УДК 553.98

СРАВНИТЕЛЬНЫЙ АНАЛИЗ ОРГАНИЧЕСКОГО ВЕЩЕСТВА ПОРОД КОЛЛЕКТОРОВ И ДОМАНИКОВЫХ ОТЛОЖЕНИЙ БАВЛИНСКОГО МЕСТОРОЖДЕНИЯ

© 2020 г. Ю. М. Ганеева^{1, 2, *}, Е. Е. Барская^{1, 2}, Т. Н. Юсупова¹, Е. С. Охотникова^{1, 2}, О. С. Сотников ³, М. М. Ремеев³, Р. С. Хисамов⁴

¹Институт органической и физической химии им. А.Е. Арбузова ФИЦ "КазНЦ РАН", Казань, 420088 Россия ²Казанский федеральный университет, Казань, 423812 Россия

> ³ТатНИПИнефть, Бугульма, 423236 Россия ⁴ПАО Татнефть, Альметьевск, 423450 Россия *E-mail: ganeeva@iopc.ru Поступила в редакцию 08.11.2018 г. После доработки 16.11.2019 г. Принята к публикации 18.11.2019 г.

Керновый материал, отобранный по разрезу многопластового Бавлинского месторождения Республики Татарстан (Россия), и экстракты из него исследованы методами термического анализа, ИК- и ЭПР-спектроскопии, газо-жидкостной хроматографии. Выявлены закономерности изменения содержания и фракционного и углеводородного составов остаточной нефти и необратимо адсорбированных на породе нефтяных компонентов в зависимости от возраста отложения. В породах из заволжского и данково-лебедянского горизонтов, приписываемых доманиковым отложениям, определено содержание органического вещества (ОВ) с оценкой доли битумоида и керогена в нем, выявлены особенности их фракционного и углеводородного составов.

Ключевые слова: Бавлинское месторождение, доманиковые отложения, породы коллекторов, органическое вещество

DOI: 10.31857/S0028242120030065

Бавлинское месторождение является одним из крупнейших в Республике Татарстан (РТ, Россия) и считается полигоном для опробования и совершенствования новых подходов к разработке [1], в том числе и в области разработки доманиковых отложений. Доманиковые отложения, распространенные повсеместно от саргаевтурнейского ского горизонта до яруса включительно, не являются абсолютным аналогом успешно разрабатываемых в настоящее время сланцевых отложений Северной Америки, что предопределяет поиск новых путей вовлечения в разработку рассматриваемых доманиковых отложений РТ. Несмотря на сложность освоения этой категории трудноизвлекаемых запасов, большая часть которых представлена низкопроницаемыми карбонатными резервуарами, усугубляющуюся присутствием глинистого и кремнистого веществ в пустотном пространстве, а также высокой степенью литологической неоднородности [2, 3], необходимым условием успешного освоения подобных резервуаров является изучение особенностей состава как добываемых из них углеводородных флюидов, так и вмещаемого в породах органического вещества. И в этой области за последние 10 лет достигнут большой прогресс. Изучены состав и уровень катагенетической зрелости органического вещества (OB) отложений доманикового типа различных регионов России [4–6], углеводородный состав битумоидов [7–9], механизмы преобразования OB при различных видах термического воздействия [10–12]. Для исследования химического состава OB породы задействованы такие современные методы анализа как хроматография [11], хромато-масс-спектрометрия [5], ЯМР- [5] и ИК- спектроскопии [13].

Несмотря на то, что основным промышленным объектом Бавлинского месторождения является пласт Д1 (пашийский горизонт), сложенный песчано-алевритовыми породами, в разрезе палеозоя этого месторождения нефтепроявления различной интенсивности установлены по целому ряду горизонтов терригенного и карбонатного девона и карбона, в том числе и относящихся к доманикоидной формации.

ГАНЕЕВА и др.

аолица 1. Ларактеристика кернового материала по разрезу палеозоя на равлинском месторождении						
№ п/п	Горизонт	Глубина отбора, м	Характеристика минерального состава (по данным термического анализа)			
1	Алексинский	1130.0–1134.5; м. вз. 1.3–1.4				
2		1134.5–1140.0; м. вз. 0.6–0.7	$CaCO_3 (40\%);$			
3		1134.5—1140.0; м. вз. 4.5—4.6	$(Camg)CO_3(30\%)$			
4	Бобриковский	1216.0-1224.0; м. вз. 1.3-1.4				
5		1216.0–1224.0; м. вз. 2.5–2.6	Кварцевый песчаник с примесью карбо-			
6		1216.0–1224.0; м. вз. 4.9–5.0	натов (доломита 1.5%, кальцита 0.9%)			
7	Турнейский	1179.0–1184.0; м. вз. 0.8–0.9				
8		1179.0–1184.0; м. вз. 4.1–4.2	CaCO ₃ (70%)			
9		1184.0–1189.0; м. вз. 3.8–3.9				
10	Заволжский	1413.0—1419.0; м. вз. 0.8—0.9				
11		1423.0–1419.0; м. вз. 5.1–5.2	CaCO ₃ (70–78%)			
12		1419.0—1429.0; м. вз. 7.0—7.1				
13	Данково-лебедянский	1592.5—1599.8; м. вз. 0.8—0.9				
14		1592.5–1599.8; м. вз. 3.5–3.6	CaCO ₃ (74%)			
15		1599.8–1607.5; м. вз. 3.65–3.75				
16	Пашийский	1850.5–1860.5; м. вз. 1.1–1.2				
17		1850.5—1860.5; м. вз. 7.5—7.6	Кварцевый песчаник			
18		1805.5—1860.5; м. вз. 9.8—9.9				

Таблица 1. Характеристика кернового материала по разрезу палеозоя на Бавлинском месторождении

Цель данной работы — изучение особенностей химического состава OB доманиковых отложений в сравнении с остаточной нефтью из разновозрастных пород-коллекторов Бавлинского месторождения.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Объекты исследования. 18 образцов кернового материала (по три пробы из каждого горизонта), отобранного из отложений карбона (алексинский, бобриковский, турнейский и заволжский горизонты) и девона (данково-лебедянский и пашийский горизонты) Бавлинского месторождения (табл. 1).

Методы исследования. Содержание OB в породе и его фракционный состав определяли с использованием метода дифференциальной сканирующей калориметрии (ДСК), совмещенной с термогравиметрией, NETZSCHSTA 449 F3 Jupiter (далее метод TA). Измерения проводили в температурном интервале 20–1000°С, в воздушной среде, скорость нагрева 10°С/мин. Использовались алюминиевые ячейки, масса навески 20 мг, ячейка сравнения оставалась пустой. Каждый эксперимент выполняли дважды и результаты, представленные в табл. 2, представляют собой среднее значение двух измерений. Содержание OB определяли по суммарной потере массы в температурных интервалах 20–400 и 400–650°С, сопровождающейся экзотермическими эффектами на кривой ДСК, а показатель фракционного состава F рассчитывали как соотношение потерь массы в этих же температурных интервалах [14].

Экстракты OB из кернового материала были получены последовательной экстракцией породы хлороформом и спиртобензольной смесью с последующим упариванием растворителей.

Компонентный состав экстрактов ОВ определяли по стандартной методике. Осаждение асфальтенов проводили 40-кратным избытком *н*-гептана. Разделение деасфальтизата на масла и смолы проводили методом жидкостно-адсорбционной колоночной хроматографии на силикагеле марки АСК с последовательным элюированием смесью растворителей: *н*-гептан + четыреххлористый углерод (3:1) (элюат—масла); бензол (элюат—бензольные смолы); изопропиловый спирт + бензол (1:1) (элюат—спирто-бензольные смолы).

Структурно-групповой состав экстрактов определяли методом ИК-спектроскопии. Спектры снимали на спектрометре Tensor 27 "Bruker" (Германия) в диапазоне 4000–400 см⁻¹ с разрешением 4 см⁻¹. Образец был выполнен в виде тонкой пленки между двумя плоскопараллельными пластинками из КВг. Спектры обработаны в програм-

	Горизонт	Исходный керновый материал			Экстракт		Керновый материал после экстракции ОВ	
№ п/п		потеря массы, % в температурном интервале		F _{OB}	Выход, %	F	Содержание	F _{HOB}
		20-400°C	400–650°C				1100, 70	
1	Алексинский	1.5	1.6	1.1	2.2	0.8	1.2	0.5
2		2.0	2.2	0.8	3.3	0.8	1.1	1.2
3		1.4	1.8	0.7	2.6	1.0	1.1	0.8
4	Бобриковский	1.4	1.7	0.6	1.6	0.7	1.8	0.5
5		0.8	1.1	0.7	1.2	0.5	1.0	0.7
6		0.7	0.7	1.3	1.1	0.45	0.7	0.4
7	Турнейский	1.0	1.0	1.0	0.9	1.0	1.2	1.4
8		1.2	0.9	1.7	1.3	0.8	0.5	1.5
9		0.8	0.7	1.6	0.5	0.6	0.9	0.8
10	Заволжский	0.3	0.7	0.5	0.1	7.5	0.9	0.5
11		0.3	0.6	0.5	0.75	0.9	0.3	2.0
12		0.6	0.7	0.4	0.6	0.7	0.9	3.5
13	Данково-лебедянский	0.3	0.5	0.6	0.01	1.1	0.5	0.3
14		0.1	0.5	0.2	0.07	1.4	0.9	0.3
15		0.5	0.7	0.5	0.03	1.1	0.6	0.5
16	Пашийский	0.5	0.5	1.0	0.5	1.4	0.4	_
17		0.6	0.5	1.2	1.2	1.3	0.5	0.7
18		0.7	0.5	1.4	1.5	1.0	0.6	1.0

Таблица 2. Данные термического анализа кернового материала до и после экстракции ОВ, а также экстракта ОВ

ме OPUS7/2012 с использованием общей базовой линии для группы полос в области 2000–400 см⁻¹.

ЭПР-спектры асфальтенов снимали на спектрометре ЭПР SE/X-2544 фирмы "RadioPAN". Фиксировали сигналы двух типов — одиночный симметричный сигнал свободных стабильных радикалов (R[•]) с g-фактором = 2.003 и мультикомпонентную сверхтонкую структуру, соответствующую ионам VO²⁺, входящим в структуру ванадилпорфириновых комплексов. Полученные значения интенсивностей соответствующих линий в ЭПР спектре (I_R. и I_{VO}²⁺) нормировали на массу использованной навески, получая значения содержания в относительных единицах.

Углеводородный состав масел изучен методом газожидкостной хроматографии (ГЖХ) с использованием хроматографа Кристалл-2000М фирмы Хроматек с пламенно-ионизационным детектором, капиллярная колонка DB-1 длиной 15 м, внутренний диаметр 0.32 мм, в режиме линейного программирования температуры от 150 до 320°С со скоростью 20°С/мин. Объем пробы –1 мл, разведение – 1 : 20 в CCl₄.

НЕФТЕХИМИЯ том 60 № 3 2020

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Образцы кернового материала, отобранные из разновозрастных горизонтов отложений карбона и девона Бавлинского месторождения. исследованы методом ТА. Ранее было показано, что метод ТА позволяет определить содержание в породе ОВ и его фракционный состав F_{OB} [14], а также охарактеризовать минеральный состав породы [15]. Следует отметить, что ОВ в породах-коллекторах (алексинский, бобриковский, турнейский и пашийский горизонты) будет представлять собой нефтяные компоненты, обратимо (можно извлечь экстракцией растворителями) и необратимо (нельзя извлечь) адсорбированные на активных центрах породы. ОВ в породах доманиковых отложений (заволжский и данково-лебедянские горизонты) состоит из битумоида (растворимой в используемых растворителях части ОВ) и керогена (нерастворимой в используемых растворителях части ОВ). В исследуемых образцах определено суммарное содержание ОВ, т.е., растворимая и нерастворимая в используемых растворителях части ОВ, и оценен его фракционный состав F_{OB} (табл. 2). По потерям массы в температурных интервалах 700-800 и 800-900°С в образцах оценено содержание доломита и кальцита соответственно, по небольшому эндотермическому эффекту на кривой ДСК при 573°С, – присутствие кварцевого песчаника. В табл. 1 приведен минеральный состав породы, охарактеризованный по данным ТА.

Очевидно (табл. 2), что породы-коллекторы карбоновых отложений характеризуются преимущественно повышенным содержанием ОВ (от 1.3 до 4.1%) с достаточно разнообразным фракционным составом – от тяжелого (F_{OB} = 0.6) до легкого $(F_{OB} = 1.7)$, а также разнообразным минеральным составом. В образцах алексинского и турнейского горизонтов доминируют карбонатные минералы, в образцах бобриковского горизонта – кварцевый песчаник с примесью карбонатного материала (табл. 1). Породы-коллекторы девонских отложений характеризуются достаточно низким содержанием ОВ – не превышает 1.5%, состав которого обогащен легкими и средними фракциями ($F_{OB} > 1$). Минеральный состав представлен преимущественно кварцевым песчаником. Что касается образцов из заволжского и данково-лебедянского горизонтов, приписываемых доманиковым отложениям, то содержание в них ОВ составляет от 0.6 до 2.0%, а его фракционный состав является достаточно тяжелым (F_{OB} = 0.4-0.6) по сравнению с ОВ пород-коллекторов карбоновых и девонских отложений. В минеральном составе преобладает кальцит. По низкому содержанию ОВ отложения заволжского и данково-лебедянского горизонтов можно отнести к доманикоидам [16].

Из образцов кернового материала выделены экстракты ОВ. Порода после экстракции из него растворимого органического вещества вновь была исследована методом ТА для определения содержания в ней нерастворимого органического вещества (HOB) и его фракционного состава F_{HOB} (табл. 2). Как следует из табл. 2, породы из карбоновых пород-коллекторов по сравнению с образцами пород-коллекторов из девонских отложений выделяются повышенным содержанием НОВ от 0.5 до 1.8% (в девонских отложениях – от 0.4 до 0.6%) с достаточно разнообразным фракционным составом — F_{HOB} меняется от 0.4 до 1.5 (в девонских отложениях F_{HOB} меняется от 0.7 до 1.0). Что касается образцов породы доманиковых отложений, то содержание в них НОВ (керогена) составляет от 0.3 до 0.9%. Фракционный состав керогена данково-лебедянского горизонта достаточно тяжелый (F_{HOB} = 0.3), а в составе керогена двух образцов заволжского горизонта значительно преобладают легкие и средние фракции – F_{нов} достигает 2.0 и даже 3.5, что свидетельствует о том, что кероген обогащен термически неустойчивыми структурами (например, в значительных количествах присутствуют мостиковые фрагменты или алкильные заместители) или легкими углеводородами (УВ), сохранившимися в порах, недоступных для растворителя [17, с. 139].

При пересчете содержания НОВ на содержание всего ОВ в исходной породе установлено, что доля НОВ увеличивается в ряду: девонские отложения (38–46%) – карбоновые отложения (33–54%) – доманиковые отложения (>60%).

Исследование породы доманиковых отложений после экстракции битумоидов позволяет охарактеризовать оставшийся в породе кероген с оценкой, в первом приближении, его нефтегенерационного потенциала по показателю фракционного состава F_{нов}. Как уже говорилось выше, образцы породы из данково-лебедянского горизонта содержат мало керогена, потенциал выделения легких УВ из которого также низок (F_{нов} = = 0.3 - 0.5). А вот в породе заволжского горизонта можно выделить образцы №№ 11 и 12 для которых нефтегенерационный потенциал является достаточно высоким ($F_{HOB} = 2.0$ и 3.5), что позволяет отнести интервалы залегания этих образцов породы к перспективным для проведения технологических процессов выделения легких компонентов ОВ путем применения, например, кислотного ГРП или внутрипластового преобразования ОВ с целью увеличения содержания в нем подвижных компонентов.

Растворимое OB (экстракты) изучены методами TA, ИК спектроскопии, колоночной хроматографии, определен углеводородный состав по данным ГЖХ, асфальтены исследованы методом ЭПР-спектроскопии.

В породах-коллекторах растворимое ОВ представляет собой остаточную подвижную нефть, а в образцах породы из доманиковых отложений – битумоид. Выход экстракта, а также его фракционный состав, F, определенный методом ТА [18], представлен в Табл. 2. Более четкая картина по изменению содержания растворимого ОВ в породе разновозрастных отложений получена при пересчете на общее содержание ОВ в породе. Средние значения этих параметров по разрезу палеозойских отложений на Бавлинском месторождении РТ приведены в табл. 3.

Самый высокий выход экстракта характерен для пород-коллекторов девонских отложений — 91.7% от общего содержания OB в породе, при этом экстракт характеризуется достаточно легким фракционным составом, F > 1. Выход экстракта из пород-коллекторов карбоновых отложений значительно ниже и составляет 52.9—69.1% от общего содержания OB в породе. Можно заметить, что фракционный состав этого экстракта является более тяжелым, показатель F не превышает 1.0 и его доля в OB уменьшается вниз по разрезу. Битумоиды в доманикоидах заволжского горизонта в среднем составляют 29.4% от вмещаемого OB. Из всех образцов породы заволжского гори-

№ п/п	Возраст отложений, горизонт	Содержание растворимого ОВ в ОВ породы, %	F
1-3	Карбон алексинский,	69.2	0.9
4–6	бобриковский,	59.1	0.6
7–9	турнейский	52.9	0.8
10-12	Доманик заволжский	29.4	0.7-7.5
13-15	данково-лебедянский	5.2	1.2
16-18	Девон пашийский	91.7	1.2

Таблица 3. Средние значения растворимого OB относительно вмещаемого OB породы и показатели его фракционного состава по разрезу палеозоя на Бавлинском месторождении РТ

зонта выделяется один – самый верхний по интервалу отбора керна, высоким значением показателя F = 7.5, что характерно для образцов с повышенным содержанием легких фракций. Два остальных образца заволжского горизонта по фракционному составу схожи с экстрактами пород-коллекторов карбоновых отложений. С учетом фракционного состава НОВ (табл. 2) можно предположить, что из верхнего образца этого горизонта удалось экстрагировать самые легкие УВ (НОВ в породе этого образца имеет тяжелый фракционный состав), а из двух других образцов этого горизонта экстракция легких УВ, по-видимому, затруднена (для этих образцов НОВ имеет легкий фракционный состав). Скорее всего, легкие УВ в них изолированы в труднодоступных для растворителя порах и могут представлять прото-(микро-) нефть [19]. Наиболее низким выходом экстракта характеризуется керновый материал из данково-лебедянского горизонта, всего 5.2% от общего содержания ОВ. При этом этот экстракт имеет сравнительно легкий фракционный состав,

сравнимый с фракционным составом экстрактов пород-коллекторов девонских отложений.

По данным ИК-спектроскопии экстракты практически идентичны в области высоких частот 4000-2000 см-1, в области низких частот (2000-500 см⁻¹) выявлены существенные отличия образцов доманиковых отложений (рис. 1). В экстрактах из доманиковых отложений (обр. 10 и 13 на рис. 1) наряду с общими, присущими всем экстрактам, группами полос в области частот 1736, 1603, 1461, 1378, 1022, 874, 802 см⁻¹, соответствующих валентным колебаниям карбонильной С=О-группы, скелетным колебаниям ароматических С=С-связей, антисимметричным и симметричным деформационным колебаниям метильной группы, валентным колебаниям сульфоксиднойгруппы и неплоским деформационным колебаниям С-Н ароматического кольца, зафиксированы полосы при частотах 1261 и 1095 см⁻¹, которые могут быть приписаны асимметричным

Рис. 1. ИК-спектры экстрактов: *1* – данково-лебедянский горизонт (обр. 13); *2* – бобриковский горизонт (обр. 4); *3* – пашийский горизонт (обр. 16); *4* – заволжский горизонт (обр. 10).

НЕФТЕХИМИЯ том 60 № 3 2020

	Образец (горизонт)	Содержание компонентов, мас. %					
№ п/п		масла	бензольные смолы	спирто-бензольные смолы	асфальтены		
1	Алексинский г-т	59.6	15.4	13.7	11.3		
2		64.1	16.7	9.7	9.5		
3		60.1	18.2	10.6	11.1		
4	Бобриковский г-т	72.2	9.6	6.7	11.5		
5		57.8	8.3	5.0	28.9		
6		61.8	16.0	9.1	13.1		
7	Турнейский г-т	71.8	10.8	8.1	9.3		
8		68.0	16.8	7.6	7.6		
9		42.0	16.0	22.6	19.4		
10	Заволжский г-т	76.3	7.0	13.3	3.4		
11		59.2	17.7	12.2	10.9		
12		49.1	9.3	27.8	13.8		
13	Данково-Лебедянский г-т						
14		35.8	13.4	32.5	18.3		
15							
16	Пашийский г-т	77.4	9.1	11.1	2.4		
17		66.9	4.9	21.2	7.0		
18		70.4	11.4	11.1	7.1		

Таблица 4. Компонентный состав экстрактов ОВ из образцов кернового материала Бавлинского месторождения

и симметричным колебаниям эфирной группы С-О-С [20].

Сравнительный анализ компонентного состава экстрактов (табл. 4) показал, что остаточная нефть девонских отложений характеризуются повышенным содержанием масел и пониженным содержанием бензольных смол и асфальтенов по сравнению с остаточной нефтью карбоновых отложений, как это уже было показано ранее [21] при сравнительном анализе состава остаточных нефтей соответствующих отложений Ромашкинского месторождения. Из доманикоидов наименьшим содержанием масел и высоким содержанием спирто-бензольных смол и асфальтенов выделяются битумоиды данково-лебедянского горизонта и наиболее близкого к нему образца заволжского горизонта (обр. 12). Обр. 10 заволжского горизонта, напротив, характеризуется высоким содержанием масел, низким содержанием бензольных смол и асфальтенов, что сравнимо с составом остаточной нефти обр. 16 (из девонских отложений).

Данные ГЖХ подтвердили предположение о повышенном содержании в верхнем образце породы заволжского горизонта легких УВ. В отличие от других образцов, в маслах которых присутствуют *н*-алканы с числом атомов углерода C11–C35 с максимумом при C16–C18 (рис. 2), в маслах обр. 10 преобладают *н*-алканы от C11 до С23 с максимумом при C14–C15, а *н*-алканы C24–C30 присутствуют в следовых количествах. На хроматограммах масел практически всех образцов прописывается широкий нафтеновый фон. Во всех образцах зафиксировано присутствие изопреноидных алканов – до фитана включительно, в маслах из доманиковых отложений фитан доминирует (рис. 2).

Асфальтены, выделенные из экстрактов, исследованы методом ЭПР-спектроскопии (табл. 5). Метод ЭПР-спектроскопии позволяет определить в асфальтенах содержание парамагнитных частиц - содержание углеродного радикала и ванадил ионов. Считается, что содержание углеродного радикала характеризует степень ароматичности асфальтенов [20], а содержание ванадил ионов напрямую связано с содержанием ванадия в нефти и зависит от возраста и условий формирования нефтяной залежи [22]. Информативным является также параметр нефтяной индивидуальности $L = lg(I_R, /I_{VO}^{2+})$, который характеризует возраст отложения [22]. Ранее [23], при исследовании асфальтенов добываемых нефтей разновозрастных отложений Бавлинского месторождения показано, что асфальтены из карбоновых отложений в отличие от асфальтенов из отложений девона характеризуются повышенным содержанием ванадил ионов (в среднем, 15.5 против 6.7 отн. ед.)

Рис. 2. Хроматограммы масел экстрактов разновозрастных отложений Бавлинского месторождения: 1 – бобриковский горизонт карбоновых отложений (обр. 5); 2 – пашийский горизонт девонских отложений (обр. 17); 3 – заволжский горизонт (обр. 10); 4 – заволжский горизонт (обр. 11); 5 – данково-лебедянский горизонт (обр. 13–15).

НЕФТЕХИМИЯ том 60 № 3 2020

		*		
№ п/п	Образец	I _R .	$I_{\rm VO}^{2+}$	$lg(I_{R}./I_{VO}^{2+})$
1	Алексинский г-т	1192.7	147.0	1.0
2		1136.6	134.0	1.0
3		1140.0	140.3	1.0
4	Бобриковский г-т	1123.2	150.2	0.9
5		1691.6	162.3	1.0
6		109.2	74.6	0.1
7	Турнейский г-т	1415.7	139.7	1.6
8		1588.9	164.0	1.0
9		1130.8	168.7	0.9
10	Заволжский г-т	239.6	41.5	0.8
11		976.9	243.4	0.6
12		932.2	149.1	0.8
13	Данково-Лебедянский г-т			
14		308.8	48.8	0.8
15				
16	Пашийский г-т	1527.7	83.5	1.3
17		1234.0	82.9	1.2
18		2087.6	87.9	1.4

Таблица 5. ЭПР-данные асфальтенов из экстрактов органического вещества (в отн. ед.)

и пониженным содержанием углеродного радикала (в среднем, 136.8 против 208.7 отн. ед.).

Наглядно продемонстрированы различия значений показателя нефтяной индивидуальности для нефтей, добываемых из разновозрастных отложений: для нефти, добываемой из карбоновых отложений L = 0.9-1.0, а из девонских отложений L = 1.3-1.7.

Как следует из табл. 5, асфальтены остаточных нефтей характеризуются повышенным содержанием парамагнитных частиц по сравнению с асфальтенами добываемых нефтей, однако при этом закономерности соотношения между содержанием парамагнитных частиц разного типа сохраняются: в асфальтенах из остаточной нефти карбоновых отложений понижено содержание углеродных радикалов и повышено содержание ванадил ионов по сравнению с асфальтенами из остаточной нефти девонских отложений.

Исключение составляет обр. 9, где пониженное содержание парамагнитных центров, скорее всего, обусловлено наличием механических примесей в асфальтенах (возможно, тонкодисперсных частиц кальцита). Что касается асфальтенов битумоидов, то можно заметить, что по содержанию парамагнитных частиц они очень неоднородны, что тоже может быть связано с присутствием в них тонкодисперсных частиц карбонатной породы. Показатели нефтяной индивидуальности для остаточных нефтей карбоновых и девонских отложений практически не отличаются от показателей для добываемых нефтей:для остаточной нефти карбоновых отложений этот показатель составляет 0.9-1.0 (исключение составляет обр. 6), а для остаточной нефти девонских отложений несколько выше -1.2-1.4. Подобная картина свидетельствует о том, что показатель нефтяной индивидуальности может являться надежным параметром определения возраста отложения нефтяной залежи. Как следует из табл. 5, показатель нефтяной индивидуальности битумоидов отличается от остаточных нефтей, что также может говорить в пользу надежности этого параметра при идентификации возраста отложения.

Таким образом, в ходе проведенного исследования кернового материала, добытого по разрезу многопластового Бавлинского месторождения РТ (Россия), и экстрактов из него выявлена общая тенденция снижения содержания вмещаемого ОВ и снижения в нем доли тяжелых фракций вниз по разрезу (от карбона к девону). При этом в составе ОВ увеличивается доля растворимого ОВ и снижается доля необратимо адсорбированных нефтяных компонентов, в остаточной нефти увеличивается доля масел и снижается содержание асфальтенов и бензольных смол, в асфальтенах увеличивается доля конденсированных ароматических структур и снижается содержание ванадилпорфириновых комплексов (растет показатель нефтяной индивидуальности L). Показано, что заволжский и данково-лебедянский горизонты характеризуются крайне низким содержанием ОВ с весьма неоднородным составом и относятся, скорее всего, к доманикоидам. В отличие от остаточных нефтей, в битумоидах доманиковых отложений зафиксировано присутствие сложных или циклических эфиров, что может свидетельствовать о низкой степени зрелости ОВ [17, с. 139-142]. В заволжском горизонте удалось зафиксировать присутствие легких УВ, которые иногда удается выделить в составе битумоида, а иногда они остаются "запечатанными" в породе, и об их присутствии можно только догадываться по аномально высоким значениям показателя фракционного состава НОВ на породе. Присутствие низкомолекулярных УВ и эфирных фрагментов, а также низкую степень конденсированности ароматических структур в асфальтенах необходимо принимать во внимание при оценке нефтегенерационного потенциала органического вещества доманиковых отложений.

ФИНАНСИРОВАНИЕ РАБОТЫ

Исследования выполнены в рамках государственного задания ФИЦ КазНЦ.

БЛАГОДАРНОСТИ

Авторы благодарят ЦКП-САЦ ФИЦ КазНЦ РАН за проведенные исследования состава экстрактов.

конфликт интересов

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

СВЕДЕНИЯ ОБ АВТОРАХ

Ганеева Юлия Муратовна, д. х. н., ORCID – https://orcid.org/0000-0002-0940-9377

Барская Екатерина Евгеньевна, к. х. н., ORCID – https://orcid.org/0000-0002-8476-4782

Юсупова Татьяна Николаевна, д. х. н., профессор

Охотникова Екатерина Сергеевна, к. х. н., ORCID – https://orcid.org/0000-0003-3309-3453

Сотников Олег Сергеевич, к. т. н.

Ремеев Марат Марселевич, Заведующий сектором физико-гидродинамических исследований керна отдела ИСКиУ

Хисамов Раис Салихович, д. г.-м.-н., профессор.

СПИСОК ЛИТЕРАТУРЫ

- Яртиев А.Ф., Саетгараев Р.Х., Подавалов В.Б., Морозов П.Г. // Материалы научно-практической конференции "Горизонтальные скважины и ГРП в повышении эффективности разработки нефтяных месторождений". Казань: Изд-во "Слово", 2017. 320 с.
- Хисамов Р.С., Базаревская В.Г., Тарасова Т.И., Бадуртдинова Н.А., Михайлова О.В. // Материалы Международной научно-практической конференции "Особенности разведки и разработки место-

НЕФТЕХИМИЯ том 60 № 3 2020

рождений нетрадиционных углеводородов". Казань: Изд-во "Ихлас", 2015. 400 с. С. 318.

- 3. *Муслимов Р.Х., Плотникова И.Н.* // Нефтяное хозяйство. 2014. № 1. С. 12.
- 4. Дахнова М.В., Можегова С.В., Назарова Е.С., Пайзанская И.Л. // Геология нефти и газа. 2015. № 4. С. 55.
- 5. Бушнев Д.А., Бурдельная Н.С., Шадрин А.Н., Деревесникова А.А. // Вестник Института геологии Коми научного центра УрО РАН. 2017. № 7. С. 12.
- 6. Лян С.П., Барков С.Л. // Геология, геофизика и разработка нефтяных и газовых месторождений. 2015. № 10. С. 21.
- 7. *Бушнев Д.А.* // Нефтехимия. 2002. Т. 42. № 5. С. 325 [Petrol Chemistry. 2002. V. 42. № 5. Р. 291].
- 8. Деревесникова А.А., Бушнев Д.А., Бурдельная Н.С. // Вестник Института геологии Коми НЦ УрО РАН. 2019. № 5. С. 3.
- 9. Фадеева Н.П., Калмыков Г.А., Балушкина Н.С. и др. // Вестник Московского Университета. 2015. Сер. 4. Геология. № 5. С. 44.
- Kayukova G.P., Mikhailova A.N., Kosachev I.P., Eskin A.A., Morozov V.I. // Petrol. Chemistry. 2019. V. 59. № 1. P. 24.
- 11. *Киямова А.М., Каюкова Г.П., Романов Г.В.* // Нефтехимия. 2011. Т. 51. № 4. С. 243 [Petrol Chemistry. 2011. V. 51. № 4. Р. 231].
- 12. *Бушнев Д.А., Бурдельная Н.С. //* Нефтехимия. 2013. Т. 53. № 3. С. 163 [Petrol. Chemistry. 2013. V. 53. № 3. Р. 145].
- 13. Михайлова А.Н., Габдрахманов Д.Т., Каюкова Г.П., Бабаев В.М., Вандюкова И.И. // Вестник технологического университета. 2017. Т. 20. № 15. С. 45.
- Yusupova T.N., Petrova L.M., Mukhametshin R.Z., Romanov G.V., Foss T.R., Ganeeva Yu.M. // J. Therm. Anal. Calorim. 1999. V. 55. P. 99.
- Labus M. // J. Therm. Anal. Calorim. 2017. V. 129. P. 965.
- 16. Зайдельсон М.И., Вайнбаум С.Я., Копрова Н.А., Семенова Е.Г., Суровиков Е.Я., Голодовкина Г.Е., Зинина Е.А., Цлав Л.З., Аширов К.Б., Беллерова В.А. Формирование и нефтегазоносность доманикоидных формаций. М.: Наука, 1990. 79 с.
- 17. Тиссо Б., Вельте Д. Образование и распространение нефти. М.: Мир, 1981. 504с.
- Юсупова Т.Н., Петрова Л.М., Ганеева Ю.М., Лифанова Е.В., Романов Г.В. Нефтехимия. 1999. Т. 39. № 4. С. 254.
- 19. *Панарин А.Т.* // Георесурсы. 2016. № 18(4). Ч. 2. С. 325.
- 20. Сергиенко С.Р., Таимова Б.А., Талалаев В.И. Высокомолекулярные неуглеводородные соединения нефти. Смолы и асфальтены. М.: Наука, 1979. 269 с.
- 21. Петрова Л.М. Формирование состава остаточных нефтей. Казань: Фэн., 2008. 204 с.
- 22. Андреева Л.Н., Березовская М.В., Цыро Л.В. Лоос Д.А., Огородников В.Д., Ростовцев В.Н., Унгер Ф.Г. // III Международная конференция по химии нефти. Т. 1. Томск: РАСКО, 1997. С. 92.
- 23. Barskaya E.E., Ganeeva Y.M., Yusupova T.N., Okhotnikova E.S., Foss L.E., Sotnikov O.S., Remeev M.M. // Petroleum Science and Technology. 2018. V. 36. № 23. P. 2011.