УДК 543.42+665.7.033.28

СПЕКТРОСКОПИЧЕСКИЙ АНАЛИЗ АСФАЛЬТЕНОВ НЕФТИ НА МОЛЕКУЛЯРНОМ УРОВНЕ

© 2020 r. S. Ok^{1, *}, N. Rajasekaran¹, M. A. Sabti¹, G. A. Joseph¹

¹Petroleum Research Center, Kuwait Institute for Scientific Research, P.O. box 24885 Safat, 13109 Kuwait *E-mail: sok@uos.de

> Поступила в редакцию 20.05.2019 г. После доработки 01.10.2019 г. Принята к публикации 11.03.2020 г.

В настоящей работе для решения сложной научной задачи, заключающейся в определении структурных параметров асфальтенов, содержащихся в легких, среднетяжелых и тяжелых нефтях, были использованы различные спектроскопические методики. Методом ИК-спектроскопии с преобразованием Фурье помимо идентификации различных функциональных групп асфальтенов выявлены показатели, позволяющие их классифицировать. На основании анализа спектров комбинационного рассеяния асфальтенов установлено, что асфальтены легких нефтей имеют больший средний размер молекул и более сложное строение молекул по сравнению с асфальтенами тяжелых и среднетяжелых нефтей. Данный факт объясняет склонность асфальтенов к агрегации и осаждению при концентрации не более 1%, что как раз характерно для легких нефтей.

Ключевые слова: асфальтены, молекулярное строение, инфракрасная спектроскопия с преобразованием Фурье, спектроскопия комбинационного рассеяния

DOI: 10.31857/S0028242120040115

Осаждение асфальтенов является одной из самых главных проблем нефтяной промышленности [1, 2]. Как на макро-, так и на микроуровне асфальтены могут препятствовать течению нефти и изменять проницаемость нефтяных коллекторов. В процессах переработки нефти асфальтены снижают выход продуктов в результате дезактивации катализаторов. Проблемы, связанные с осаждением асфальтенов, наиболее часто проявляются при работе с легкими нефтями, содержащими незначительное количество (<1 мас. %) асфальтенов, стабильными только при концентрации асфальтенов выше определенного значения [3].

Асфальтены представляют собой полярные молекулы, содержащие такие электроотрицательные атомы, как N или S, и металлы подгруппы Fe и Ni. Они растворимы в ароматических углеводородах (УВ), например, в толуоле, и нерастворимы в н-пентане и н-гексане [1, 4, 5]. Однако знание точного химического строения недостаточно для объяснения свойств асфальтенов [6]. Согласно модели "молекула-архипелаг" асфальтены представляют собой небольшие полиароматические центры, соединенные между собой алифатическими или нафтеновыми фрагментами. В модели Йена-Муллинса асфальтены состоят из полиароматического центра и боковых парафиновых цепей [5, 6]. Перекрывание делокализаванного π -электроннного облака центральной части молекулы и σ -электронов боковых цепей приводит к π - σ -сопряжению и образованию агрегатов асфальтенов [7]. Также свой вклад в процесс агрегирования вносят водородные связи, кислотно-основное и индукционное взаимодействие, силы Ван-дер-Ваальса, а также электростатическое притяжение молекул [3, 7].

В предыдущих работах для изучения асфальтенов легких и тяжелых нефтей были использованы методы инфракрасной спектроскопии с преобразованием Фурье нарушенного полного внутреннего отражения (Фурье-ИКС НПВО) и инфракрасной спектроскопии с преобразованием Фурье диффузного отражения (Фурье-ИКС ДО) [8, 9]. Интегральная площадь под графиком рамановского спектра углеродного пика позволяет определить средний размер сконденсированного полиароматического центра, в котором все полосы принадлежат плоской (микрокристаллической) графитоподобной структуре ароматического центра [10, 12].

В работе рассмотрены следующие важные вопросы: 1) в какой степени асфальтены легких нефтей отличаются от асфальтенов тяжелых и среднетяжелых нефтей по средней молекулярной массе и соотношению алифатических/ароматических фрагментов; 2) какая из моделей наилучшим об-

Свойства	Единицы измерений	Методика испытания	1	2	3	4	5
Плотность при 15°С	г/см ³	ASTM D5002	0.88518	0.98232	0.98842	0.8399	0.83459
Относительная плотность		ASTM D5002	0.88605	0.98329	0.98939	0.8408	0.83542
API	град.	ASTM D5002	28.20	12.40	11.52	36.80	37.88
Содержание асфальтенов	мас. %	IP143	5.92	18.62	23.10	0.38	0.35

Таблица 1. Физические свойства нефтей до экстракции

разом подходит для объяснения свойств асфальтенов; 3) почему низкие концентрации асфальтенов (менее 1%) в значительной степени осложняют процессы транспортировки и переработки нефти. Задачей данного исследования является нахождение ответов на эти вопросы при изучении легкой, средней и тяжелой нефтей Кувейта и тяжелой нефти сорта Мауа (Мексика).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Реактивы и образцы асфальтенов. Толуол и *н*гептан (ЧДА) приобретены в компании Fisher Scientific и использованы без дополнительной очистки. Образцы асфальтенов получены экстракцией из пяти различных нефтей, проведенной по стандартной методике IP 143/01 (табл. 1) [6, 13]. Полученные образцы были промыты чистым гептаном в аппарате Сокслета для удаления остаточных углеводородов и смол. Подробная информация о процессе экстракции, проведенном в данном исследовании, приведена в литературе [14].

Инфракрасная спектроскопия. Асфальтены были проанализированы на ИК-спектрометре с Фурье преобразователем Shimadzu IRTracer-100, оснащенным приставкой нарушенного полного внутреннего отражения с призмой на основе кристалла германия. Твердые асфальтены были предварительно измельчены в ступке для обеспечения необходимого контакта с кристаллом. Для получения спектров Фурье-ИК НПВО (4000–500 см⁻¹) с разрешением 1 см⁻¹ были обработаны 64 результата сканирования образцов. Базовая линия спектров скорректирована с помощью программы Shimadzu LabSolutions IR Spectrum.

Для получения Фурье-ИК-спектров диффузного отражения измельченных асфальтенов в диапазоне от 4000 до 400 см⁻¹ с разрешением 4 см⁻¹ были обработаны 64 результата сканирования, полученные с помощью спектрометра Bruker Vertex 80, оснащенного DTG детектором. Смесь образца асфальтенов и KBr была приготовлена для анализа согласно стандартной методике и помещена в прободержатель. Итоговые спектры диффузного отражения получены после отсечения фонового сигнала с помощью програмного обеспечения OPUS.

Рамановская спектроскопия. Образцы асфальтенов были измельчены до мелкого порошка. Исследования были проведены на рамановском спектрометре Bruker Senterra, оснащенном тринокулярной насадкой с видеокамерой, полученные изображения были перенаправлены в программу OPUS 7.5 (Senterra). Рамановский спектрометр с 50-кратным объективом для фокусировки лазера с длиной волны 488 нм и аккумулирования рассеянного света был использован в режиме обратного рассеяния. Для фиксации сигнала выбран высокочувствительный ССД-детектор с разрешением 1024 × 256 пикселей, термоэлектрически охлажденный до -70°С. Все спектры получены в диапазоне 90-4400 см⁻¹. После корректировки базовой линии для получения оптимального числа полос, необходимого для идентификации пика, были использованы функции Гаусса и Лоренца, ширина пика была измерена на середине высоты. Были зафиксированы положение пика, ширина, высота и интегральная площадь.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Анализ спектров Фурье-ИК НПВО. Спектры асфальтенов имеют как сходства, так и определенные различия (см. рис. 1 и табл. 2) [9, 15–17].

Симметричное/ассиметричное валентное и деформационное колебания метиленовых групп проявляются в виде наиболее интенсивных полос в районе 2920/2850 см⁻¹ и 1456/1373 см⁻¹ соответственно. Сигналы, располагающиеся между 865 и 680 см⁻¹, соответствуют деформационным колебаниям ароматических С-Н-групп [9, 17]. Также в спектрах можно наблюдать другие сигналы, общие для всех образцов: полосы валентных колебаний сульфоксидных S=O-связей, наблюдаемые при 1028 см⁻¹ [16, 19], полосы около 1695 см⁻¹, соответствующие валентным колебаниям карбонильных С=О-групп, и полосы полиароматических соединений между 1570 и 1590 см⁻¹. Спектры образцов асфальтенов с номерами 2, 4 и 5, в отличие от прочих, имеют полосу около 750 см⁻¹, принадлежащую внеплоскостным колебаниям ароматических С-Н-связей [16]. В то же время полоса при волновом числе 690 см⁻¹, возникающая также вследствие внеплоскостных колебаний аромати-

Рис. 1. Спектры Фурье-ИК НПВО асфальтенов, выделенных из трех различных тяжелых и двух легких нефтей (а) и отдельно выделенная область "отпечатков пальцев" (б).

ческих С—Н-связей [9], наблюдается только в спектрах Фурье-ИК НПВО образцов 3, 4 и 5. Полоса при 1645.6 см⁻¹, присутствующая в спектре образца номер 5, не идентифицирована. Полосы в образцах 4 и 5 имеют схожую интенсивность, а образец 2 характеризуется наибольшей интенсивностью при 1028, 745, и 726 см⁻¹. Можно сказать, что в молекулах образца номер 2 содержится большее количество S=O-связей.

Анализ спектров Фурье-ИКС ДО. Прежде всего необходимо рассмотреть спектры Фурье-ИКС ДО (рис. 2 и табл. 3) [8, 20].

В области волновых чисел, равных 2923, 2905, 2852 и 1450 см⁻¹, находятся полосы поглощения

насыщенных углеводородов (см. рис. 2). Полосы в области между 3150 и 3000 см⁻¹ соответствуют валентным колебаниям ароматических C–H-связей, а в диапазоне волновых чисел 900–700 см⁻¹, в свою очередь, проявляются внеплоскостные деформационные колебания тех же связей. Наличие полос в интервале 1600 и 1580 см⁻¹ обусловлено валентными колебаниями C=C-связей в ароматических соединениях [8]. Ниже приведены другие пики, характерные для всех образцов: пики сульфоксидных групп при 1015–1025 см⁻¹; полосы возле 1359–1368 см⁻¹, обусловленные наличием связи между S и N; свободное валентное колебание N–H-связи в пирроле в виде полосы при 3400–3410 см⁻¹ [20] и полоса в диапазоне

НЕФТЕХИМИЯ том 60 № 4 2020

Положение пика, см $^{-1}$	Интерпретация	Номер образца	Ссылка
695.3; 692.9; 684.2	Внеплоскостное деформационное колебание аро- матических связей С–Н	3, 4 и 5	[8]
721.8; 726.6; 721.3; 726.1; 711.2	Внеплоскостное деформационное колебание связей С–Н в ароматических соединениях и деформационное (маятниковое) колебание связей С–Н и связей СН ₂ (линейные алканы с длиной цепи – 4 или более атомов С)	1, 2, 3, 4 и 5	[13]
749.8; 754.6; 744.5	Внеплоскостное деформационное колебание ароматических С–Н-связей	2,4и5	[13]
800.4; 800.9; 810.5; 812.5; 810.5	Внеплоскостное деформационное колебание ароматических С–Н-связей	1, 2, 3, 4 и 5	[16]
888.2; 873.2; 875.6; 863.1; 866.0	Внеплоскостное деформационное колебание ароматических С–Н-связей	1, 2, 3, 4 и 5	[16]
1028.0; 1028.5; 1026.1; 1025.6; 1034.2	Валентные колебания S=O в сульфоксидах	1, 2, 3, 4 и 5	[13]
1375.6; 1374.7; 1365.0; 1376.1; 1376.6	Деформационные колебания метиленовых групп	1, 2, 3, 4 и 5	[16]
1456.6; 1451.8; 1458.1; 1454.7; 1458.1	Деформационные колебания метиленовых групп	1, 2, 3, 4 и 5	[16]
1586.3; 1591.1; 1569.0; 1589.2; 1588.3	Полициклическая ароматика	1, 2, 3, 4 и 5	[18]
1645.6	_	5	
1702.0; 1697.2; 1695.3; 1699.6; 1699.6	Валентные колебания С=О групп	1, 2, 3, 4 и 5	[16]
2851.5; 2853.5; 2846.7; 2851.5; 2852.0	Симметричные валентные колебания метиленовых групп	1, 2, 3, 4 и 5	[16, 17]
2920.0; 2922.4; 2920.5; 2922.4; 2923.8	Асимметричные валентные колебания метиленовых групп	1, 2, 3, 4 и 5	[16]

Таблица 2. Полосы, полученные в спектрах Фурье-ИК НПВО асфальтенов, выделенных из нефти

1880—1888 см⁻¹, принадлежащая связи Аг—ОН. Полоса, лежащая возле 543.0 см⁻¹ и наблюдаемая только в спектрах Фурье-ИКС ДО образцов 4 и 5, объясняется валентными колебаниями С—S. Исходя из спектра Фурье-ИКС ДО образца номер 1, можно судить о наличии амидной группы, дающей полосу при 1674.2 см⁻¹. Принадлежность полос с низкой интенсивностью, лежащих между 3700 и 3880 см⁻¹ в спектрах образцов 4 и 5 и пика около 2719.0 см⁻¹, не выяснена.

Соотношения интегральных областей в спектрах Фурье-ИКС ДО асфальтенов были сопоставлены в пределах отдельно взятого спектра, но никак не между различными образцами (табл. 4). Широко распространенный подход обработки данных Фурье-ИК спектроскопии имеет дело именно с соотношениями, а не с абсолютными значениями [8].

Образцы 1, 2 и 3 имеют большее значение I_1 , чем асфальтены, выделенные из нефтей 4 и 5. Асфальтены тяжелых нефтей характеризуются бо́льшим отношением алифатических групп к ароматическим, чем асфальтены, полученные из легких нефтей. Значение I_2 для асфальтенов легких нефтей немного больше, чем для асфальтенов тяже-

НЕФТЕХИМИЯ том 60 № 4 2020

лых нефтей. Высокое значение I_3 , характерное для асфальтенов легких нефтей, в отличие от асфальтенов тяжелых нефтей, предполагает большую степень замещенности ароматических соединений легких нефтей.

Анализ спектров комбинационного рассеяния. Рамановские спектры асфальтенов приведены ниже (см. рис. 3 (а, б) и табл. 5 (а, б)).

Полоса D1 при 1345 см⁻¹ возникает вследствие искаженного внеплоскостными дефектами и гетероатомами вибрационного движения атомов углерода, находящихся в *sp*²-гибридном состоянии в ароматических кольцах. В свою очередь валентная вибрация *sp*²-гибридизованной С-С-связи в обычных полиароматических структурах проявляется в виде полосы G, предполагающей существование некоторого упорядочения ароматических слоев в асфальтенах [11]. Наличие полосы D2 при 1602 см⁻¹ в виде небольшого пика, перекрывающегося со следующей интенсивной полосой G, можно объяснить внедрением графенового фрагмента или искажением микроструктуры, вызванным наличием гетероатома или атома металла [10]. Полоса, обозначенная как D3, представляет собой широкий пик углеродистого вещества с низ-

Рис. 2. Спектры Фурье-ИКС ДО асфальтенов, выделенных из трех различных тяжелых и двух легких нефтей.

кой степенью кристалличности, лежащий около 1500 см⁻¹. Возникновение пика объясняется дефектами в ароматических слоях, таких как тетраэдрический атом углерода. В случае асфальтенов, возникновение полосы D3 в спектре говорит о неупорядоченности молекулярной упаковки [10, 12]. Полоса D1 непосредственно связана с вибрационными состояниями на границе микрокристаллических структур, например на периферии ароматических систем асфальтенов [23]. Поэтому при увеличении доли краевых атомов, интенсивность полосы D1 также растет. Использование логометрического метода позволяет оценить средний размер ароматических ядер асфальтенов [24]. Модель количественного описания с использованием уравнения, связывающего средний размер графитоподобного фрагмента и соотношение площадей полос G и D1, была предложена Tuinstra F. и Koenig J.L. [24]:

Диаметр,
$$L_a(HM) = 4.4(I_G/I_{D1})$$
,

где I_G и I_{D1} – интегральная площадь полос G и D1 соответственно (табл. 5а, 5б). Расчет как с применением функции Гаусса, так и функции Лоренца приводит к получению более высоких значений L_a асфальтенов, выделенных из легких нефтей (см. табл. 5а, б). При аппроксимации функцией Гаусса L_a асфальтенов легких нефтей оказывается на 54% больше L_a асфальтенов тяжелых нефтей, а при аппроксимации функцией Лоренца – почти на 49%. Большие значения L_a асфальтенов 4 и 5 свидетельствуют о том, что размер ароматических ядер асфальтенов легких нефтей больше, чем в асфальтенах среднетяжелых и тяжелых нефтей. Более высокие значения L_a связаны с нестабильно-

стью и склонностью к агрегации асфальтенов [25]. Чем больше количество сконденсированных колец в ароматическом центре, тем сильнее выражена способность к самоассоциации и тем выше скорость осаждения [11]. Значения L_a асфальтенов среднетяжелых и тяжелых нефтей находятся в пределах одного и того же диапазона, не зависящего от аппроксимирующей функции, и имеют сходство с литературными данными ([12], ссылки внутри [12]). На основе анализа выделенных полос можно судить о высокой упорядоченности упаковки, характерной для твердой фазы. Полоса D1 может соответствовать более мелким ароматическим фрагментам с краевыми дефектами. Представление о разупорядочении в полосе D1 предполагает небольшое плоское ароматическое ядро с дефектной границей.

Соотношение алифатических и ароматических групп, как было показано ранее при анализе спектров Фурье-ИКС ДО, ниже для образцов асфальтенов 4 и 5. Аналогичные результаты получены при анализе спектров комбинационного рассеяния — средний молекулярный размер ароматических ядер больше для образцов 4 и 5, что говорит о согласованности результатов, полученных методом Фурье-ИКС ДО и рамановской спектроскопии. В целом, настоящие результаты Фурье-ИК спектроскопии диффузного отражения и спектроскопии комбинационного рассеяния отвечают модели Йена–Муллинса, используемой для описания асфальтенов легких, среднетяжелых и тяжелых нефтей.

Таким образом, анализ спектров Фурье-ИК НПВО показывает, что асфальтены в общем случае

СПЕКТРОСКОПИЧЕСКИЙ АНАЛИЗ АСФАЛЬТЕНОВ НЕФТИ

Положение пика, см ⁻¹	Интерпретация	Образцы	Ссылка
491.8; 482.2	_	4и5	
543.0	Валентные колебания связи C–S	4и5	[13]
585-570	Валентные колебания связи C–S	1, 2, 3 и 4	[13]
725-745	Внеплоскостные деформационные колебания Ar–H	1, 2, 3 4, и 5	[21]
790-805	Внеплоскостные деформационные колебания Ar–H	1, 2, 3, 4 и 5	[21]
865-850	Внеплоскостные деформационные колебания Ar–H	1, 2, 3, 4 и 5	[21]
1015-1025	R–SO–R	1, 2, 3, 4 и 5	[13]
1359-1368	R–SO ₂ –N	1, 2, 3, 4 и 5	[13]
1440-1450	Деформация С–Н-связи	1, 2, 3, 4 и 5	[21, 22]
1585.4	Полициклическая ароматика	1, 2 и 3	[21, 22]
1597.0	Валентные колебания ароматических С=С-связей	5	[21, 22]
1687.7; 1689.6	Валентные колебания карбонильных С=О-групп	2и5	[21, 22]
1674.2	Амид	1	[13]
1880-1888	Ar–OH	1, 2, 3, 4 и 5	[13]
2358.0	_	4	
2719.0	_	1, 2, 3, 4 и 5	
2852.0	Симметричные валентные колебания CH ₃ -группы	1, 2, 3, 4 и 5	[21, 22]
2905.0	Валентные колебания связи С–Н	1, 2, 3, 4 и 5	[21, 22]
2923.1	Асимметричные валентные колебания CH ₂ -группы	1, 2, 3, 4 и 5	[21, 22]
3045.0-3063.0	Валентные колебания связи Ar–H	1, 2, 3, 4 и 5	[22]
3404.0-3460.0	Пиррол, свободное валентное колебание NH	1, 2, 3, 4 и 5	[13]
3761.1; 3736.0	_	4и5	
3818.9; 3807.4	_	4и5	
3878.7; 3871.0	_	4и5	

Таблица 3. Полосы, полученные в спектрах Фурье-ИКС ДО асфальтенов, выделенных из сырой нефти

Таблица 4. Структурные показатели Фурье-ИКС ДО

Образец	\mathbf{I}_1	I_2	I ₃
1	10.3	2.9	0.3
2	10.6	3.0	0.3
3	12.7	3.1	0.3
4	6.5	3.4	0.5
5	7.0	3.3	0.5

 $\overline{I_1 = I_{A~(3000-2800)}/I_{A~(1650-1520)}}$ – показатель соотношения алифатических и ароматических групп, $I_2 = I_{A~(3000-2800)}/I_{A~(900-700)}$ – показатель доли алифатических и ароматических атомов водорода, $I_3 = I_{A~(1650-1520)}/I_{A~(900-700)}$ – показатель степени замещенности и/или сконденсированности ароматических колец.

НЕФТЕХИМИЯ том 60 № 4 2020

содержат ароматические углеводороды, карбонильные С=О-группы и сульфоксиды. Асфальтены 2, 4 и 5 имеют полосу около 750 см⁻¹, отвечающую внеплоскостным деформационным колебаниям ароматических С-Н-связей, а полоса при 690 см⁻¹, также характерная для внеплоскостных деформационных колебаний ароматических С-Н-связей, наблюдается только в спектрах Фурье-ИК НПВО образцов 3, 4 и 5. В сравнении с образцами 4 и 5 асфальтены с номерами 1, 2 и 3 характеризуются большим значением I₁. Следовательно, асфальтены тяжелых и среднетяжелых нефтей отличаются большим значением отношения количества алифатических групп к ароматическим, чем асфальтены легких нефтей. Величина I₂ (соотношение числа алифатических и ароматических атомов водорода) для асфальтенов легких нефтей выше по сравнению с образцами 1, 2 и 3. Значение I₃ для

Рис. 3. Нескорректированные средние спектры комбинационного рассеяния асфальтенов (а). Характерный Рамановский спектр образца номер 2 со скорректированной базовой линией и с аппроксимацией функцией Лоренца (б).

асфальтенов легких нефтей также больше, чем I_3 в спектрах асфальтенов 1, 2 и 3. Степень замещения ароматических фрагментов в асфальтенах легких нефтей относительно выше, чем в тяжелых и среднетяжелых. Значения L_a асфальтенов среднетяжелых и тяжелых нефтей лежат в одном диапазоне, не зависящем от вида аппроксимирующей функции (гауссовой или лоренцевой). Для асфальтенов легких нефтей L_a на 54% больше, чем L_a асфальтенов тяжелых и среднетяжелых нефтей, при использовании функции Гаусса для обработки результатов спектроскопии комбинационного рассеяния и на 49% больше при использовании функции Лоренца. В спектрах Фурье-ИКС ДО отношение количества алифатических групп к ароматическим меньше для асфальтенов, выделенных из легкой нефти (образцы 4 и 5). Полученные результаты свидетельствуют в пользу модели Йена– Маллинса при описании химической структуры асфальтенов.

ФИНАНСИРОВАНИЕ

Исследование было профинансированно Кувейтским институтом научных исследований. Номер проекта – PP066K.

Образец	Обозначение	Положение полосы, см $^{-1}$	Ширина, см $^{-1}$	Интегральная интенсивность	L _а , нм
1	D1	1369	257	425071	0.94
		1558	108	126347	
	G	1589	64	91042	
2	D1	1372	266	375	0.99
		1544	97	66	
	G	1588	70	105	
		1799	34	3	
3	D1	1368	266	367	0.83
	D2	1562	104	99	
	G	1594	58	69	
4	D1	1347	223	279	1.21
	D3	1459	40	6	
	G	1556	103	77	
	D2	1601	54	88	
5	D1	1336	205	212	1.64
		1544	106	49	
	G	1595	54	79	

Таблица 5а. Анализ рамановских спектров (функция Гаусса) асфальтенов и расчетный диаметр ароматического фрагмента, L_a

Таблица 56. Анализ рамановских спектров (функция Лоренца) асфальтенов и расчетный диаметр ароматического фрагмента, L_a

Образец	Обозначение	Положение полосы, см $^{-1}$	Ширина, см ⁻¹	Интегральная интенсивность	L _a , нм
1	D1	1363	200	504978	1.03
		1549	78	153452	
	G	1590	44	118122	
2	D1	1349	184	445504	0.82
	D3	1477	114	109484	
		1561	57	140863	
	G	1596	38	83135	
3	D1	1349	187	376	0.84
		1484	119	84	
		1566	57	106	
	G	1599	36	72	
4		1257	54	15	1.59
	D1	1339	164	285	
	D3	1458	164	86	
	G	1580	59	103	
	D2	1605	34	59	
5	D1	1333	181	320	1.10
	D3	1487	142	48	
	G	1576	54	80	
	D2	1602	34	61	

БЛАГОДАРНОСТИ

Мы выражаем благодарность Кувейтскому институту научных исследований.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Salim Ok, ORCID: http://orcid.org/0000-0003-1992-7781

Navvamani Rajasekaran, ORCID: http://orcid.org/ 0000-0003-2589-3696

Mohamed A. Sabt, ORCID: http://orcid.org/0000-0002-7094-5195

Gils Abraham Joseph, ORCID: http://orcid.org/0000-0003-4844-8288.

СПИСОК ЛИТЕРАТУРЫ

- Barrera D.M., Ortiz D.P., Yarranton H.W. // Energy Fuels. 2013. V. 27. P. 2474.
- Rashid Z., Wilfred C.D., Gnanasundaram N., Arunagiri A., Murugesan T. // J. Petrol. Sci. Eng. 2019. V. 176. P. 249.
- 3. Adams J.J. // Energy Fuels. 2014. V. 28. P. 2831.
- Behbahani T.J., Miranbeigi A.A., Sharifi K., Behbahani Z.J. // Petrol. Chemistry. 2018. V. 58. P. 622.
- 5. AlHumaidan F.S., Hauser A., Rana M.S., Lababidi H.M.S., Behbehani M. // Fuel. 2015. V. 150. P. 558.
- 6. Majumdar R.D., Gerken M., Mikula R., Hazendonk P. // Energy Fuels. 2013. V. 27. P. 6528.
- Wang J., Ferguson A.L. // J. Phys. Chem. B. 2016. V. 120. P. 8016.

- 8. AlHumaidan F.S., Hauser A., Rana M.S., Lababidi H.M.S. // Energy Fuels. 2016. V. 30. P. 2892.
- 9. *Riley B. J., Lennard C., Fuller S., Spikmans V. //* Forensic Sci. Int. 2016. V. 266. P. 555.
- 10. Bouhadda Y., Bormann D., Sheu E., Bendedouch D., Krallafa A., Daaou M. // Fuel. 2007. V. 86. P. 1855.
- 11. Riedeman J.S., Kadasala N.R., Wei A., Kenttamaa H.I. // Energy Fuels. 2016. V. 30. P. 805.
- 12. *Abdallah W.A., Yang Y. //* Energy Fuels. 2012. V. 26. P. 6888.
- Mullins O.C. // Annual Rev. Anal. Chem. 2011. V. 4. P. 393.
- Ok S., Mahmoodinia M., Rajasekaran N., Sabti M.A., Lervik A., van Erp T.S., Cabriolu R. // Energy Fuels. 2019. V. 33. P. 8259.
- Huang J., Yuro R., Romeo G.A., Jr. // Fuel Sci. Technol. Int. 1995. V. 13. P. 1121.
- 16. Asemani M., Rabbani A.R. // Geosci. J. 2016. V. 20. P. 273.
- Gabrienko A.A., Lai C.H., Kazarian S.G. // Energy Fuels. 2014. V. 28. P. 964.
- 18. Grdadolnik J. // Acta Chim. Slov. 2002. V. 49. P. 631.
- 19. Petrova L.M., Abbakumova N.A., Foss T.R., Romanov G.V. // Petrol. Chemistry. 2011. V. 51. P. 262.
- 20. *Pretsch E., Buhlmann P., Baderstscher M.* Structure Determination of Organic Compounds. Berlin: Springer, 2009. 4th Ed.
- Durand E., Clemancey M., Lancelin J., Verstraete J., Espinat D., Quoineaud A. // Energy Fuels. 2010. V. 24. P. 1051.
- Maqbool T., Srikiratiwong P., Fogler H.S. // Energy Fuels. 2011. V. 25. P. 694.
- 23. Jawhari T., Roid A., Casado J. // Carbon. 1995. V. 33. P. 1561.
- 24. *Tuinstra F., Koenig J.L.* // Chem. Phys. 1970. V. 53. P. 1126.
- Daaou M., Bendedouch D., Bouhadda Y., Vernex-Loset L., Modaressi A., Rogalski M. // Energy Fuels. 2009. V. 23. P. 5556.

№ 4

2020