УДК 544.556.1

ОСОБЕННОСТИ ПРЕВРАЩЕНИЯ ПРОПАНА И ЕГО СМЕСИ С МЕТАНОМ В ПРИСУТСТВИИ ВОДЫ В БАРЬЕРНОМ РАЗРЯДЕ

© 2020 г. А. Ю. Рябов^{1,} *, С. В. Кудряшов¹, А. Н. Очередько¹

¹Институт химии нефти СО РАН, Томск, 634055 Россия *E-mail: andrey@ipc.tsc.ru Поступила в редакцию 14.10.2019 г. После доработки 03.11.2019 г. Принята к публикации 18.11.2019 г.

Изучен процесс плазмохимической конверсии пропана и его смеси с метаном в присутствии воды в барьерном разряде. Продуктами обработки исходных смесей являются водород, газообразные углеводороды C_1-C_4 и жидкие алканы C_5-C_{12} изомерного строения. Полученные закономерности объясняются особенностями протекания электронно-молекулярных реакций с участием молекул пропана, метана на стадии разрядного инициирования в условиях плазмы барьерного разряда.

Ключевые слова: плазмохимическая конверсия, смесь пропана с метаном, барьерный разряд **DOI:** 10.31857/S0028242120030181

Несмотря на внушительную историю исследований в области переработки углеводородных газов, интерес специалистов к поиску альтернативных методов конверсии углеводородов, в частности с использованием плазмохимии, только возрастает [1]. Применение электрических разрядов для стимулирования химических реакций привлекает возможностью получения сверхравновесной концентрации активных частиц (возбужденных молекул, атомов, радикалов, ионов) в объеме плазмы, благодаря чему реакции с высокой энергией активации протекают при комнатной температуре и атмосферном давлении без участия катализаторов [2].

Ранее авторами [3] предложен способ неокислительной конверсии метана в плазме барьерного разряда (БР) с образованием водорода, газообразных и жидких углеводородов. Существенным отличием полученных результатов от данных, опубликованных в работах по плазмохимическому превращению газообразных углеводородов [4–14], явилось создание условий проведения процесса, препятствующих формированию полимероподобного депозита на стенках реактора. Данный эффект достигнут добавкой воды в поток метана, что создает условия для эффективного вывода продуктов из разрядной зоны реактора.

В работе [15] авторами рассмотрен механизм образования газообразных продуктов превращения метана в БР в присутствии жидкой воды. Результаты математического моделирования кинетики реакции подтвердили основные выводы о механизме ее протекания. В частности, показано, что основная роль в образовании углеводородов C_{3+} принадлежит реакциям с участием CH₂-радикала. Настоящая работа является логическим продолжением исследований, опубликованных в [3, 15].

В статье обсуждены особенности превращения пропана и его смесей с метаном в присутствии воды в БР, а также проведено сравнение с полученными ранее результатами для метана и смеси метан—вода.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Эксперименты проведены на лабораторной установке, общий вид которой показан в работе [3]. Вода, в виде жидкости, смешивается при комнатной температуре с потоком газообразных углеводородов в смесителе с помощью перистальтического насоса. Далее газожидкостная смесь направляется в плазмохимический реактор, где большая часть воды образует жидкий слой на поверхности электродов реактора. Пары воды совместно с углеводородными газами образуют реакционную смесь и подвергаются воздействию БР. После обработанная смесь разделяется на газовую и жидкую части и анализируется.

Плазмохимический реактор является разборной конструкцией коаксиального типа с одним диэлектрическим барьером. Зазор в разрядной зоне составляет 1 мм, ее длина 10 см, объем равен 7 см³. Во всех экспериментах амплитуда высоко-

Наименование	Содержание, %							
	CH ₄ [3]	CH ₄ –H ₂ O [3]	C ₃ H ₈ -H ₂ O	C ₃ H ₈ (50%)–CH ₄ –H ₂ O				
H ₂	60.40	52.48	21.53	36.74				
CH ₄	Не опр.***	Не опр.***	15.02	Не опр.***				
C_2H_4	3.30	0.43	11.40	9.34				
C ₂ H ₆	24.60	25.03	9.69	13.97				
C ₃ H ₆	0.50	0.09	_	_				
C ₃ H ₈	7.80	4.76	Не опр.***	Не опр.***				
C ₄ *	2.60	2.86	5.99	5.16				
C ₅	0.60	1.64	4.98	6.13				
C ₆	0.20	2.87	5.28	4.60				
C ₇	_	2.89	3.52	3.93				
C ₈	_	3.17	8.75	8.42				
C ₉	_	2.33	8.07	6.81				
C ₁₀	_	1.29	3.82	4.00				
C ₁₂	_	_	1.94	0.90				
Конверсия, %	9.7	9.5	10.3	5.1 (17.2)**				

Таблица 1. Конверсия и общий состав продуктов превращения метана, пропана и их смеси с парами воды. Для всех смесей $[H_3O] = 2$ об. % и соответствует равновесной концентрации при 20°C

*Суммарное содержание алканов с соответствующим числом углеродных атомов в молекуле.

**Конверсия указана отдельно для метана и пропана.

***Образование метана (пропана) в качестве продукта реакции не учитывали.

вольтных импульсов напряжения не превышала 7.2 кВ, частота их повторения 2 кГц. Активная мощность разряда составила ~ 9.6 Вт. Объемный расход реакционной смеси составлял 30 см³/мин, расход воды равнялся 0.1 см³/мин. В экспериментах использовался метан (99.99%, ОАО "Московский газоперерабатывающий завод"), пропан (99.95%, ООО "Чистые газы", Новосибирск).

Анализ газообразных и жидких продуктов реакции проводили на газовом хроматографе HP 6890, оборудованном детектором по теплопроводности и пламенно-ионизационным детектором, а также с применением хромато-масс-спектрометра ThermoScientific DFS. Растворенные в воде углеводороды C_5-C_{12} анализировали методом микроэкстракции, который в деталях описан в [16].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В табл. 1 приведен состав продуктов превращения пропана и его смесей с метаном в присутствии воды в БР в сравнении с полученными ранее результатами для метана и смеси метан—вода [3].

Основными газообразными продуктами превращения чистого метана являются водород (~60%) и этан (~29%), образуются также алканы C_3-C_4 в количестве ~10%; на поверхности электродов реактора наблюдается образование депозита. Добавка воды в поток метана практически не оказывает влияния на его конверсию, но предотвращает образование депозита на поверхности электродов реактора, при этом в составе продуктов обнаружены жидкие углеводороды C_5-C_{10} (14.2%). В случае превращения пропана набор продуктов практически остается прежним, но существенно изменяется состав послереакци-

	Метан	Метан-вода		Пропан-вода		Пропан (50%)-метан-вода		
потери энергии, 70	CH ₄	CH ₄	H ₂ O	C_3H_8	H ₂ O	CH ₄	C_3H_8	H ₂ O
Колебательные состояния	45.03	43.41	1.26	57.35	1.21	18.71	31.29	1.2
Электронные состояния	53.77	53.77	0.3	41.22	0.05	7.31	40.83	0.11
Ионизация	1.20	1.26	0.01	0.18	0	0.07	0.48	0
Средняя энергия ($\epsilon_{cp.}$), эВ	4.6	4.6		3.4		3.9		

Таблица 2. Потери энергии электронов БР в различных смесях. Приведенная напряженность электрического поля (E/n) = 110 Td, [H₂O] = 2 об. % и соответствует равновесной концентрации при 20°C

онной смеси: наблюдается снижение содержания водорода и рост селективности образования жидких углеводородов C_5-C_{12} до ~36.4% для смеси пропан—вода.

Как и в случае превращения метана, жидкие углеводороды представлены в основном алканами изомерного строения. Добавка метана и воды к пропану не приводит к образованию новых продуктов реакции, изменяя только содержание веществ в смеси.

Величины конверсии метана и пропана с добавкой воды имеют близкие значения — 9.5 и 10.3%, соответственно. Конверсия углеводородов в смеси пропан—метан—вода изменяется разнонаправлено: для метана наблюдается снижение конверсии, а для пропана — увеличение. Объяснением данного факта являются различия в механизме превращения углеводородов на стадии разрядного инициирования реакции.

Инициирование химических превращений веществ в плазме БР происходит в результате электронно-молекулярных столкновений [2]. Анализ потерь энергии электронов при столкновениях с молекулами исходной газовой смеси позволяет оценить состав частиц, образовавшихся на стадии разрядного инициирования реакции, раскрыть особенности протекания плазмохимической реакции.

В табл. 2 приведены значения потерь энергии электронов БР в метане, пропане и их смеси с парами воды. Расчеты выполнены в программе Bolsig+ [18], сечения рассеяния электронов молекулами метана, воды и пропана взяты из базы данных [19].

Видно, что основные потери энергии электронов БР приходятся на возбуждение колебательных и электронных состояний молекул углеводородов, на процессы ионизации приходится менее 1.5%, добавка воды в исходную смесь не оказывает существенного влияния на распределение потерь энергии электронов.

Использование пропана в качестве плазмообразующего газа приводит к снижению средней энергии электронов БР с 4.6 эВ (метан, метан–вода) до 3.4 эВ (пропан–вода). Это связано с большим

НЕФТЕХИМИЯ том 60 № 3 2020

значением интегрального сечения рассеяния электронов молекулой пропана по сравнению с молекулой метана [20]. Несмотря на снижение значений ε_{cp} , конверсия пропана в смеси с водой выше, чем в случае с метаном и составляет 10.3 об. % (табл. 1), что обусловлено более низкими пороговыми значениями энергии возбуждения электронных состояний молекулы пропана (6.72 эВ) в сравнении с метаном (9.0 эВ).

Особенности электронного строения молекулы пропана приводят к тому, что в смеси метанпропан (50 об. %)—вода основные потери энергии электронов БР приходятся на возбуждение электронных состояний пропана (40.8%), что оказывает влияние на механизм образования продуктов реакции и подтверждается данными их группового состава (см. рисунок).

На рисунка видно, что увеличение начальной концентрации пропана в исходной смеси сопровождается ростом содержания газообразных олефинов и жидких углеводородов в продуктах реак-

Рис. 1. Групповой состав продуктов реакции в зависимости от начальной концентрации пропана в смеси пропан–метан–вода: $\Box - H_2$, \bigcirc – алканы $C_2 - C_4$, \triangle – этилен и пропилен, \blacksquare – алканы ($C_6 - C_{12}$).

ции, противоположная тенденция наблюдается для молекулярного водорода и алканов C₂-C₄.

Для интерпретации полученных результатов рассмотрим некоторые электронно-молекулярные процессы, протекающие на стадии разрядного инициирования реакции.

Как показано в работе [20], в результате диссоциации электронно-возбужденной молекулы метана происходит образование частиц:

$$CH_4 + e \rightarrow CH_3 + H + e, 76\%, \tag{1}$$

$$CH_4 + e \rightarrow CH_2 + H_2 + e, 14.4\%,$$
 (2)

$$CH_4 + e \rightarrow CH + H_2 + H + e, 7.3\%,$$
 (3)

$$CH_4 + e \rightarrow C + 2H_2 + e, 2.3\%.$$
 (4)

Видно, что на стадии разрядного инициирования образуется достаточно много водорода, что хорошо согласуется с экспериментальными данными (табл. 1).

Диссоциация пропана [21] под действием электронного удара приводит к более широкому набору соединений:

$$C_3H_8 + e \rightarrow C_3H_6 + H_2 + e, 34\%,$$
 (5)

$$C_{3}H_{8} + e \rightarrow C_{2}H_{4} + CH_{4} + e, 30\%,$$
 (6)

$$C_3H_8 + e \rightarrow C_3H_7 + H + e, 22\%,$$
 (7)

$$C_3H_8 + e \rightarrow C_3H_4 + 2H_2 + e, 7\%,$$
 (8)

$$C_3H_8 + e \rightarrow C_2H_5 + CH_3 + e, 4\%$$
 (9)

$$C_3H_8 + e \rightarrow C_2H_6 + CH_2 + e, 3\%.$$
 (10)

Водорода образуется значительно меньше (реакции (5), (8)). Кроме этого, наблюдается образование значительных количеств этилена (30%) и пропилена (34%) по реакциям (5), (6), что приведет к расходу атомарного водорода в реакциях их гидрирования, например:

$$C_2H_4 + H \rightarrow C_2H_5. \tag{11}$$

Приведенный набор реакций хорошо объясняет ход экспериментальных кривых, отражающих изменение концентраций водорода и газообразных олефинов на рисунке.

ЗАКЛЮЧЕНИЕ

Установлены закономерности превращения пропана и его смеси с метаном в присутствии воды в барьерном разряде. Применение воды позволяет избежать нежелательного образования депозита на поверхности электродов реактора. Основными продуктами превращения пропана и его смеси с метаном в присутствии воды являются водород и газообразные углеводороды C_1-C_4 , также обнаружены жидкие углеводороды, представленные алканами C_5-C_{12} изомерного строе-

ния. Установлено, что конверсия углеводородов в смеси пропан–метан–вода снижается для метана и увеличивается для пропана. С ростом концентрации пропана в исходной смеси увеличивается содержание газообразных олефинов и жидких углеводородов в продуктах реакции, содержание молекулярного водорода и алканов C_2-C_4 снижается, что объясняется кинетикой протекания реакций в плазме.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена по программе фундаментальных научных исследований государственных академий наук на 2013–2020 годы. Проект V.44.3.1 "Создание научных основ переработки каустобиолитов и регулирования физико-химических свойств углеводородсодержащих коллоидных систем в условиях экстремального воздействия физических факторов (низкотемпературная плазма, механохимия и акустические методы)" № ГР АААА-А17-117030310198-4.

конфликт интересов

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

СВЕДЕНИЯ ОБ АВТОРАХ

Кудряшов Сергей Владимирович, д. х. н., ORCID – https://orcid.org/0000-0002-6734-2123.

Рябов Андрей Юрьевич, к. х. н., ORCID – https://orcid.org/0000-0001-5686-3006.

Очередько Андрей Николаевич, к. х. н., ORCID – https://orcid.org/0000-0001-5629-064X.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Puliyalil H., Lašič Jurković D., Dasireddy V.D.B.C., Likozar B.* // RSCAdv. 2018. V. 8. № 48. P. 27481.
- 2. *Fridman A*. Plasma Chemistry. NY: Cembridge University Press, 2012. 979 p.
- 3. *Kudryashov S.V., Ryabov A.Y., Ochered'ko A.N.* // High Energ. Chem. 2017. V. 51. № 2. P. 128.
- 4. Scapinello M., Delikonstantis E., Stefanidis G.D. // Fuel. 2018. V. 222. P. 705.
- SriBala G., Michiels D., Leys Ch., Geem K.M.V., Marin G.B., Nikiforov A. // J. Clean. Prod. 2019. V. 209. P. 655.
- 6. *Jeon B., Park E.D., Kim Yu K.* // Res. Chem. Intermed. 2018. V. 44. № 6. P. 3761.
- Khoja A.H., Tahir M., Amin N.A.S. // Energy Convers. Manag. 2019. V. 183. P. 529.
- 8. *Moshrefi M.M., Rashidi F.* // Plasma Chem. Plasma Process. 2018. V. 38. № 3. P. 503.
- 9. *Khadir N., Khodja K., Belasri A.* // Plasma Sci. Technol. 2017. V. 19. № 9. P. 095502.
- Lim M.S., Chun Y.N. // Plasma Chem. Plasma Process. 2016. V. 36. № 5. P. 1211.

- 11. Indarto A., Coowanitwong N., Choi J.-W., Lee H., Song H.K. // Fuel Process. Technol. 2008. V. 89. № 2. P. 214.
- Shapoval V., Marotta E. // Plasma Process. Polym. 2015. V. 12. № 8. P. 808.
- 13. *Kadoa S., Sekine Y., Nozaki T., Okazaki K. //* Catal. Today. 2004. V. 89. № 1–2. P. 47.
- 14. Dors M., Nowakowska H., Jasiński M., Mizeraczyk J. // Plasma Chem. Plasma Process. 2014. V. 34. № 2. P. 313.
- 15. *Kudryashov S.V., Ryabov A.Y., Ochered'ko A.N.* // High Energ. Chem. 2018. V. 52. № 2. P. 167.

- Il'ina A.A., Ryabov A.Yu., Chuikin A.V., Velikov A.A. // J. Anal. Chem. 2015. V. 70. № 2. P. 125.
- Robertson J. // Mater. Sci. Eng. R Reports. 2002. V. 37. № 4–6. P. 129.
- 18. *Hagelaar G.J.M., Pitchford L.C.* // Plasma Sources Sci. Technol. 2005. V. 14. № 4. P. 722.
- 19. Viehland database. http://www.lxcat.net.
- 20. *Janev R.K., Reiter D.* // Phys. Plasmas. 2002. V. 9. № 9. P. 4071.
- 21. Janev R.K., Reiter D. // Phys. Plasmas. 2004. V. 11. P. 780.