УДК 665.637:66.09

ТЕРМИЧЕСКИЕ ПРЕВРАЩЕНИЯ КОМПОНЕНТОВ НЕФТЯНОГО ОСТАТКА В ПРИСУТСТВИИ ФЕРРОСФЕР ЗОЛ ТЭЦ И ПОДСОЛНЕЧНОГО МАСЛА

© 2020 г. М. А. Копытов^{1, *}, С. В. Бояр¹, М. В. Можайская¹

¹Институт химии нефти СО РАН, Томск, 634055 Россия *E-mail: kma@ipc.tsc.ru Поступила в редакцию 14.10.2019 г. После доработки 14.11.2019 г. Принята к публикации 18.11.2019 г.

Исследованы термические превращения компонентов нефтяного остатка (температура кипения выше 350°С) тяжелой высоко парафинистой нефти Зуунбаян (Монголия) в присутствии ферросфер зол ТЭЦ и подсолнечного масла. Использование добавок позволило получить дополнительное количества дистиллятных фракций (НК–360°С). Изучены физико-химические характеристики и состав получаемых продуктов. Проведено сравнение структурно-групповых характеристик смолистоасфальтеновых компонентов исходного нефтяного остатка и продуктов его термической конверсии в присутствии подсолнечного масла и ферросфер зол ТЭЦ. Присутствие подсолнечного масла и ферросфер приводит к снижению молекулярной массы молекул смол и асфальтенов, выделенных из продуктов термолиза. В молекулах смолисто-асфальтеновых компонентов снижается число нафтеновых и парафиновых атомов углерода, при этом доля ароматических атомов заметно возрастает.

Ключевые слова: нефтяной остаток, растительное масло, ферросферы, термолиз, каталитический крекинг, смолисто-асфальтеновые компоненты, структурно-групповые характеристики смол и асфальтенов

DOI: 10.31857/S0028242120030107

Постоянный рост потребления углеводородов (УВ), вынуждает к использованию альтернативных источников сырья и поиску способов увеличения глубины переработки нефтяного сырья. Одним из способов решения проблемы является вовлечение в переработку возобновляемого сырья, например растительного масла.

Интерес к использованию маслел в качестве альтернативного источника углеводородного сырья неуклонно растет. Однако, большинство работ [1–13] рассматривают проблемы переэтерификации растительных масел в различных условиях для получения метиловых или этиловых эфиров жирных кислот – основного компонента биодизеля.

Актуальным является совместная переработка нефтяных остатков и растительных масел. Авторами [14—17] было показано, что совместная термическая переработка растительных масел и нефтяных остатков позволяет снизить выход коксоподобных продуктов и увеличить выход топливных фракций. В публикациях высказывается предположение, что растительные масла могут влиять на направленность превращения смолисто-асфальтеновых компонентов [14, 15]. Однако в данных работах не указывается направленность и особенности термических превращений смолисто-асфальтеновых компонентов, содержание которых может достигать от 20 до 50 мас. % в тяжелом нефтяном сырье. Данные компоненты во многом определяют реакционную способность и физикохимические свойства тяжелого сырья, а так же препятствуют использованию каталитических процессов.

В нашей работе [18] был изучен состав продуктов совместного термолиза нефтяного остатка и подсолнечного масла. Непредельные соединения подсолнечного масла, например триглицериды олеиновой и линолевой жирных кислот, могут препятствовать реакции рекомбинации высокомолекулярных радикалов, которые образуются при деструкции смолисто-асфальтеновых компонентов в процессе крекинга тяжелого нефтяного сырья, тем самым замедляя образование коксоподобных продуктов [14, 15, 18].

Ранее нами была показана возможность использования каталитических добавок на основе магнитных ферросфер зол ТЭЦ, которые более

ТЕРМИЧЕСКИЕ ПРЕВРАЩЕНИЯ КОМПОНЕНТОВ

Показатели	Значения
Плотность, кг/м ³	895.2
Кинематическая вязкость при 50°С, мм ² /с	Нет свободного истечения
Температура застывания, °С	63.0
Коксуемость по Конрадсону, мас. %	6.35
Средняя молекулярная масса, а. е. м.	550
Элементный состав, мас. %:	
С	86.91
Н	11.12
S	0.10
Ν	0.72
0	1.15
H/C	1.52
Содержание, мас. %	
<i>– н</i> -алканов	26.40
– твердых парафинов	15.71
Компонентный состав, мас. %:	
— масел	74.1
— смол	25.5
— асфальтенов	0.4
Начало кипения, °С	>350

Таблица 1. Физико-химические характеристики нефтяного остатка [18]

чем на 85 мас. % состоят из оксидов железа, для переработки нефтяных остатков [19–21]. В получаемых продуктах увеличивалось содержание светлых фракций и снижалось содержание смолисто-асфальтеновых компонентов.

Соединения железа могут проявлять активность не только в отношении нефтяного сырья [22–27], но и в отношении растительных масел [24, 28–30].

Цель работы — исследование совместного влияния добавок подсолнечного масла и ферросфер зол ТЭЦ на состав продуктов термолиза нефтяного остатка и на структурно-групповые характеристики смолисто-асфальтеновых компонентов.

В данной статье впервые представлено исследование совместного влияния добавок подсолнечного масла и ферросфер зол ТЭЦ на выход и структурно-групповые характеристики смолисто-асфальтеновых компонентов продуктов термолиза нефтяного остатка тяжелой нефти.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве объектов исследования были выбраны: остаток тяжелой нефти месторождения Зуунбаян (Монголия) и подсолнечное масло. Определение их физико-химических характеристик выполнено по стандартным и опубликован-

НЕФТЕХИМИЯ том 60 № 3 2020

ным в литературе методикам, данные представлены в табл. 1 и 2.

Нефтяной остаток (НО) был получен в процессе атмосферно-вакуумного фракционирования (отобраны фракции, выкипающие до 350°С), он характеризуется высоким содержание смол (25.5 мас. %), *н*-алканов (26.4 мас. %) и низким содержании асфальтенов и серы [18]. Данное сырье имеет высокий показатель коксуемости по Конрадсону – 6.35 мас. % (табл. 1), что осложняет его переработку с использованием традиционных каталитических систем. Возможным способом использования подобного сырья может являться его термическая переработка в присутствии "крекинг-добавок" [18].

В качестве "крекинг-добавки", как и в предыдущей работе [18], использовали подсолнечное масло в количестве до 8.0 мас. % на реакционную смесь. Характеристики подсолнечного масла представлены в табл. 2 [18].

В качестве каталитической добавки использовались ферросферы (ФС), выделенные из летучей золы от пылевидного сжигания бурого угля марки Б2 Канско-Ачинского бассейна, описанные в работах [8–10]: фракция – 0.4 + 0.2 мм, насыпная плотность $\rho = 1.87$ г/см³, химический состав (мас. %) – 85.20 Fe₂O₃, 8.69 CaO, 4.00 SiO₂, 1.90 Al₂O₃, осталь-

Показатели	Значения
Плотность при 20°С, кг/м ³	920.7
Кинематическая вязкость при 20°С, мм ² /с	63.68
Иодное число, г I ₂ /100 г	134.02
Кислотное число, мг КОН/г	0.79
Коксуемость по Конрадсону, мас. %	0.32
Зольность, мас. %	0.014
Элементный состав, мас. %:	
С	77.56
Н	10.70
Ν	0.49
0	11.25
S	0.01
Содержание жирных кислот, мас. %*	
пальмитиновая (С16:0)	6.0
стеариновая (С18:0)	4.4
олеиновая (С18:1)	12.3
линолевая (С18:2)	61.5
Общее содержание жирных кислот, мас. %	84.2

Таблица 2. Характеристики подсолнечного масла [18]

* В скобках дано соотношение числа атомов углерода к числу двойных связей в молекуле кислоты.

ное MgO, Na₂O, K₂O, TiO₂, SO₃. Удельная поверхность Φ C составляет 0.22 м²/г [20].

По данным рентгенофазового анализа (РФА) ферросферы серии S1 в исходном состоянии представлены ферритовой шпинелью (64.7%) с параметром a = 8.3959(2) Å и гематитом (10.1%) с параметрами a = 5.0340(5) Å, c = 13.748(1) Å), остальное составляют рентгеноаморфный остаток (23.8%) и кварц [31]. Значения параметров решеток железооксидных фаз близки к таковым для стехиометрических магнетита (a = 8.3960 Å) [32] и гематита (a = 5.0356 Å, c = 13.7489 Å) [33]. Перед крекингом ФС прокаливали на воздухе 2 ч при 800°С, как и в наших предыдущих работах, для перевода магнетита в гематит [20, 21, 31, 34]. После прокаливания фаза феррошпинели на ~90% окисляется до гематита [20, 21].

Крекинг образцов проводили в автоклаве объемом 12 см³, оснащенным карманом для термопары, краном высокого давления и манометром. В реактор загружали 6.5 г сырья, герметично закрывали и продували аргоном, эксперимент проводили при температуре 435°С, в течении 1 ч. Описание эксперимента по крекингу и анализу продуктов подробно приведено в наших предыдущих работах [18, 21, 34].

В работе представлены данные исследования продуктов термолиза исходного нефтяного остатка [18], а также исходного подсолнечного масла [18]. Полученные данные сравнены с характеристиками продуктов термолиза смесей: нефтяного остатка и ФС в соотношении 90.0/10.0 мас. % [35]; нефтяного остатка и подсолнечного масла в соотношении 92.0/8.0 мас. % [18]; подсолнечного масла и ФС в соотношении 90.0/10.0 мас. %; нефтяного остатка, подсолнечного масла и ФС в соотношении 82.8/7.2/10.0 мас. %.

Определение выхода дистиллятных фракций в продуктах термолиза проводили методом термогравиметрического анализа, как в наших предыдущих работах [19, 21, 36, 37].

Для смол и асфальтенов, выделенных из исходного мазута и продуктов термолиза, был проведен структурно-групповой анализ (СГА), в основе которого лежит методика, разработанная в ИХН СО РАН и основанная на совместном использовании результатов определения элементного состава, средних молярных масс и данных ПМР-спектроскопии [38–40].

Рис. 1. Состав продуктов термолиза в зависимости от состава сырьевой смеси: а – выход топливных фракций; б – выход твердых и газообразных продуктов; в – выход и состав жидких продуктов. НО – нефтяной остаток; ПМ – подсолнечное масло; ΦC – ферросферы зол ТЭЦ; Состав смеси: НО/ ΦC = 90.0 : 10.0 мас. %; НО/ПМ = 92.0/8.0 мас. %; ПМ/ ΦC = 90.0/10.0 мас. %; НО/ПМ/ ΦC = 82.8/7.2/10.0 мас. %.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Выход фракций НК-360°С в продуктах термолиза в расчете на исходное сырье представлен на рис. 1а. Сравниваются данные состава продуктов термолиза исходного нефтяного остатка [18, 35], подсолнечного масла [18], и смесь нефтяного остатка с подсолнечным маслом [18] без ФС и в присутствии ФС.

НЕФТЕХИМИЯ том 60 № 3 2020

Использование ФС при термолизе исходного подсолнечного масла приводит к увеличению выхода дистиллятных фракций с 32.5 до 44.5 мас. %. Выход увеличивается за счет фракций с температурами кипения 200–360°С, их доля возрастает в 1.8 раза по сравнению с крекингом без добавок ФС. Возможно, состав дизельных фракций пополняется продуктами декарбоксилирования олеиновой и линоленовой кислоты с длиной цепи С₁₇.

Добавка ФС при термолизе нефтяного остатка приводит к увеличению выхода бензиновых фракций с 1.0 до 3.3 мас. %, доля дизельных фракций остается фактически неизменной. Введение ФС при термолизе смеси ПМ и нефтяного остатка (рис. 1а), позволяет увеличить выход дистиллятных фракций с 52.6 до 60.3 мас. %, при этом более чем в 2.5 раза возрастает доля бензиновых фракций с 11.0 до 27.8 мас. %, но несколько снижается доля дизельных фракций с 41.6 до 32.5 мас. %. Увеличение выхода дистиллятных фракций указывает на то, что, присутствие ФС приводит к изменению направленности термических превращений, как компонентов ПМ, так и нефтяного остатка. Ввеление ФС сказывается на фракционном составе продуктов термолиза исходного ПМ и его смеси с нефтяным остатком.

Наиболее заметно выход дистиллятных фракций коррелирует с выходом газообразных продуктов. Выход газообразных и твердых продуктов термолиза в присутствии ФС представлен на рис. 16. При термолизе подсолнечного масла с ФС увеличивается выход газообразных продуктов с 9.1 до 14.3 мас. %, выход твердых продуктов составляет менее 0.2 мас. %.

Выход газообразных продуктов при термолизе в присутствии ФС смеси нефтяного остатка и подсолнечного масла возрастает с 3.8 до 8.1 мас. % (рис. 16). Это объясняется как активным разрушением компонентов подсолнечного масла в присутствии ФС (в том числе реакции декарбонилирования и декарбоксилирования кислот), так и деструкцией компонентов нефтяного остатка. Содержание твердых продуктов возрастает с 1.8 до 5.9 мас. %.

При термолизе исходного нефтяного остатка введение ФС, приводит к увеличению выхода газообразных продуктов в 1.4 раза, а выход твердых продуктов снижается в 2.3 раза. Снижение выхода твердых продуктов, объясняется сорбцией смолисто-асфальтеновых компонентов оксидами железами (основные компоненты ФС), что замедляет кокосообразование.

Анализ состава продуктов крекинга (рис. 1в) показывает, что при термолизе нефтяного остатка в присутствии ΦC выход смол снижается почти в 3.3 раза (с 12.5 до 3.8 мас. %), а выход асфальтенов возрастает в 1.4 раза. Введение ΦC в смесь нефтяного остатка и подсолнечного масла также влияет на выход смол, их содержание сокращается более чем в 1.5 раза (с 9.4 до 6.1 мас. %) и почти в 2 раза увеличивает выход асфальтенов (с 3.6 до 7.1 мас. %). Уменьшение выхода смол объясняется тем, что Φ С инициируют их деструкцию, в том числе с образованием асфальтенов и затем твердых продуктов ("кокс") [21].

Меньший эффект в снижении доли смол в продуктах каталитического крекинга смеси НО и подсолнечного масла может быть связан с адсорбцией компонентов масел, например, триглицеридов жирных кислот или самих жирных кислот, которые образуются при разрушении триглицеридов на ФС. Известно, что оксиды переходных металлов и в частности оксиды железа могут адсорбировать на себе смолы и асфальтены [41–44] и другие полярные соединения. Адсорбированные компоненты ПМ способны частично блокировать активные центры ФС, а затем сами могут подвергаться термокаталитическим превращениям.

Анализ газообразных продуктов крекинга представлен в табл. 3. В газообразных продуктах крекинга подсолнечного масла преобладает монооксид углерода и углекислый газ, что подтверждает протекание реакции декарбоксилирования и декарбонилирования. При этом отмечается более высокое содержание водорода (в сравнении с газообразными продуктами термолиза нефтяного остатка) и в 4 раз – более низкое содержание метана.

Крекинг подсолнечного масла в присутствии ΦC приводит к заметному увеличению выхода метана, углекислого газа и этилена. Увеличение доли оксидов углерода объясняется как окислительной [25], так и их каталитической активностью оксидов железа [45].

При совместном крекинге нефтяного остатка и ПМ в газообразных продуктах увеличивается выход СО и СО₂, алканов и алкенов C_1-C_4 . На качественный и количественный состав газообразных продуктов при совместном термолизе нефтяного остатка и подсолнечного масла так же влияют добавки ФС, в присутствии которых существенно увеличивается выход метана.

Бензиновые фракции продуктов термолиза исходного ПМ главным образом представлены *н*-алканами и *изо*-алканами. Также стоит отметить высокое содержание ароматических УВ и олефинов. Из литературных данных [15, 46] известно, что растительные масла при высоких температурах способны образовывать ароматические соединения. При термолизе подсолнечного масла в присутствии ФС заметно увеличивается выход *н*-алканов и нафтенов (в пересчете на исходное сырье), но снижается выход *изо*-алканов.

При термолизе смеси подсолнечного масла и нефтяного остатка в присутствии ФС выход бензиновых фракций увеличивается главным образом за счет *изо*-алканов и *н*-алканов, содержание

ТЕРМИЧЕСКИЕ ПРЕВРАЩЕНИЯ КОМПОНЕНТОВ

Vouroumu	Состава исходной сырьевой смеси					
компоненты	НО	НО/ФС	НО/ПМ	НО/ПМ/ФС	ΠΜ/ΦC	ПМ
Состав б	бензиновой	і фракции Н	К–200°С, м	ac. %		
н-Алканы	0.36	1.30	4.11	12.09	10.72	7.60
изо-Алканы	0.20	0.49	1.54	5.00	1.59	4.00
Арены	0.12	0.46	1.39	3.14	2.28	2.68
Нафтены	0.16	0.49	1.99	3.00	2.68	1.26
Олефины	0.10	0.42	1.11	2.53	2.76	2.66
Не определено	0.07	0.14	0.85	2.03	0.88	1.50
Общий выход бензиновых фракций в расчете на исходное сырье, мас. %	1.00	3.30	11.00	27.80	20.90	19.70
Содержа	ание газооб	разных ком	понентов, м	ac. %		
H ₂	0.01	0.01	0.02	0.03	0.06	0.04
CO	0.01	0.02	0.21	0.27	2.68	2.14
CO ₂	0.08	0.11	0.32	0.71	7.61	3.34
CH ₄	1.07	0.88	1.52	4.62	0.69	0.37
C_2H_4	0.01	0.02	0.03	0.05	0.06	0.01
C_2H_6	0.22	0.43	0.46	0.69	1.03	0.65
C_3H_8	0.19	0.57	0.65	0.84	0.82	0.77
C ₃ H ₆	0.04	0.05	0.09	0.25	0.21	0.25
Алканы С4	0.10	0.28	0.25	0.08	0.53	0.65
Алкены С4	0.02	0.03	0.07	0.07	0.09	0.06
C ₅ -C ₅₊	0.05	0.10	0.17	0.49	0.33	0.82
Общий выход газообразных продуктов в расчете на исходное сырье, мас. %	1.80	2.50	3.79	8.10	14.10	9.10

Таблица 3. Состав бензиновой фракции НК-200°С и газообразных продуктов*

*HO – нефтяной остаток; ПМ – подсолнечное масло; Φ C – ферросферы зол ТЭЦ. Состав смеси: HO/ Φ C = 90.0 : 10.0 мас. %; HO/ПМ = 92.0/8.0 мас. %; ПМ/ Φ C = 90.0/10.0 мас. %; HO/ПМ/ Φ C = 82.8/7.2/10.0 мас. %.

которых увеличивается почти в 3 раза. И более чем в 2 раза увеличивается выход олефинов. Высокое содержание олефинов в бензиновых фракциях будет требовать их дальнейшей каталитической переработки для получения конечных товарных продуктов.

Представляло интерес исследовать структурно-групповые характеристики смолисто-асфальтеновых компонентов продуктов термолиза нефтяного остатка в присутствии ΦC и подсолнечного масла. Структурно-групповые характеристики асфальтенов и смол HO и продуктов крекинга представлены в табл. 4 и 5 соответственно.

Асфальтены исходного нефтяного остатка имеют молекулярную массу MM = 1800 а. е. м., среднее число структурных блоков в молекуле $m_a = 3.3$ (табл. 4) [47]. В усредненной молекуле содержится 129 атомов С, 47 из которых принадлежат ароматическим циклам (C_a), 26 – насыщенным циклам ($C_{\rm H}$) и 56 – алифатическим фрагментам ($C_{\rm n}$) [47]. Количество ароматических колец ($K_{\rm a}$) в молекуле – 11, насыщенных ($K_{\rm H}$) ~ 6. Большая часть атомов С представлена алифатическими фрагментами ($f_{\rm n}$ = 43.2), нежели кольцевыми ($f_{\rm a}$ = 36.1 и $f_{\rm H}$ = 20.7). В среднем структурном блоке имеется пять колец ($K_{\rm o}^*$), два из которых являются насыщенными ($K_{\rm h}$), а три ароматическими ($K_{\rm a}^*$), в алкильных фрагментах ($C_{\rm n}^*$) около 17 атомов углерода [47].

В результате термолиза НО значительно уменьшается молекулярная масса получаемых асфальтенов с 1800 до 545 а. е. м.; количества атомов углерода снижается с 129.45 до 39.40, атомов водорода – с 178.39 до 45.42. Общее число колец (K_o) сокращается с 17.8 до 11.6 в средней молекуле. Почти в 25 раз сокращается число атомов в алкильных фрагментах (C_n) с 55.9 до 2.2. Также умень-

НЕФТЕХИМИЯ том 60 № 3 2020

КОПЫТОВ и др.

	Асфальтены							
	исуолный НО	продукты термолиза						
	исходный ПО	НО	HO/ΦC	НО/ПМ	ΗΟ/ΠΜ/ΦC			
Средняя молекулярная масса, а. е. м.								
MM	1800	545	1400	502	339			
Число атомов в средней молекуле								
С	129.45	39.40	100.68	35.90	24.50			
Н	178.39	45.42	114.44	32.70	28.10			
Ν	2.46	0.43	0.83	0.70	0.30			
S	0.06	0.04	0.06	0.10	0.20			
0	1.91	1.20	3.93	1.50	0.40			
H/C	1.38	1.15	1.14	0.91	1.15			
Кольцевой состав								
K _o	17.8	11.6	21.0	11.4	6.85			
K _a	11.4	2.5	10.4	4.0	1.87			
K _H	6.4	9.1	10.6	7.4	4.98			
Распределение атомов С, %								
f _a	36.1	29.2	44.4	48.9	36.9			
$f_{\scriptscriptstyle \mathrm{H}}$	20.7	65.2	43.6	48.6	58.1			
f_{Π}	43.2	5.6	12.0	2.6	5.0			
	Число угле	і родных атомов раз	і ного типа в средне	і й молекуле	I			
C _a	46.8	11.5	44.7	17.5	9.0			
C _H	26.7	25.7	43.9	17.4	14.2			
 С _п	55.9	2.2	12.1	0.9	1.2			
C _α	13.8	5.4	12.8	6.0	3.2			
C.	83	2.2	4 0	0.9	12			
γ 0.5 2.2 τ.0 0.7 1.2 Среднее инсло блоков в молекуле								
m	3.3	1.4	3.0	1.7	1.2			
a	т П	араметры средних	структурных блоко)B				
	54				5.6			
K [*] _o	5.4	8.4	6.9	6./	5.6			
K_a^*	3.5	1.8	3.4	2.4	1.5			
К*	1.9	6.6	3.5	4.3	4.1			
с*	39.1	28.5	33.1	21.1	20.0			
C_a^*	14.1	8.3	14.7	10.3	7.4			
$C_{\rm H}^{*}$	8.1	18.6	14.4	10.2	11.6			
C_{π}^{*}	16.9	1.6	4.0	0.5	1.0			
C^*_{α}	4.2	3.9	4.2	3.5	2.6			
C^*_{γ}	2.5	1.6	1.3	0.5	1.0			

Таблица 4. Структурно-групповые характеристики асфальтенов

НЕФТЕХИМИЯ том 60 № 3 2020

ТЕРМИЧЕСКИЕ ПРЕВРАЩЕНИЯ КОМПОНЕНТОВ

	Смолы							
		продукты термолиза						
	исходный по	НО	HO/ΦC	НО/ПМ	ΗΟ/ΠΜ/ΦC			
Средняя молекулярная масса, а. е. м.								
MM	850	790	640	699	402			
Число атомов в средней молекуле:								
С	55.67	55.20	44.20	46.70	28.10			
Н	80.87	73.70	53.30	46.00	29.70			
Ν	0.82	0.60	0.50	0.80	0.60			
S	0.12	0.05	0.04	0.10	0.03			
0	5.33	2.60	3.00	5.00	1.60			
H/C	1.45	1.34	1.21	0.99	1.06			
Кольцевой состав								
Ko	7.5	12.8	13.4	11.2	7.8			
Ka	3.6	2.8	2.0	5.8	2.8			
К _н	3.9	10.0	11.3	5.4	5.0			
Распределение атомов С, %								
f_{a}	25.6	21.4	19.6	51.5	43.3			
$f_{ m H}$	29.1	72.7	75.1	43.1	52.7			
f_{Π}	45.3	6.0	5.4	5.4	4.0			
-	Число угле	і родных атомов раз	і ного типа в средне	й молекуле	I			
Ca	14.2	11.8	8.6	24.1	12.2			
°, C _u	16.2	40.1	33.2	20.1	14.8			
C _n	25.2	3.3	2.4	2.5	1.1			
C _m	62	5.6	4.6	6.9	53			
C_{α}	4.3	3.0	2.4	2.5	11			
\mathcal{C}_{γ}	4.5	Среднее нисто Б		2.5	1.1			
m	16			2.0	1.4			
m _a	1.0		1.5	2.0	1.4			
		араметры средних	структурных олоко)B	I			
K [*] _o	4.6	8.8	10.5	5.5	5.4			
K [*] _a	2.2	1.9	1.6	2.9	1.9			
K*.	2.4	6.9	8.9	2.6	3.4			
C [*]	33.9	38.2	34.9	23.0	19.4			
C_a^*	8.7	8.2	6.8	11.8	8.4			
$C_{\rm H}^*$	9.9	27.7	26.2	9.9	10.2			
C_{π}^{*}	15.4	2.3	1.9	1.2	0.8			
C^*_{α}	3.8	3.9	3.6	3.4	3.7			
C_{γ}^{\ast}	2.6	2.3	1.9	1.2	0.8			

Таблица 5. Структурно-групповые характеристики смол

шилось число структурных блоков $m_{\rm a}$ с 3.3 до 1.4, при этом несколько увеличивается содержание

насыщенных колец (K^{*}_н) с 1.9 до 6.6.

При совместном термолизе нефтяного остатка и ПМ молекулярная масса получаемых асфальтенов снижается с 545 (при термолизе без добавок ПМ) до 502 а. е. м., количество атомов углерода – с 39.40 до 35.9, атомов водорода – с 45.42 до 32.7, число насыщенных колец ($K_{\rm H}$) – с 9.1 до 7.4. При этом возрастает доля ароматических атомов С ($f_{\rm a}$: с 29.19 до 48.87) и среднее число блоков ($m_{\rm a}$) с 1.38 до 1.70.

Добавление ФС в процессе термолиза смеси нефтяного остатка и ПМ приводит к образованию асфальтенов с молекулярной массой около 339 а. е. м. Число атомов углерода в средней молекуле асфальтенов сокращается с 35.9 до 24.5, атомов водорода – с 32.7 до 28.1, общего количества колец (K_0) – с 11.4 до 6.85, ароматических (K_a) – с 4.0 до 1.9, насыщенных (K_H) – с 7.4 до 5.0. Меняется и распределение атомов углерода: снижается доля ароматических (C_a) с 17.5 до 9.0 и насыщенных (C_H) с 17.4 до 14.2, но повышается доля алифатических фрагментов (C_n) с 0.9 до 1.2.

Смолы исходного нефтяного остатка имеют молекулярную массу MM = 850 а. е. м., среднее число структурных блоков в молекуле $m_a = 1.6$ [47]. В усредненной молекуле содержится 56 атомов С, 14 из которых принадлежат ароматическим кольцам (C_a), 16 – насыщенным кольцам (C_н) и 25 – алифатическим фрагментам (C_n) [47]. Количество ароматических (K_a) и насыщенных (K_н) колец в молекуле по 4 [47]. Большая часть атомов углерода представлена алифатическими фрагментами ($f_n = 45.3$). В среднем структурном блоке имеется большое количество алкильных фрагментов (C^{*}_n) с общим числом атомов углерода около 15 [47].

В смолах, выделенных из продуктов термолиза (без добавок Φ С и подсолнечного масла), уменьшается молекулярная масса (с 850 до 790 а. е. м.), число атомов в средней молекуле снижается с 55.6 до 55.2, водорода с 80.9 до 73.7, среднее число блоков в молекуле (m_a) с 1.64 до 1.45. При этом образуется большое количество насыщенных колец ($K_{\rm H}$), число которых повышается с 3.9 до 10.0 и немного снижается число ароматических (K_a) с 3.6 до 2.8.

Добавление ПМ в процессе термолиза способствует деструкции молекул смол, их молекулярная масса уменьшается с 790 до 699 а. е. м. Уменьшается число атомов углерода в средней молекуле с 55.2 до 46.7, водорода – с 73.7 до 46.0, количество колец (K_0) – с 12.8 до 11.2, (K_H) – с 10.0 до 5.4. Совместный термолиз нефтяного остатка, подсолнечного масла и ΦC наиболее сильно влияет на структуру смол. Молекулярная масса снижается с 699 до 402 а. е. м., число атомов углерода в средней молекуле сокращается с 46.7 до 28.1, водорода – с 46.0 до 29.7, среднее число блоков в молекуле (m_a) – с 2.03 до 1.44.

выводы

Введение ФС зол ТЭЦ в смесь нефтяного остатка и подсолнечного масла позволяет более чем в 2.5 раза увеличить выход бензиновых фракций, но несколько сокращается выход фракций с $T_{\rm кип} > 200$ °C. При этом в продуктах термолиза снижается доля смол и возрастает содержание асфальтенов, твердых и газообразных продуктов (в сравнении с термолизом без феррофер). Это возможно объяснить тем, что гематит, содержащийся в ФС, может инициировать термическую деструкцию углеводородных компонентов и смол нефтяного остатка, а также компонентов растительного масла.

Присутствие подсолнечного масла и ФС в процессе термолиза нефтяного остатка приводит к снижению молекулярной массы молекул смол и асфальтенов, выделенных из продуктов термолиза. В молекулах смолисто-асфальтеновых компонентов снижается число нафтеновых и парафиновых атомов углерода, при этом доля ароматических атомов заметно возрастает. Это объясняется тем, что подсолнечное масло и его компоненты, образующиеся при термолизе, могут влиять на направленность превращений смолисто-асфальтеновых компонентов.

ФИНАНСИРОВАНИЕ РБОТЫ

Работа выполнена в рамках государственного задания ИХН СО РАН (проект V.46.2.2), финансируемого Министерством науки и высшего образования Российской Федерации.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

СВЕДЕНИЯ ОБ АВТОРАХ

Копытов Михаил Александрович https://orcid.org/0000-0002-8912-9251

Бояр Станислав Витальевич https://orcid.org/0000-0001-9845-6281

Можайская Марина Владимировна https://orcid.org/0000-0002-8598-1746

СПИСОК ЛИТЕРАТУРЫ

- 1. Tangy A., Pulidindi I.N., Perkas N., Gedanken A. // Bioresour. Technol. 2017. V. 224. P. 333.
- Rahman M.T., Hainin M.R., Bakar W.A. W.A. // Constr. Build. Mater. 2017. V. 150. P. 95.
- Muciño G.G., Romero R., Ramírez A., Martínez S.L., Baeza-Jiménez R., Natividad R. // Fuel. 2014. V. 138. P. 143.
- Доронин В.П., Потапенко О.В., Липин П.В., Сорокина Т.П., Булучевская Л.А. // Нефтехимия. 2012. Т. 52. № 6. С. 422.
- 5. Доронин В.П., Потапенко О.В., Липин П.В., Сорокина Т.П. // Катализ в промышленности. 2013. № 6. С. 61.
- Attia A.M.A., Hassaneen A.E. // Fuel. 2016. V. 167. P. 316.
- 7. *Hong I.K., Jeon H., Kim H., Lee S.B.* // J. Industrial and Engineering Chemistry. 2016. V. 42. P. 107.
- Tran T.T.V., Kaiprommarat S., Kongparakul S., Reubroycharoen P., Guan G., Nguyen M.H., Samart C. // Waste Management. 2016. V. 52. P. 367.
- 9. *Maneerung T., Kawi S., Dai Y., Wang C.H.* // Energy Conversion and Management. 2016. V. 123. P. 487.
- Tan Y.H., Abdullah M.O., Nolasco-Hipolito C., Taufiq-Yap Y.H. // Applied Energy. 2015. V. 160. P. 58.
- 11. Gupta A.R., Yadav S.V., Rathod V.K. // Fuel. 2015. V. 158. P. 800.
- Mahesh S.E., Ramanathan A., Begum K.M.S., Narayanan A. // Energy Conversion and Management, 2015. V. 91. P. 442.
- Pukale D.D., Maddikeri G.L., Gogate P.R., Pandit A.B., Pratap A.P. // Ultrasonics Sonochemistry. 2015. V. 22. P. 278.
- 14. Юсевич А.И., Тимошкина М.А., Грушова Е.И. // Нефтехимия. 2010. Т. 50. № 3. С. 241.
- 15. Тимошкина М.А., Юсевич А.И., Михаленок С.Г., Прокопчук Н.Р. // Нефтехимия. 2014. Т. 54. № 2. С. 113.
- Тимошкина М.А., Юсевич А.И. // Труды БГТУ. Серия 2. Химические технологии, биотехнология, геоэкология. 2012. № 1. № 4. С. 234.
- 17. *Юсевич А.И., Тимошкина М.А.* // Химия и технология топлив и масел. 2013. № 3. С. 3.
- Kopytov M.A., Boyar S.V., Golovko A.K. // AIP Conference Proceedings AIP Publ. 2018. V. 2051. № 1. P. 020131.
- Kopytov M.A., Dmitriev D.E., Golovko A.K. // ACS National Meeting Book of Abstracts. 2009. P. 1155.
- 20. Kopytov M.A., Golovko A.K., Kirik N.P., Anshits A.G. // Petroleum Chemistry. 2013. V. 53. № 1. P. 14.
- Golovko A.K., Kopytov M.A., Sharonova O.M., Kirik N.P., Anshits A.G. // Catalysis in Industry. 2015. V. 7. № 4. P. 293.
- Wang D., Jin L., Li Y., Yao D., Wang J., Hu H. // Energy. 2018. V. 162. P. 542.

- 23. Wang D., Jin L., Li Y., Wei B., Yao D., Hu H. // Fuel. 2019. V. 239. P. 764.
- 24. *Ma Y., Wang Q., Sun X., Wu C., Gao Z. //* Renewable Energy. 2017. V. 107. P. 522.
- Hosseinpour M., Fatemi S., Ahmadi S.J. // Fuel. 2015. V. 159. P. 538.
- 26. Wang D., Jin L., Li Y., Hu H. // Fuel. 2017. V. 210. P. 803.
- Теляшев Э.Г., Журкин О.П., Везиров Р.Р., Ларионов С.Л., Имашев У.Б. // Химия твердого топлива. 1991. Т. 33. № 5. С. 57.
- 28. Gan S., Ng H.K., Ooi C.W., Motala N.O., Ismail M.A.F. // Bioresource Technology. 2010. V. 101. № 19. P. 7338.
- Mengyu G.A.N., Deng P.A.N., Li M.A., En Y.U.E., Jianbing H.O.N.G. // Chinese J. Chemical Engineering. 2009. V. 17. № 1. P. 83.
- Patil P., Deng S., Rhodes J.I., Lammers P.J. // Fuel. 2010. V. 89. № 2. P. 360.
- Sharonova O.M., Anshits N.N., Solovyov L.A., Salanov A.N., Anshits A.G. // Fuel. 2013. V. 111. p. 332.
- 32. International Center for Diffraction Data. ICDD PDF 19–629. www.icdd.com (accessed May 13, 2012).
- International Center for Diffraction Data. ICDD PDF 33-664. www.icdd.com (accessed May 13, 2012).
- Kopytov M.A., Golovko A.K., Kirik N.P., Anshits A.G. // Solid Fuel Chemistry. 2013. V. 47. № 2. P. 114.
- 35. *Копытов М.А., Головко А.К.* // Известия Томского политехнического университета. 2009. Т. 315. № 3. С. 83.
- 36. *Kopytov M.A., Golovko A.K.* // Russian J. Physical Chemistry B. 2010. V. 4. № 8. P. 1228.
- Kopytov M.A., Golovko A.K. // Solid Fuel Chemistry. 2013. V. 47. № 6. P. 370.
- 38. Камьянов В.Ф., Большаков Г.Ф. // Нефтехимия. 1984. Т. 24. № 4. С. 450.
- 39. *Камьянов В.Ф., Большаков Г.Ф. //* Нефтехимия. 1984. Т. 24, № 4. С. 443.
- 40. *Камьянов В.Ф., Большаков Г.Ф.* // Нефтехимия. 1984. Т. 24. № 4. с. 460.
- Ko S., Huh C. // J. Petroleum Science and Engineering. 2019. V. 172. P. 97.
- 42. Nassar N.N., Hassan A., Carbognani L., Lopez-Linares F., Pereira-Almao P. // Fuel. 2012. V. 95. P. 257.
- 43. Setoodeh N., Darvishi P., Lashanizadegan A. // J. Dispersion Science and Technology. 2018. V. 39. № 5. P. 711.
- 44. *Abu Tarboush B.J., Husein M.M.* // Fuel Process. Technol. 2015. V. 133. P. 120.
- 45. *Kalishyn Y.Y., Bychko I.B., Trypolskyi A.I., Strizhak P.E.* // Theoretical and Experimental Chemistry. 2017. V. 53. № 3. P. 199.
- Dupain X., Costa D.J., Schaverien C.J., Makkee M., Moulijn J.A. // Applied Catalysis B: Environmental. 2007. V. 72. № 1–2. P. 44.
- 47. *Kopytov M.A., Golovko A.K.* // Petrol. Chemistry. 2017. V. 57. № 1. P. 39.