $[(C_5Me_5)Rh(PMe_3)]$ с тиофеном [47] изменили ранее предложенный механизм, по которому координация $\eta^1(S)$ приводит непосредственно к активации связей C–S. Авторы пришли к выводу, что как $\eta^1(S)$ -координация, так и $\eta^2(C,C)$ -координация приводит к интермедиату $\eta^2(C,S)$ который непосредственно предшествует расщеплению связи C–S. Расчетная энергия связывания η^1 -интермедиата, определенная в более ранней работе [49], на 15.5 ккал/моль меньше, чем для η^2 -интермедиата.

Интересно, что переходное состояние, найденное для [$C_5Me_5Rh(PMe_3)$], похоже на таковое для комплекса Pt [50] двумя свойствами. Во-первых, интермедиат $\eta^2(C, S)$ -тиофен предшествует разрыву связи C–S, во-вторых, формирование связей металл–сера и металл–углерод в значительной степени завершено (в пределах 4% конечных расстояний).

Проведено сравнение теории (метод DFT) и экспериментальных данных для реакции фрагмента [(C₅Me₅)Rh(PMe₃)] с 2- и 3-замещенными тиофенами [48]. Показано, что в случае 2-МеТ образование продукта в результате активации незамещенной связи С-Ѕ предпочтительнее на 5.8 ккал/моль. Это совпадает с экспериментальными результатами. Для 3-замещенных тиофенов соотношение продуктов внедрения металла в связи С-S составляет 1:1. Расчеты объясняют такой результат небольшой разницей между энергиями основного состояния двух продуктов внедрения (0.4-0.8 ккал/моль). В переходных состояниях происходит значительная делокализация электронов в тиофеновых кольцах, среднее значение углов изгиба металлацикла составляет 61°, что существенно выше, чем в конечных продуктах (до 21°). Селективности всех продуктов соответствуют термодинамическому контролю процесса.

Реакция T с фрагментом $[(C_5Me_5)Rh(PMe_3)]$ привлекла внимание и авторов работы [51], которые для расчетов применили гибридный метод IMOMM, сочетающий квантовую механику и молекулярную механику. Этот метод показал хорошую сходимость с ранее выполненными расчетами геометрии на основе только квантовой механики. Однако есть отличия в энергиях возможных путей реакции, связанные с изменением

Рис. 2. Структура комплекса родия с ДБТ [46].

окислительного состояния атома родия. Рассчитано влияние метильных заместителей на каждой стадии реакции с определением доли стерического и электронного фактора.

При действии $[Rh(\mu-Cl)(CO)_2]_2$ на ДБТ с пиридильным заместителем первоначально возникает моноядерный комплекс родия (I) *цис*-[Rh-Cl(CO)₂(η^1 (N)-РуДБТ)], который затем при 100°С в течение 3 дней превращается в тетраядерный комплекс родия [Rh (I)/Rh (III)/Rh (III)/Rh (I)] с хелатным тридентатным лигандом – дианионом 3'-(2"-пиридил)-1,1'-дифенил-2-тиола – [{Rh(μ -РуВРТ- κ^3 -N,C,S)}(μ -Cl)₂{Rh(CO)₂}]₂ – продуктом расщепления связи С–S в ДБТ [33

Димерный комплекс родия $[RhP(CH_2)_2P(\mu-H)]_2$ при обработке ДБТ (100°С, 10 дней), 4-МеДБТ (135°С, 7 дней) и 4,6-Ме₂ДБТ (135°С, 8.5 дней) дает продукты расщепления связи С–S с мостиковым атомом серы [52]. В случае 4,6-Ме₂ДБТ это $[Rh_2{P(CH_2)_2P}_2(\mu-SMe_2-ДБТ)(\mu-H)]$. Однако первоначально в качестве основного продукта образуется $[Rh_2{P(CH_2)_2P}_2(\mu-SH)(\mu-H)]$, но, когда исходный комплекс полностью расходуется, соотношение продуктов составляет 50 : 50. В фенокситиине, содержащем два фрагмента $o-C_6H_5$, соединенных мостиковыми атомами S и O, расщепляется только связь С–S, в то время как связь С–O не затрагивается.

Из Т и [Ir(циклооктадиен)(PMe₃)₃]Сl в результате внедрения металла в связь С-S образуется продукт с шестичленным иридатиациклом, фосфиновыми и хлорным лигандами [53]. Авторы утверждают, что чередование длин связей по всему кольцу является наглядным свидетельством отсутствия ароматичности. Для комплекса, имеющего только фосфиновые лиганды, в работе [54] сделан вывод об ароматичности иридатиабензола с оговоркой, что эта ароматичность "довольно хрупкая". Структурные характеристики иридатиабензольного комплекса с фосфиновыми и тиолатным лигандами определены в работе [55]. Расчеты электронной структуры в иридатиабензоле показали [56], что сильная связь М-S нарушает кольцевую π -систему и приводит к некоторой локализации π-связей кольца. Замена одного из фосфиновых лигандов на тиолатный еще больше нарушает кольцевую π -систему. Тем не менее, спектр ¹Н ЯМР подтверждает ароматичность ири-

Рис. 3. Продукт внедрения платины по связи C–S в 4,6-диметил-ДБТ с образованием: μuc -[Pt(PEt₃)₂(η^2 -C,S-C₁₄H₁₂S)] [66].

датиабензольного фрагмента. Кроме того, его "хрупкой" ароматичности оказывается достаточно для замещения *n*-ксилола с "крепкой" ароматичностью в комплексе [Мо(η^6 -*n*-ксилол)(CO)₃] [54, 57].

Гидридный комплекс иридия $[Ir(C_5Me_5)(\mu-H)Cl]_2$ в атмосфере водорода не только разрывает обе связи C-S в 2,5-Ме₂T, но и гидрирует двойные связи [58]. Однако, если реакцию проводить без водорода и в присутствии акцептора водорода – трет-бутилэтилена, то ход реакции резко изменяется. Происходит двойная активация связи С-Н 2,5-Ме₂Т и возникает необычное соединение $[Ir(Cl)(C_5Me_5)(\mu-H){\mu-(\eta^1:\eta^3-C_6H_6S)}(IrC_5Me_5)]$ [59], в котором имеется η³-аллильное взаимодействие бывшего 2,5-Ме₂Т с одним из атомов иридия за счет атомов C^2 и C^3 тиофенового ядра и бывшей метильной группой в положении 2, один из атомов водорода которой превратился в водородный мостик. Своеобразным мостиком, связывающим оба атома иридия, стал и атом С³ тиофенового ядра.

При гидрировании [Ir(циклооктадиен)(PPh₃)₂]PF₆ в присутствии Т, БТ или ДБТ с высокими выходами образуются комплексы [IrH₂($\eta^1(S)T^*$)₂(PPh₃)₂]PF₆, где T^{*} – Т, БТ или ДБТ [60], для которых определены геометрические параметры. Структура комплексов представляет искаженный октаэдр с *цис*расположением тиофенов, гидридных атомов водорода и *транс*-трифенилфосфиновыми лигандами. Авторы полагают, что такие структуры могут использоваться в качестве моделей для начальной стадии хемосорбции тиофеновых производных на твердых катализаторах.

Выполнены теоретические расчеты по методу DFT для комплексов Co(η^4 -T) и Co(η^2 -T)₂ [42], которые показали, что тиофеновые комплексы кобальта должны иметь заметное поглощение в ИК-области при 155.8 см⁻¹ и менее устойчивы, чем комплексы железа и никеля.

НИКЕЛЬ, ПАЛЛАДИЙ И ПЛАТИНА

В литературе имеются примеры активации связи C–S в 4,6-Me₂ДБТ. В частности, на это способны гидридофосфиновые комплексы никеля (90°C, 21 ч, 1 атм H₂) и платины (120°C, 10 ч). В

НЕФТЕХИМИЯ том 60 № 2 2020

случае никеля происходит процесс обессеривания и с выходом 23% выделяется 3,3'-диметилдифенил. В случае платины с выходом 40% образуется комплекс, содержащий шестичленный тиаплатиновый цикл [61].

Этими же авторами получен и структурно охарактеризован ряд серосодержащих комплексов никеля из тиофеновых соединений [62]. В 2-цианотиофене никель внедряется по связи C–S, соседней с нитрильной группой [63]. Имеется обзор по активации разнообразных связей, в том числе C–S, низковалентными комплексами никеля [64].

Трис(триэтилфосфин)платина внедряется в связи С–S в Т, БТ и ДБТ [65], а также 2-МеБТ, 3-МеБТ, 4-МеДБТ, 1,9-Ме₂ДБТ [66]. Взаимодействие [Pt(PEt₃)₃] с 4,6-Ме₂ДБТ высокой чистоты вместо активации связи С–S активирует связь С–Н предположительно в положении 3 бензольного кольца. Лишь обработка 4,6-Ме₂ДБТ комплексом *цис*-[PtCl₂(PEt₃)₂] в присутствии металлического натрия и водорода приводит к внедрению платины по связи С–S (рис. 3).

Обнаружена интересная и важная возможность активации связей С–S в БТ и ДБТ, в том числе алкилированных, за счет предварительной координации карбоциклического кольца с электрофильными фрагментами $[Mn(CO)_3]^+$, FeCp⁺, RuCp⁺, $[Ru(C_6Me_6)]^{2+}$, Cr(CO)₃ [67–69] (рис. 4).

Так, реакция мягкого нуклеофила $Pt(PPh_3)_2(C_2H_4)$ с комплексами алкилированных БТ и ДБТ, содержащими фрагмент $[Mn(CO)_3]^+$, координированный с карбоциклическим кольцом, приводит при комнатной температуре к быстрому внедрению платины в связи C–S с образованием металлатиациклических комплексов [69]. Для сравнения, $[Pt(PPh_3)_2(C_2H_4)]$ не реагирует со свободным БТ [65].

Авторы [69] полагают, что с комплексами БТ, не имеющими заместителей в положениях 2 или 3, начальная быстрая координация платины по связи C=C в гетероциклическом кольце происходит перед внедрением в связь $C_{(винил)}$ -S. Когда в этих положениях есть заместитель, образование η^2 -(C=C)-интермедиата блокируется, скорость реакции замедляется, и внедрение в связи $C_{(арил)}$ -S

Рис. 4. Продукт внедрения платины в активированный ДБТ [68].

становится возможным или даже преобладающим. В этих случаях предполагается возникновение $\eta^{1}(S)$ -интермедиатов. Внедрение в С–S-связь, которая ближе к координированному кольцу в дибензотиофеновых комплексах, даже алкилированных в положениях 4 и 6, происходит быстро и со скоростями, близкими к тем, которые наблюдаются для комплексов алкилированных БТ. Даже в обычно малоактивном 4,6-Ме₂ДБТ становится возможным быстрый разрыв связи С-S платиной после предварительной координации с фрагментом $[Mn(CO)_3]^+$. Продукты внедрения платины в 4,6-диалкил-ДБТ из реакционной смеси выделить не удалось, получены лишь спектральные данные in situ. Не обнаружено никаких промежуточных продуктов, в том числе типа η^2 -(C=C).

На основе наблюдаемой региоселективности, данных низкотемпературного ИК-исследования и изучения кинетики при комнатной температуре методом "остановленной струи", предложен механизм внедрения платины в координированные БТ и ДБТ. Установлено, что палладиевый комплекс [Pd(PPh₃)₂(C₂H₄)] способен внедряться в связи С–S в координированных тиофенах [69], однако металлатиациклы палладия менее устойчивы и образуются не так быстро, как платиновые.

Взаимодействие тиофена с $[Pt_2{Ph_2P(CH_2)_3PPh_2}H_3]ClO_4$ приводит к активации связи С–Ѕ и частичному гидрированию тиофена. С чистым тиофеном образуется смесь моноядерного [Pt{Ph₂P(CH₂)₃PPh₂}(SC₄H₄-C,S)] и биядерного [Pt₂{Ph₂P(CH₂)₃PPh₂}₂(µ-SC₄H₅-C,S)]ClO₄ комплексов в мольном соотношении 2 : 3. При использовании в качестве растворителя бензола или толуола это соотношение резко меняется на 1:9 [70]. В то время как действие HBF₄ на моноядерный комплекс приводит к раскрытию тиофенового кольца и образованию [Pt₂{Ph₂P(CH₂)₃PPh₂}₂(µ- $SC_4H_5_2$](BF₄)₂, реакция HBF₄ с биядерным комплексом дает соединение $[Pt_2{Ph_2P(CH_2)_3PPh_2}_2(\mu SC_4H_6$](BF₄)₂, для которого выполнен рентгеноструктурный анализ (рис. 5).

Благодаря хелатному эффекту можно выделить обычно неустойчивые η^2 -тиофеновые комплексы. Так, селективная активация связи С–Н в тиофеновом фрагменте, а также появление η^2 -

Рис. 5. Структура комплекса $[Pt_2\{Ph_2P(CH_2)_3-PPh_2\}_2(\mu\text{-}SC_4H_6)](BF_4)_2$ [70].

тиофенового интермедиата наблюдалось при взаимодействии $[Pt(CH_3)_2(SMe_2)]_2$ с монохинолиновыми производными Т [71]. С бис(хинолиновыми) производными получены и структурно охарактеризованы биядерные η^2 -тиофеновые комплексы с сэндвичевой структурой [72].

Методом DFT изучено превращение ДБТ в дифенил и H_2S при действии H_2 на монослойных сульфидных кластерах NiMo18 [73]. Энергия активации для критических стадий разрыва двух связей C–S в ДБТ на никелевом активном центре оценена в примерно 32 ккал/моль.

Методом DFT показано, что тиофеновые комплексы никеля занимают промежуточное положение между стабильными комплексами железа и наименее устойчивыми комплексами кобальта. Бис(η^2 -тиофеновые) комплексы никеля склонны к распаду на монотиофеновое соединение и свободный тиофен. Расчетная частота асимметричных валентных колебаний тиофен – Ni – тиофен для Ni(η^2 -тиофен)₂ составляет 383 см⁻¹, а валентных колебаний Ni – тиофен в Ni(η^5 -тиофен) – 150 см⁻¹ [42].

Образование устойчивого тиаплатинового кольца происходит при действии на Т [Pt{*i*-Pr₂P(CH₂)₂P-*i*-Pr₂}H]₂ в ТГФ (>60°С) [74]. Методами DFT и MO исследовано аналогичное гипотетическое соединение [Pt{Me₂P(CH₂)₂P-Me₂}- η^2 (C,S)C₄H₄] [50]. Расчеты показывают, что реакция является в целом экзотермической и, кроме того, предсказывают, что начальная η^2 -координация Т через двойные связи C=C энергетически более выгодна, чем координация через атом серы (ΔG 9.3 ккал/моль). В присутствии ТГФ величина ΔG возрастает до 11.4 ккал/моль.

ХРОМ, МОЛИБДЕН И ВОЛЬФРАМ

Ультрафиолетовым фотолизом гексановых растворов карбонилов $M(CO)_6$ (M = Mo, W, Cr) с избытком 2,5-Me₂T, БT и ДБТ получены малоустойчивые комплексы типа $\eta^1(S)$ соответствующего тиофенового лиганда с фрагментом $M(CO)_5$ (рис. 6а) [75]. Только комплексы хрома и вольфрама с ДБТ существовали несколько дней, поэтому для них удалось сделать рентгеноструктурный анализ. Из этого можно сделать вывод, что ДБТ связывается с металлами прочнее, чем БТ

Рис. 6. Комплексы [$Mo(CO)_5(\eta^1(S)\square ET)$] (а) и [$Mo(CO)_3(h^6-\square ET)$] (б) [75].

или 2,5-Me₂T, что было показано ранее для рутения в работах [40, 41]. С ДБТ и карбонилом молибдена наряду с вышеуказанным получается π -комплекс Mo(CO)₃(η^6 -ДБТ), в котором металл координирован с бензольным кольцом (рис. 6б).

В комплексах W и Cr атом серы находится в центре тригональной пирамиды (псевдо-*sp*³-гибридиподобное наблюдается зация). Нечто в $[FeCp(CO)_2(\eta^1(S)\square ET)]$ [76], $[Ir(C_5Me_5)Cl_2(\eta^1(S)\square ET)]$ [77], [Mo{Me₂Si(C₅Me₄)₂}(η¹-ДБТ)] [78] и других η¹-тиофеновых комплексах (рис. 7). Пирамидальная геометрия серы в η^1 -тиофеновых комплексах – характерный признак уменьшения антисвязывающих взаимодействий между неподеленной электронной парой атома серы и заполненными *d*-орбиталями металла. Связь М-С существенно короче для *транс*-СО, чем для *цис*-СО. Угол θ между связью M—S и вектором от атома серы к середине расстояния между атомами С⁶ и С⁷ бензольного кольца ДБТ для вольфрамового комплекса чуть меньше, чем для хромового (118.8° и 121.8° соответственно). На основе расчетов по методу молекулярных орбиталей [79, 80] полагают, что величина угла в комплексах металл-тиофен зависит от способности металла к обратному π -допированию на тиофеновый лиганд. Чем больше электронная плотность на металле, тем сильнее обратное π -связывание с тиофеном и тем больше угол θ .

Сравнение реакционной способности T и тетрагидротиофена при взаимодействии с [W(CO)₅(цикло- C_6H_{12})], синтезированным лазерным фотолизом раствора W(CO)₆ в циклогексане, показало, что более реакционноспособным является тетрагидротиофен, поскольку он более сильный донор электронов [81].

Для комплекса [W(NO)(PMe₃){гидридотрис(пиразолил)борат}(η²-T)], полученного с выходом 31– 40% из [W(NO)(PMe₃){гидридотрис(пиразолил)борат}Br] и T, осуществлены алкилирование, окисление, протонирование и гидрирование некоординированной двойной связи [82].

Гидридные соединения вольфрама способны расщеплять связи C–S в T, БТ и ДБТ с образова-

Рис. 7. Комплекс [Mo{Me₂Si(C₅Me₄)₂}(η¹-ДБТ)] [78].

нием комплексов, которые при нагревании в присутствии водорода выделяют продукты обессеривания: бутен-1, этилбензол и дифенил, соответственно. Например, [W(PMe₃)₄(η^2 -CH₂PMe₂)H] с ДБТ дает соединение [W(κ^2 -C₁₂H₈)(PMe₃)]-(μ -S)(μ -CH₂PMe₂)(μ -PMe₂)[W(PMe₃)₃] с дибензометаллациклопентадиеновым фрагментом [83]. Буква κ – греческая буква "каппа".

Важно знать энергии адсорбции для всех промежуточных продуктов реакции, так как они определяют термодинамику реакции. Поэтому в работе [84] рассчитали энергии адсорбции для 12 различных серосодержащих молекул, координированных по типу η^1 на 5 различных структурах Co/MoS₂.

Показано, что анса-молибденоценовые гидриды $[Mo{Me_2Si(C_5Me_4)_2}H_2]$, в молекулах которых атомы в *п*-положениях ароматического кольца связаны цепью атомов –(CH₂)_n–, и [Mo{Me₂₋ Si(C₅Me₄)₂}(Ph)H] расщепляют связи C-S в T и БТ [78] в отличие от незамещенных молибденоценов Ср₂МоН₂ [85]. Ключевая роль в осуществлении этой реакции принадлежит анса-мостику SiMe₂, связывающему два циклопентадиенильных кольца. По предварительным расчетам, продукты разрыва связи C-S термодинамически более выгодны для анса-молибленоценовой системы, чем продукты активации связей С-Н для циклопентадиенильной системы. Увеличение стабильности продукта расщепления связи C-S, как считают авторы [78], является следствием смещения к η^3, η^3 -координации циклопентадиенильных колец, чему способствует мостик SiMe₂. Количество электронов у атома молибдена в $[Mo{Me_2Si(C_5Me_4)_2}\eta^2(C, S)(T)]$ меньше 18, и будет формально 14 в предельном случае, если циклопентадиенильные лиганды будут η³-координированы в чистом виде. В таком случае донирование неподеленной электронной пары атома серы обеспечит дополнительную возможность стабилизации продукта расщепления связи C-S.

В конкурирующей реакции между Т и БТ при действии [Mo{SiMe₂(C₅Me₄)₂}(Ph)H] БТ кинетически более восприимчив к разрыву связи C–S (селективность 3 : 1). ДБТ дает только аддукт [Mo{Me₂Si(C₅Me₄)₂}(η^{1} -ДБТ)] [78] (рис. 7).

Рис. 8. Вероятная схема превращения комплекса [Mo(PMe₃)₄(κ^2 -C²,S-тиофен)] (A) в бутадиентиолатный комплекс [Mo(η^5 -C₄H₅S) (PMe₃)₂(η^2 -CH₂PMe₂)] (Б) [86].

Авторы постулируют, что возникает интермедиат $[Mo\{Me_2Si(C_5Me_4)_2\}]$, первоначально присоединяющий тиофеновое соединение по типу $\eta^{1}(S)$. Затем в Т и БТ $\eta^1(S)$ -интермедиатах металл внедряется в связь C–S, в то время как в ДБТ $\eta^1(S)$ комплексе это не происходит. Показано, что ДБТлиганд в комплексе $[Mo\{Me_2Si(C_5Me_4)_2\}(\eta^1-ДБT)]$ довольно слабо связан с молибденом: так, он легко замещается водородом и бензолом, Т и БТ. Тем не менее, удалось выполнить рентгеноструктуный анализ не только соединения [Мо{Ме₂₋ Si(C₅Me₄)₂} η^{2} (С, *S*)(Т)], но и аддукта [Mo{Me₂-Si(C₅Me₄)₂}(η¹-ДБТ)] [78]. По сравнению с другими η^1 -тиофеновыми комплексами угол θ (M–S – центр тиофенового ядра) в $[Mo{Me_2Si(C_5Me_4)_2}(\eta^1 -$ ДБТ)] меньше и составляет 26°, в то время как в других η¹-тиофеновых комплексах величина этого угла находится в пределах 37-61°.

В отличие от молибденовых комплексов [$Mo\{Me_2Si(C_5Me_4)_2\}\eta^2(C,S)(T)$] и [$Mo\{Me_2Si(C_5Me_4)_2\}\eta^2(C,S)(T)$] вольфрамовый родственник [$W(Cp_2)\eta^2(C,S)(T)$] реагирует с бензолом, давая [$W(Cp_2)(Ph)H$] [85].

Реакция Т с [Mo(PMe₃)₆] изучена методом DFT [86]. Сравнение различных возможных путей реакции выявило, что наиболее каталитически активные частицы – пяти- и четырехкоординированные фрагменты, возникающие при последовательной диссоциации двух групп РМе₃ от [Мо(РМе₃)₆]. Авторы полагают, что частица [Мо(РМе₃)₄] с Т первоначально дает $[Mo(PMe_3)_4(\eta^1(S)T)],$ перестраивающийся в $[Mo(PMe_3)_4(\eta^2-(C^2,S)T]]$. Затем происходит разрыв связи С-Ѕ тиофена и возникает интермедиат $[Mo(PMe_3)_4(\kappa^2-C^2,S)(T)]$ (А). Бутадиентиолатный комплекс [Mo(η^5 -C₄H₅S) (PMe₃)₂(η^2 -CH₂PMe₂)] (Б) может получаться путем ухода одной группы РМе₃, переноса водорода и структурных преобразований (рис. 8). Аддукт [Mo(PMe₃)₃(η⁵-T)] может получаться из [Mo(PMe₃)₄($\eta^2(C^2, C^3)T$)] в результате удаления одной группы PMe₃ и изменения η²-координации в η⁵-координацию. По сравнению с [Mo(PMe₃)₃(η⁵-T)] бутадиентиолатный комплекс Б более стабилен на 3.5 ккал/моль. Вычислены энергетический барьеры образования [Mo(PMe₃)₃(η⁵-T)] и [Mo(η^5 -C₄H₅S) (PMe₃)₂(η^2 -CH₂PMe₂)], которые составляют 20 и 10.4 ккал/моль, соответственно. Такие барьеры легко преодолеваются, так что эти два интермедиата могут экспериментально наблюдаться. Таким образом, по результатам расчетов превращение интермедиата А в бутадиентио-

Рис. 9. Продукты реакции Re₂(CO)₁₀ с ДБТ (В, Г) и 2,5-Me₂T (Д) [90].

Рис. 10. Продукты реакции БТ и его метильных производных с Re₂(CO)₁₀ [91].

латный комплекс Б термодинамически и кинетически может происходить очень легко.

Т, как показано *in situ* методом ИК-спектроскопии с Фурье-преобразованием и подтверждено расчетами [87], может адсорбироваться на поверхности сульфидированного катализатора Mo/γ -Al₂O₃ различными способами: через координацию по атому серы, по двойной связи С=С либо по связи С–С с ненасыщенными центрами Mo^{d+} , расположенными по краям граней структур MoS_2 . Бо́льшая энтальпия образования комплекса с координацией по η^2 -типу свидетельствует о предпочтительности координации T с Мо-катализатором по двойной связи С=С. В координированном T уменьшается ароматичность и ослабляется связь С–S.

МАРГАНЕЦ И РЕНИЙ

Комплекс [Re(C₅Me₅)(CO)₂БТ] существует в виде равновесной смеси изомеров, в которой БТ

НЕФТЕХИМИЯ том 60 № 2 2020

координируется с рением по двойной связи (η^2 -2,3) или по атому серы (η^1 -S) [88, 89].

В соединении [MnCp(CO)₃] при ультрафиолетовом фотолизе в гексане в присутствии избытка 2,5-Me₂T, БТ или ДБТ один из карбонильных лигандов замещается на тиофеновый. Из тиофеновых продуктов только ДБТ-производное [MnCp(CO)₂($\eta^1(S)$ -ДБТ)] более устойчиво и существует несколько дней, что позволило получить для него структурные характеристики [75]. Структура этого соединения подобна определенной для комплекса иридия [IrCpMe₅Cl₂(η^1S -DBT)] [77] с *син*-ориентацией ДБТ-лиганда относительно циклопентадиенильного кольца.

Угол θ между связью М–S и вектором от атома серы к центроиду тиофенового фрагмента в комплексе [MnCp(CO)₂(η^1 (S)ДБТ)] составляет 125.6°, что сравнимо с вышеупомянутым соединением иридия (128°), но выше, чем в ДБТ-производных хрома (121.8°), вольфрама (118.8°) [75] и железа (119.4°) [76]. На основе расчетов по методу молекулярных орбиталей полагают, что величина угла θ увеличивается с ростом электронной плотности на металле и усилением за счет этого обратного π -связывания с тиофеном [79, 80].

Взаимодействие Re₂(CO)₁₀ с тиофеновыми соединениями в условиях ультрафиолетового фотолиза протекает по-разному [90, 91]: ДБТ дает два вещества – $[Re_2(CO)_9(\eta^1(S)\square FT]]$ (В) и $[\text{Re}_{2}(\text{CO})_{8}(\mu-\text{C}_{12}\text{H}_{7}\text{S})(\mu-\text{H})](\Gamma), a 2,5-\text{Me}_{2}\text{T}-\text{ppo-}$ дукт внедрения металла по связи C-S -[Re₂(CO)₇(µ-2,5-Me₂T)] (Д) (рис. 9) [90]. В таких же условиях БТ и его метильные производные образуют комплексы $[Re_2(CO)_7(\mu-Me_x ET]]$ (E) (рис. 10) [91], в которых сохраняется связь Re-Re. Соединения [$Re_2(CO)_9(\mu^1(S)MeBT)$] (Ж) (рис. 10) получаются из [Re₂(CO)₉(ТГФ)] и БТ и его метильных замещенных при комнатной температуре. Под дейтвием УФ-излучения комплексы (Ж) легко и с выходами 40-60% превращаются в (É). Фотолиз 3,5-Ме₂БТ и Re₂(CO)₁₀ в атмосфере водорода дает вещество (Е) и комплекс с частично гидрированным тиофеновым кольцом [Re₂(CO)₇(µ-3,5-Ме₂БТ-Н)(µ-Н)]. В соединении (B) угол θ довольно мал (113°). Механизм реакции включает как отрыв СО, так и гомолитический распад связи Re-Re.

ЗАКЛЮЧЕНИЕ

Комплексообразование тиофеновых соединений с переходными металлами может происходить как за счет координации с π -системой Т или атомом серы (рис. 11), так и в результате внедрения атома металла в тиофеновое кольцо с разрывом связи C–S.

Рис. 11. Возможные способы связывания T с переходным металлом [28]: $1 - M[\eta^1(S)]; 2 - M(\eta^2-T); 3 - M_2(\eta^2-T); 4 - M(\eta^4-T); 5 - M(\eta^2-T)M(\eta^2-T), 6 - M(\eta^4-T)M'[\eta^1(S)], 7 - M(\eta^4-T)M'_2[\eta^1(S)], 8 - M(\eta^5-T).$

Комплексы типа $\eta^1(S)$ образуют рутений [RuH₂(η^2 -H₂){ $\eta^1(S)$ -C₁₂H₈S}(PCy₃)₂] [36], [Cp-Ru(CO)₂{ μ_2 - $\eta^1(S)$: η^6 -ДБТ}RuC₅Me₅]²⁺ [39], иридий [IrH₂($\eta^1(S)$ T*)₂(PPh₃)₂]PF₆, где T* – T, БТ или ДБТ [60], [IrCpMe₅Cl₂(η^1S -DBT)] [77], хром, молибден и вольфрам [$\eta^1(S)$ T*M(CO)₅] [75], [Mo{Me₂Si(C₅Me₄)₂}(η^1 -ДБТ)] [78], марганец [MnCp(CO)₂($\eta^1(S)$ -ДБТ)] [75], рений (рис. 9, 10) [90, 91].

Координация по двойной связи тиофенового кольца наблюдается в комплексе [W(NO)(PMe₃){гидридотрис(пиразолил)борат}(η^2 -T)] [82], в [Re(C₅Me₅)(CO)₂БТ], который существует в виде равновесной смеси $\eta^2(C_2=C_3)$ - и $\eta^1(S)$ -изомеров [88, 89]. С двойной связью и атомом серы тиофенового цикла связывается рений и в комлексе (E) [91] (рис. 10). Известен комплекс 2,5-Me₂T, содержащий два атома рения, один из которых координирован по типу η^5 , а другой – по типу $\eta^2(C,S)$ [90] (рис. 9, Д). η^4 -Тиоаллильная координация Т обнаружена в [RuH($\eta^4(S,C)$ -SC₄H₅)(PCy₃)₂] [36].

Устойчивость $\eta^1(S)$ -комплексов невелика. В комплексе [Mo{Me₂Si(C₅Me₄)₂}(η^1 -ДБТ)] ДБТ-лиганд легко замещается водородом и бензолом, а также Т и БТ [78]. Соединение [MnCp(CO)₂($\eta^1(S)$ -ДБТ)] существует несколько дней, время жизни подобных комплексов других тиофеновых производных еще меньше [75]. Комплексы типа η^1 -S тиофенового лиганда с фрагментом M(CO)₅ (M = Cr, Mo, W) (рис. 6 а) малоустойчивы [75].

Начальная η^2 -координация T через двойные связи C=C энергетически более выгодна, чем координация через атом серы [50, 87]. η^2 -Тиофеновые комплексы обычно неустойчивы. Стабильность тиофеновых комплексов возрастает в ряду: кобальт < никель < железо [42]. Бис(η^2 -тиофеновые) комплексы никеля склонны к распаду на монотиофеновое соединение и свободный тиофен [42].

По сравнению с [Mo(PMe₃)₃(η^{5} -T)] бутадиентиолатный комплекс более стабилен на 3.5 ккал/моль. Энергетический барьер образования [Mo(PMe₃)₃(η^{5} -T)] составляет 20 ккал/моль [86].

Установлено, что как $\eta^1(S)$ -координация, так и $\eta^2(C,C)$ -координация приводит к интермедиату $\eta^2(C,S)$ который непосредственно предшествует расщеплению связи C–S, поскольку в координированном T уменьшается ароматичность и ослабляется связь C–S.

Никель, палладий и платина весьма активно взаимодействуют с тиофеновыми соединениями, что обычно приводит к внедрению металла по связи C–S и последующему разрушению тиофенового цикла.

Реакция тиофеновых соединений с комплексами металлов является в целом экзотермической.

Электронное влияние заместителей в тиофеновых производных незначительно, а стерические эффекты велики. Так, например, связь C–S в Me_4T , 4,6- Me_2 - и 4,6- $Et_2ДБT$ не расщепляется. Получаются лишь лабильные комплексы со связью M-S.

Для расщепление связи C–S в БТ металл-координационно ненасыщенных нуклеофильных фрагментов, как правило, внедряется в связь $C_{(винил)}$ –S, а не в более сильную связь $C_{(арил)}$ –S свободного БТ.

η⁶-Координация БТ и ДБТ на промышленных сульфидных Мо/Со-катализаторах гидрообессеривания может быть действенным механизмом активации связей С–S до внедрения металла и последующего гидрирования.

Сравнение соединений со связями С–S и С–О в конкурирующих условиях показывает, что расщепляются только связи С–S.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках Государственного задания ИНХС РАН.

КОНФЛИКТ ИНТЕРЕСОВ

Максимов А.Л. является главным редактором журнала "Нефтехимия".

ИНФОРМАЦИЯ ОБ АВТОРАХ

Максимов Антон Львович, доктор химических наук, член-корр. РАН, директор ИНХС РАН, ORCID: https://orcid.org/0000-0001-9297-4950

Нехаев Андрей Иванович, кандидат химических наук, ведущий научный сотрудник ИНХС РАН, ORCID https://orcid.org/0000-0003-0511-582X

СПИСОК ЛИТЕРАТУРЫ

- Pawelec B., Navarro R.M., Campos-Martin J.M., Fierro J.L.G. // Catal. Sci. Technol. 2011. V. 1. P. 23.
- 2. Srivastava V.C. // RSC Adv. 2012. V. 2. P. 759.
- Stanislaus A., Marafi A., Rana M.S. // Catal. Today. 2010. V. 1. P. 1.
- Wang L., He W., Yu Z. // Chem. Soc. Rev. 2013. V. 42. P. 599.
- Pashigreva A.V., Bukhtiyarova G.A., Klimov O.V., Chesalov Yu.A., Litvak G.S., Noskov A.S. // Catal. Today. 2010. V. 149. № 1–2. P. 19.
- Klimov O.V., Pashigreva A.V., Fedotov M.A., Kochubey D.I., Chesalov Yu.A., Bukhtiyarova G. A., Noskov A.S. // J. Mol. Catal. A: Chem. 2010. V. 322. № 1–2. P. 80.
- Pashigreva A.V., Klimov O.V., Bukhtiyarova G.A., Kochubey D.I., Prosvirin I.P., Chesalov Yu.A., Zaikovskii V.I., Noskov A.S. // Catal. Today. 2010. V. 150. P. 164.
- 8. Leonova K.A., Klimov O.V., Gerasimov E.Yu, Dik P.P., Pereyma V.Yu., Budukva S.V., Noskov A.S. // Adsorption. 2013.
 - https://doi.org/10.1007/s10450-013-9500-0
- Shih S.S., Mizahi S., Green L.A., Sarli M.S. // Ind. Eng. Chem. Res. 1992. V. 31. P. 1232.
- 10. Topsøe H., Gates B.C. // Polyhedron. 1997. V. 16. P. 3212.
- Houalla M., Broderic D.H., Sapre A.V., Nag N.K., de Beer V.H.J., Gates B.C., Kwart H. // J. Catal. 1980. V. 61. P. 523.
- Ma X., Sakanishi K. Mochida I. // Ind. Eng. Chem. Res. 1995. V. 34. P. 748.
- Старцев А.Н., Захаров И.И. // Успехи химии. 2003. Т. 72. № 6. С. 579.
- 14. Su J.-C., Chang J.-H., Huang J.-W., Chen P.P.-Y., Chen K.-F., Tseng P.-H., Shiau C.-W. // Chem.-Biol. Interactions. 2015. V. 228. P. 108.
- Mobin S.M., Tauqeer M., Mohammad A., Mishra V., Kumari P. // J. Coord. Chem. 2016. V. 69. P. 2015.
- He Y., Liu Q., Liu F., Huang C., Peng C., Yang Q., Wang H., Hu J., Liu H. // Micropor. Mesopor. Mater. 2016. V. 233. P. 10.
- Hammud H.H., El Shazly S., Sonji G., Sonji N., Bouhadir K.H. // Spectrochim. Acta. Part A. 2015. V. 150. P. 94.
- González B., del Valle M.A., Díaz F.R., Espinosa-Bustos C., Ramírez A.M.R., Hernández L.A. // J. Appl. Polym. Sci. 2016. V. 133. P. 43547.
- 19. Angelici R.J. // Coord. Chem. Rev. 1990. V. 105. P. 61.
- Rauchfuss T.B. The coordination chemistry of thiophenes // In: Progress in Inorganic Chemistry. V. 39. Ed. Lippard S.J. Ch. 5. Hoboken, NJ, USA: J. Wiley & Sons, Inc., 1991. P. 259.
- Sánchez-Delgado R. A. // J. Mol. Catal. 1994. V. 86. № 1. P. 287.
- Angelici R.J. // Bull. Soc. Chim. Belges. 1995. V. 104. № 4–5. P. 265.
- 23. Angelici R.J. // Polyhedron. 1997. V. 16. № 18. P. 3073.

НЕФТЕХИМИЯ том 60 № 2 2020

- 24. Harris S. // Polyhedron. 1997. V.16. № 18. P. 3219.
- 25. *Angelici R.J.* // In: Transition Metal Sulphides. NATO ASI Series. Springer Netherlands.1998. V. 60. P. 89.
- 26. *Angelici R.J.* // Organometallics. 2001. V. 20. № 7. P. 1259.
- Sánchez-Delgado R.A. // In: Organometallic Modeling of the Hydrodesulfurization and Hydrodenitrogenation Reactions. Catalysis by Metal Complexes. Springer Netherlands. 2002. V. 24. P. 95.
- 28. Wang L., He W., Yu Z. // Chem. Soc. Rev. 2013. V. 42. P. 599.
- 29. *Matsubara K., Okamura R., Tanaka M., Suzuki H.* // J. Amer. Chem. Soc. 1998. V. 120. № 5. P. 1108.
- 30. *King R.B., Treichel P.M., Stone F.G.A.* // J. Amer. Chem. Soc. 1961. V. 83. P. 3600.
- Hübener P., Weiss E. // J. Organomet. Chem. 1977. V. 129. P. 105.
- 32. Ogilvy A.E., Draganjac M., Rauchfuss T.B., Wilson S.R. // Organometallics. 1988. V. 7. P. 1171.
- 33. Shibue M., Hirotsu M., Nishioka T., Kinoshita I. // Organometallics. 2008. V. 27. № 17. P. 4475.
- 34. Hirotsu M., Tsuboi C., Nishioka T., Kinoshita I. // Dalton Trans. 2011. V. 40. P. 785.
- 35. Hirotsu M., Santo K., Hashimoto H., Kinoshita I. // Organometallics. 2012. V. 31. № 21. P. 7548.
- 36. Borowski A F., Sabo-Etienne S., Donnadieu B., Chaudret B. // Organometallics. 2003. V. 22. № 23. P. 4803.
- McKinley S.G., Angelici R.J. // Energy & Fuels. 2003.
 V. 17. № 6. P. 1480.
- 38. Urban S., Beiring B., Ortega N., Paul D., Glorius F. // J. Amer. Chem. Soc. 2012. V. 134. № 37. P. 1524.
- 39. *Vecchi P.A., Ellern A., Angelici R.J.* // Organometallics. 2005. V. 24. № 15. P. 3725.
- Benson J.W., Angelici R.J. // Organometallics. 1992.
 V. 11. P. 922.
- Benson J. W., Angelici R. J. // Organometallics. 1992.
 V. 12. P. 680.
- 42. *Ding Y., He M., Niu Y., Wang D., Cui Y., Feng S.* // J. Phys. Chem. A. 2009. V. 113. № 38. P. 10291.
- Jones W.D., Dong L. // J. Amer. Chem. Soc. 1991. V. 113. № 2. P. 559.
- 44. *Dong L., Duckett S.B., Ohman K.F., Jones W.D.* // J. Am. Chem. Soc. 1992. V. 114. № 1. P. 151.
- 45. Jones W.D., Chin R.M. // J. Amer. Chem. Soc. 1994. V. 116. № 1. P. 198.
- 46. Jones W.D., Vicic D.A., Chin R.M., Roache J.H., Myers A.W. // Polyhedron. 1997. V. 16. № 18. P. 3115.
- 47. Ateşin T.A., Jones W.D. // Organometallics. 2008. V. 27. № 15. P. 3666.
- 48. Ateşin T.A., Jones W.D. // Inorg. Chem. 2008. V. 47. № 23. P. 10889.
- 49. *Sargent A.L., Titus E.P.* // Organometallics. 1998. V. 17. № 1. P. 65.
- 50. Ateşin T.A., Jones W.D. // Organometallics. 2008. V. 27. № 1. P. 53.
- 51. Maresca O., Maseras F., Lledós A. // New. J. Chem. 2004. V. 28. P. 625.

- Oster S.S., Grochowski M.R., Lachicotte R.J., Brennessel W.W., Jones W.D. // Organometallics. 2010. V. 29. № 21. P. 4923.
- Grieb A.L., Merola J.S. // J. Organomet. Chem. 2012. V. 713. P. 163.
- Bleeke J.R., Hinkle P.V. // J. Amer. Chem. Soc. 1999.
 V. 121. № 3. P. 595.
- 55. Bleeke J.R., Hinkle P.V., Shokeen M., Rath N.P. // Organometallics. 2004. V. 23. № 17. P. 4139.
- Welch W.R.W., Harris S. // Inorg. Chim. Acta. 2008. V. 361. P. 3012.
- 57. Bleeke J.R. // Acc. Chem. Res. 2007. V. 40. № 10. P. 1035.
- Grochowski M.R., Brennessel W.W., Jones W.D. // Organometallics. 2009. V. 28. P. 2661.
- 59. Grochowski M.R., Brennessel W.W., Jones W.D. // J. Chem. Crystallogr. 2011. 1007/s10870-011-0006-x
- 60. Sánchez-Delgado R.A., Herrera V., Bianchini C., Masi D., Mealli C. // Inorg. Chem. 1993. V. 32. № 17. P. 3766.
- Vicic D.A., Jones W.D. // Organometallics. 1998. V. 17. P. 3411.
- Vicic D.A., Jones W.D. // J. Amer. Chem. Soc. 1997. V. 119. P. 10855.
- 63. Grochowski M.R., Li T., Brennessel W.W., Jones W.D. // J. Amer. Chem. Soc. 2010. V. 132. № 35. P. 12412.
- 64. Arévalo A., García J. J. // Eur. J. Inorg. Chem. 2010. № 26. P. 4063.
- 65. Garcia J.J., Mann B.E., Adams H., Bailey N.A., Maitlis P.M. // J. Amer. Chem. Soc. 1995. V. 117. № 8. P. 2179.
- Arévalo A., Bernés S., García J.J., Maitlis P.M. // Organometallics. 1999. V. 18. № 9. P. 1680.
- Dullaghan C.A., Zhang X., Greene D.L., Carpenter G.B., Sweigart D.A., Camiletti C., Rajaseelan E. // Organometallics. 1998. V. 17. P. 3316.
- Li H., Carpenter G.B., Sweigart D.A. // Organometallics. 2000. V. 19. P. 1823.
- Yu K., Li H., Watson E.J., Virkaitis K.L., Carpenter G.B., Sweigart D.A. // Organometallics. 2001. V. 20. № 16. P. 3550.
- Nova A., Novio F., González-Duarte P., Lledós A., Mas-Ballesté R. // Eur. J. Inorg. Chem. 2007. № 36. P. 5707.

- Tan R., Song D. // Organometallics. 2011. V. 30. № 6. P. 1637.
- 72. Tan R., Song D. // Inorg. Chem. 2010. V. 49. № 5. P. 2026.
- Weber T., van Veen J.A.R. // Catal. Today. 2008. V. 130. P. 170.
- Ateşin. T.A., Oster S.S., Skugrud K., Jones W.D. // Inorg. Chim. Acta. 2006. V. 359. P. 2798.
- Reynolds M.A., Guzei I.A., Logsdon B.C., Thomas L.M., Jacobson R.A., Angelici R.J. // Organometallics. 1999. V. 18. № 20. P. 4075.
- 76. Goodrich J D., Nickias P.N., Selegue J.P. // Inorg. Chem. 1987. V. 26. P. 3426.
- 77. Rao K.M., Day C.L., Jacobson R.A., Angelici R.J. // Inorg. Chem. 1991. V. 30. P. 5046.
- Churchill D.G., Bridgewater B.M., Parkin G. // J. Amer. Chem. Soc. 2000. V. 122. № 1. P. 178.
- 79. Harris S. // Organometallics. 1994. V. 13. P. 2628.
- 80. Harris S. // Polyhedron. 1997. V. 16. P. 3219.
- 81. *Schultz R.H.* // Organometallics. 2004. V. 23. № 19. P. 4349.
- 82. Delafuente D.A., Myers W.H., Sabat M., Harman W.D. // Organometallics. 2005. V. 24. № 8. P. 1876.
- Sattler A., Parkin G. // J. Amer. Chem. Soc. 2011. V. 133. № 11. P. 3748.
- Joshi Y.V., Ghosh P., Venkataraman P.S., Delgass W.N., *Thomson K.T.* // J. Phys. Chem. C. 2009. V. 113. № 22. P. 9698.
- 85. Jones W.D., Chin RM., Crane T.W., Baruch D.M. // Organometallics. 1994. V. 13. P. 4448.
- Liao C., Wang J., Li B. // J. Organomet. Chem. 2014. V. 749. P. 275.
- Liu D., Li Z., Sun Q., Kong X., Zhao A., Wang Z. // Fuel. 2012. V. 92. № 1. P. 77.
- Choi M.G., Angelici R.J. // Organometallics. 1992. V. 11. № 10. P. 3328.
- Rudd J. A. II, Angelici R.J. // Inorg. Chim. Acta. 1995.
 V. 240. № 1–2. P. 393.
- 90. *Reynolds M.A., Guzei I.A., Angelici R.J.* // Organometallics. 2001. V. 20. № 6. P. 1071.
- 91. *Reynolds M.A., Guzei I.A., Angelici R.J.* // J. Amer. Chem. Soc. 2002. V. 124. № 8. P. 1689.