УДК 542.91:541.49+541.64:66.095.264.3-036.742

# НОВЫЕ ЭФФЕКТИВНЫЕ КАТАЛИТИЧЕСКИЕ СИСТЕМЫ НА ОСНОВЕ АЛКОКСИДНЫХ КОМПЛЕКСОВ ТИТАНА(IV) ДЛЯ СОПОЛИМЕРИЗАЦИИ ЭТИЛЕНА И ГЕКСЕНА-1

© 2020 г. В. А. Тускаев<sup>1, 2, \*</sup>, С. Ч. Гагиева<sup>1</sup>, А. С. Лядов<sup>3</sup>, Д. А. Курмаев<sup>1</sup>, Г. Г. Никифорова<sup>2</sup>, В. Г. Васильев<sup>2</sup>, С. В. Зубкевич<sup>1</sup>, Д. Сарачено<sup>5</sup>, А. И. Сизов<sup>1</sup>, В. И. Привалов<sup>4</sup>, Б. М. Булычев<sup>1</sup>

<sup>1</sup>Московский государственный университет имени М.В. Ломоносова, Химический факультет, Москва, 119992 Россия

<sup>2</sup>Институт элементоорганических соединений им. А.Н. Несмеянова РАН, Москва, 119991 Россия

<sup>3</sup>Институт нефтехимического синтеза им. А.В. Топчиева РАН, Москва, 119991 Россия

<sup>4</sup>Институт общей и неорганической химии им. Н.С. Курнакова РАН, Москва, 119991 Россия

<sup>5</sup>Высший химический колледж РАН, Москва, 119991 Россия

\**E-mail: tuskaev@yandex.ru* Поступила в редакцию 25.11.2019 г. После доработки 01.03.2020 г.

Принята к публикации 11.03.2020 г.

Исследована каталитическая активность бис-(изопропоксо)титановых(4+) комплексов с 1,2-диолатными лигандами, активированных хлоридами алкилалюминия и дибутилмагнием, в сополимеризации этилена и гексена-1. Изучено влияние структуры прекатализатора и состава алюминийорганического активатора на каталитическую активность, включение гексена-1 и микроструктуру сополимеров. Полученные сополимеры охарактеризованы с помощью дифференциальной сканирующей калориметрии (ДСК), гель-проникающей хроматографии и <sup>13</sup>С ЯМР. Комплексы с перфторфенильными заместителями были наиболее активными в данной серии и обеспечивали наибольшую степень включения сомономера. Замена Et<sub>2</sub>AlCl на Et<sub>3</sub>Al<sub>2</sub>Cl<sub>2</sub> приводит к значительному снижению как производительности, так и включения гексена-1 в сополимер. Исследованы механические свойства полученных сополимеров.

*Ключевые слова:* соединения титана, лиганды ОО-типа, этилен, гексен-1, сополимеризация **DOI:** 10.31857/S0028242120040140

Сополимеры этилена с высшими олефинами, в особенности, линейный полиэтилен низкой плотности (LLDPE, ПЭНП) и термопластичные эластомеры, играют важную роль в промышленности в силу высокой прочности и низкой плотности получаемых из них материалов, а также экономической эффективности производства [1]. Несмотря на успешное использование в промышленном производстве полимерных материалов классических катализаторов Циглера-Натты, все большее применение стали находить металлоценовые и постметаллоценовые катализаторы [2]. При этом значительные усилия были направлены на поиск новых, более эффективных постметаллоценовых катализаторов для синтеза сополимеров с требуемыми свойствами. Применение комплексов переходных металлов с феноксииминными (FI) [3]. тиобис(фенолятными) [4], дитиобис(фенолятными) [5], иминопиррольными [6], 2-имино- и 2,6бис-(имино)-пиридильными лигандами [7] в качестве катализаторов сополимеризации всесторонне освещено в цитированных обзорах.

В большой группе постметаллоценовых катализаторов, комплексы переходных металлов, стабилизированные алкоксидными лигандами, являются, вероятно, наименее изученными. На рис. 1 приведены структуры этих комплексов, способных катализировать сополимеризацию этилена с олефинами. Так, диастереомеры циркониевых комплексов с аминотриолатными лигандами (соединения А, рис. 1) в присутствии активатора метилалюмоксана (МАО) катализируют сополимеризацию этилена и циклических олефинов. Активность каталитических систем не превышала 309 кг полимера/моль катализатора ч.; процент включения норборнена зависел от типа симметрии комплекса – до 40% для комплекса с С3-симметрией и до 25% для прекатализатора с псевдо-Сsсимметрией [8]. Фениламино-алкоксититановые комплексы (соединения В, рис. 1) в присутствии МАО также катализируют сополимеризацию этилена и норборнена; стерически менее нагруженный комплекс (R = Me) обеспечивает большее включение норборнена (до 43 мол. %), в сравнении



**Рис. 1.** Структуры комплексов переходных металлов с алкоксидными или феноксид-алкоксидными лигандами, способных катализировать сополимеризацию этилена с различными олефинами.

с изопропильным аналогом [9]. Ряд комплексов ванадия(5+) (соединения С и D, рис. 1), с тетрадентатыми бис-феноламиноспиртовыми или фениламинодиольными лигандами в присутствии Et<sub>2</sub>AlCl катализируют полимеризацию этилена и его сополимеризацию с норборненом [10]. Комплекс дихлорида титана с 2-( $\alpha$ , $\alpha$ -дифенилгидроксиметил)-8-гидроксихинолином (соединение E, рис. 1), активированный смесью {3AlEt<sub>2</sub>Cl/MgBu<sub>2</sub>}, катализирует сополимеризацию этилена и 1-октена с активностью до 2040 кг/мольТі ч; степень включения сомономера достигает 10.4% [11].

Прекатализаторы с лигандным окружением, содержащим только донорные кислородные атомы, известны в меньшей степени. Комплекс дихлорида титана с феноксид-алкоксидным лигандом (соединение F, рис. 1) в присутствии МАО или бинарного сокатализатора {3AlEt<sub>2</sub>Cl + Bu<sub>2</sub>Mg} катализирует сополимеризацию этилена с гексеном-1, октеном-1 и деценом-1 [12]. Титановые комплексы G с фторированным ТАДДОЛьнымлигандом в присутствии МАО катализируют получение стереоблочного высокомолекулярного этилен-пропиленового каучука с включением пропиленовых звеньев до 25 мол. % [13].

Ранее использовали титан-дихлоридные и титан-диалкоксидные комплексы с 1,4- и 1,2-диолатными лигандами для получения сверхвысокомолекулярного полиэтилена (СВМПЭ) с низкой степенью переплетения макромолекул [14, 15]. В ряде случав ди-(изопропоксо)-комплексы превосходили по активности дихлоридные аналоги, что, по-видимому, объясняется спецификой их активации смесями алкилалюминийхлоридов и дибутилмагния. В отсутствие магнийорганики, алкоксиды титана с алюминийорганическими соединениями являются катализаторами димеризации или олигомеризации олефинов [16–18]. В работе Л.А. Ришиной с соавт. показано, что добавление Bu<sub>2</sub>Mg к смеси Ti(OизоPr)<sub>4</sub> + Et<sub>2</sub>AlCl формирует каталитическую систему, способную сополимеризовать этилен и гексен-1 [19].

Основная цель настоящей работы — изучение каталитической активности серии 1,2-диолатных алкоксотитановых комплексов в сополимеризации этилена и гексена-1, а также поиск закономерностей, связывающих структуру прекатализатора и состав активатора с продуктивностью каталитической системы и свойствами получаемого полимера.

## ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез и кристаллические структуры алкоксокомплексов Ti(4+) **1–6** (рис. 2) приведены в рабо-

НЕФТЕХИМИЯ том 60 № 4 2020



Рис. 2. Структуры комплексов титана(4+), использованных в настоящей работе.

те [15]. Аргон ("ос. ч.") и этилен (Lindegas) подвергали финишной очистке пропусканием через колонки SuperClean<sup>™</sup> GasFilters. Толуол ("х. ч.") дополнительно очищали согласно известной методике [14]. Содержание воды в растворителях периодически проверяли кулонометрическим титрованием по Карлу–Фишеру при помощи аппарата Methrom 756 KF. Растворы диэтилалюминийхлорида, этилалюминийсесквихлорида и дибутилмагния в гептане использовали без дополнительной очистки. Спектры ЯМР <sup>1</sup>H, <sup>13</sup>С регистрировали на приборе "Bruker Avance-400".

#### Сополимеризация этилена и гексена-1

Сополимеризацию осуществляли в стальном реакторе (Parr Instrument Co.) объемом 450 см<sup>3</sup>. Предварительно реактор вакуумировали в течение 1 ч при 90°С, охлаждали до 30°С, добавляли при перемешивании 100 мл толуола и 10 мл гексена-1, насыщали этиленом, вводили необходимое количество сокатализатора —  $\{3Et_2AlCl + Bu_2Mg\}$ или  $\{1.5Et_3Al_2Cl_3 + Bu_2Mg\}$  и перемешивали 5 мин. Полимеризацию начинали добавлением к реакционной смеси раствора прекатализатора в 1 мл толуола. Давление этилена – 0.17 МПа поддерживали постоянным на протяжении всего процесса. Полимеризацию прекрашали стравливанием избыточного давления и добавлением в реактор 10%-ного раствора НСІ в этиловом спирте. Полимерный продукт отфильтровывали, многократно промывали водой и спиртом, сушили в вакууме при 60°С до постоянной массы.

#### Определение физико-химических свойств полученных полимеров

Калориметрические исследования проводили на калориметре DSC-822e ("Mettler-Toledo") при скорости нагрева 10°С/мин в атмосфере аргона. Температуру плавления определяли по второму плавлению, так как на первое влияет механическая и термическая "история" образцов. Молекулярно-массовые характеристики ( $M_w$ ,  $M_n$ , MMP) полимеров изучали для растворов полимеров в 1,2,4-трихлорбензоле при 135°С методом ГПХ на приборе Waters GPCV-2000, снабженном двумя колонками (PLgel, 5µ и Mixed-C, 3007.5 мм) и рефрактометром. Скорость элюирования составляла 1 мл мин<sup>-1</sup>.

Молекулярные массы полимеров определяли с использованием универсальной калибровочной зависимости относительно полистирольных стандартов: для полистирола K = 2.88  $10^{-4}$ ,  $\alpha = 0.64$ ; для полиэтилена K = 6.14  $10^{-4}$ ,  $\alpha = 0.67$ .

<sup>13</sup>С ЯМР-спектры этилен-гексеновых сополимеров (~5 мас. % растворв *о*-дихлорбензоле) регистрировали при 150°С на спектрометре Bruker Avance-400 при 10.613 МГц. Время релаксации составляло 15 с, количество сканирований варьировалось от 500 до 2000. Константы сополимеризации для этилена и гексена-1 были рассчитаны с использованием модели Маркова первого порядка по расчету экспериментальных определений триад по следующимуравнениям [20]:

$$r_{\rm H} = \frac{(2[\rm HHH] + [\rm HHE])\frac{Xe}{Xh}}{2[\rm EHrE] + [\rm HHE]},$$
$$r_{\rm E} = \frac{2[\rm EEE] + [\rm EEH]}{(2[\rm EHE] + [\rm HEE])\frac{Xe}{Xh}},$$

где Е — этилен, Н — гексен-1,  $r_{\rm E}$ ,  $r_{\rm H}$  — константы сополимеризации для этилена и гексена-1, Хе и Хh — концентрация этилена и гексена-1 в исходной смеси мономеров, моль/л.

Механические характеристики полученных пленок сополимеров измеряли на универсальной испытательной машине LLOYD Instruments LR. Скорость растяжения составляла 50 мм/мин. Образцы готовили методом прессования полимера под давлением 0.55 МПа при температуре выше температуры плавления на 10°С. В результате были

550

| Опыт | Комплекс | Сокатализатор <sup>b</sup>                                          | A <sup>c</sup> | Содержание гексена-1,<br>моль % <sup>d</sup> | $T_m^{e}, {}^{\circ}\mathrm{C}$ | χ <sup>f</sup> , % | $M_w, M_n^g$         | $M_w/M_n$ |
|------|----------|---------------------------------------------------------------------|----------------|----------------------------------------------|---------------------------------|--------------------|----------------------|-----------|
| 1    | 1        | Et <sub>2</sub> AlCl/Bu <sub>2</sub> Mg                             | 2571           | 7.18                                         | 127.03                          | 12.52              | $1.02 \times 10^{5}$ | 4.34      |
|      |          |                                                                     |                |                                              |                                 |                    | $2.34 \times 10^{4}$ |           |
| 2    | 1        | $Et_{3}Al_{2}Cl_{3}/Bu_{2}Mg$                                       | 1086           | 1.17                                         | 129.67                          | 38.43              | $4.8 \times 10^{5}$  | 13.56     |
|      |          |                                                                     |                |                                              |                                 |                    | $4.27 \times 10^{4}$ |           |
| 3    | 2        | Et <sub>2</sub> AlCl/Bu <sub>2</sub> Mg                             | 4914           | 20.12                                        | 127.70                          | 3.43               | _                    | —         |
| 4    | 2        | $Et_3Al_2Cl_3/Bu_2Mg$                                               | 2714           | 13.29                                        | 127.74                          | 5.96               | —                    | —         |
| 5    | 3        | Et <sub>2</sub> AlCl/Bu <sub>2</sub> Mg                             | 4857           | 18.10                                        | 127.53                          | 3.62               | _                    | _         |
| 6    | 3        | Et <sub>3</sub> Al <sub>2</sub> Cl <sub>3</sub> /Bu <sub>2</sub> Mg | 2143           | 8.42                                         | 125.53                          | 10.26              | _                    | _         |
| 7    | 4        | Et <sub>2</sub> AlCl/Bu <sub>2</sub> Mg                             | 3314           | 16.02                                        | 127.70                          | 2.69               | $0.9 \times 10^5$    | 5.59      |
|      |          |                                                                     |                |                                              |                                 |                    | $0.2 \times 10^4$    |           |
| 8    | 4        | Et <sub>3</sub> Al <sub>2</sub> Cl <sub>3</sub> /Bu <sub>2</sub> Mg | 1829           | 3.34                                         | 126.33                          | 31.17              | $4.1 \times 10^{5}$  | 15.75     |
|      |          |                                                                     |                |                                              |                                 |                    | $2.6 \times 10^4$    |           |
| 9    | 5        | Et <sub>2</sub> AlCl/Bu <sub>2</sub> Mg                             | 2171           | 7.71                                         | 121.11                          | 9.02               | $2.5 \times 10^5$    | 15.63     |
|      |          |                                                                     |                |                                              |                                 |                    | $1.6 \times 10^4$    |           |
| 10   | 5        | $Et_3Al_2Cl_3/Bu_2Mg$                                               | 1429           | 5.45                                         | 123.70                          | 19.18              | $3.8 \times 10^5$    | 20.0      |
|      |          |                                                                     |                |                                              |                                 |                    | $1.9 \times 10^4$    |           |
| 11   | 6        | Et <sub>2</sub> AlCl/Bu <sub>2</sub> Mg                             | 1429           | 2.83                                         | 126.40                          | 31.17              | —                    | —         |
| 12   | 6        | $Et_3Al_2Cl_3/Bu_2Mg$                                               | 1829           | 2.57                                         | 124.41                          | 24.30              | _                    | —         |

**Таблица 1.** Сополимеризация этилена и гексена-1 на комплексах  $1-6^a$ 

 $^a$  Сополимеризацию проводили в100 мл толуола; количество катализатора 5 × 10 $^{-6}$  моль, давление этилена — 0.17 МПа, время — 30 мин, температура  $-30^{\circ}$ С.

Молярное отношение [Al]/[Mg]/[Ti] = 300 : 100 : 1.

<sup>c</sup> Активность, кг сополим./моль Ті ч атм. <sup>d</sup> Определено по данным  $^{13}$ С ЯМР.

<sup>е</sup> Определено по данным ДСК; второе плавление.

 $^{f}$ Степень кристалличности определяли по данным ДСК,  $\chi = (\Delta H_m / \Delta H_m^0) \times 100\%$ , где  $\Delta H_m^0 = 293.0$  Дж/г [12].

<sup>*g*</sup> Определено по данным ГПХ.

получены прозрачные пленки одинаковой толщины

тра, что, в итоге, приводит к росту степени включения сомономера.

### РЕЗУЛЬТАТЫ И ИХ ОБСУЖЛЕНИЕ

По методике работы [15] были синтезированы кристаллические структуры алкоксо-комплексов Ti(4+) **1–6** (рис. 2):

В табл. 1 представлены наиболее значимые результаты изучения сополимеризации этилена и гексена-1. Все условия процесса сополимеризации – время, температура, давление этилена и молярные отношения Ti/Al/Mg были идентичны использованным для гомополимеризации этилена [15], что позволяет сравнивать особенности этих двух процессов. Для достижения более высокого уровня включения сомономера была использована достаточно высокая концентрация гексена-1 – 0.799 моль/л. Увеличение концентрации сомономера обычно сопровождается уменьшением концентрации этилена вблизи активного цен-

НЕФТЕХИМИЯ том 60 **№** 4 2020

Все комплексы в присутствии бинарных сокатализаторов { $3Et_2AlCl + Bu_2Mg$ } или { $1.5Et_3Al_2Cl_3 +$ + Bu<sub>2</sub>Mg} проявляли умеренную или высокую ак-

тивность в сополимеризации этилена с гексеном-1 (1086-4914 кг сополим./моль Тічатм). Как видно из результатов, представленных в табл. 1, лигандное окружение оказывает существенное влияние на каталитическую активность комплексов, которая уменьшается в следующем порядке:

 $2 (R = Ph, R_1 = C_6F_5) > 3 (R = R_1 = C_6F_5) > 4 (R =$  $= R_1 = CH_3 > 1 (R = R_1 = Ph) > 5 (R = R_1 = CF_3) > 6$  $(R = R_1 = CF_3, спирокомплекс)$  при использовании активатора {3Et<sub>2</sub>AlCl + Bu<sub>2</sub>Mg}. Замена диэтилалюминийхлорида в составе бинарного активатора на этилалюминийсесквихлорид, обладающий большей льюисовой кислотностью, меняет эту последовательность: 2 > 3 > 4 = 6 > 5 > 1. Однако, в обоих случаях, комплексы 2 и 3 с перфторфенильными фрагментами проявили как макси-



Рис. 3. Зависимость активности каталитических систем в гомополимеризации этилена (по данным работы [15]) и в сополимеризации этилена с гексеном-1 от состава каталитических систем.

мальную активность — 4914 и 4857 кг сополим./ моль Ті ч, так и наибольшую степень включения сомономера — гексена-1 (20.1 и 18.1%, соответственно). Для прекатализаторов 2 и 3 отчетливо проявился положительный эффект сомономера (продуктивность этих систем примерно в два раза превосходит показатели, зафиксированные в процессе гомополимеризации этилена [15]).

Комплексы **4**–**5** с алифатическими диольными лигандами показали заметно более низкую каталитическую активность по сравнению с комплексами **2**–**3**, содержащими перфторфенильные фрагменты. Интересно, чтокомплекс **4** с нефторированным лигандом, активированным  $Et_2AICl$ , превзошел фторированный аналог **5** как по производительности, так и по включению гексена-1.

Замена  $Et_2AlCl$  на  $Et_3Al_2Cl_2$  при прочих равных условиях полимеризации во всех случаях (кроме комплекса **6**) приводит к значительному снижению как производительности, так и включения гексена-1 (рис. 3, табл. 1). Тенденция  $Et_3Al_2Cl_3$ содержащего активатора увеличивать молекулярную массу полимера, наблюдаемая ранее при полимеризации этилена [14, 15], также проявляется для этилен-гексеновых сополимеров (табл. 1, сравни опыты 1 и 2; 9 и 10).

Полученные сополимеры, которые варьируются от полукристаллических до аморфных, характеризуются относительно высокими значениями молекулярных масс (0.9–4.8 × 10<sup>5</sup> Да) и широкими молекулярно-массовыми распределениями ( $M_w/M_n = 4.3-20.0$ ). Для сравнения, молекулярная масса полиэтилена, полученного на этих катализаторах в одинаковых условиях, варьировалась в диапазоне 1.08–7.73 × 10<sup>6</sup> [15]. На кривых ДСК сополимеров проявляется единственный пик в диапазоне 121.1–129.7°С, что значительно ниже температуры плавления гомополимеров (135–142°C [15]).

Заметной зависимости между степенью включения сомономера и температурой плавления не обнаружено. С ростом включения сомономера степень кристалличности уменьшается (рис. 4); такая зависимость типична [20].

Микроструктура этилен-гексеновых сополимеров оценивалась по распределению триад в <sup>13</sup>С ЯМР-спектрах по методу, предложенному J.C. Randall с соавт. [21, 22], результаты приведены в табл. 2.

Поскольку свойства и технологические характеристики (например, пластическое и эластомерное поведение) олефиновых сополимеров сильно зависят не только от количества включенного сомономера, но и от распределения сомономерных звеньев вдоль главной цепи [23], были оценены константы сополимеризации для этилена и гексена-1 (табл. 2). Распределения сомономеров для сополимеров, полученных с использованиемпредкатализаторов 2-3 с перфторированными фрагментами и активированных Et<sub>2</sub>AlCl, являются статистическими, так как произведение констант сополимеризации r<sub>E</sub>r<sub>H</sub> меньше 1 [24]. Напротив, для полимеров, полученных с комплексами 1, 4 и особенно со спиро-комплексом 6, эти значения превышают единицу, что указывает на наличие длинных последовательностей звеньев этилена. Действительно, эти полимеры характеризуются высокими значениями кристалличности и температур плавления. В целом, для всех полимеров, полученных с использованием  $Et_2AlCl$ , значение  $r_E$  значительно ниже, чем при использовании Et<sub>3</sub>Al<sub>2</sub>Cl<sub>2</sub>. Повидимому, это может объяснить более высокое включение сомономера прииспользовании активатора состава  $\{3Et_2AlCl + Bu_2Mg\}$ .

Для исследования механических характеристик синтезированных этилен-гексеновых сополимеров, были изготовлены прозрачные, одно-



**Рис. 4.** Кривые напряжение–деформация для пленок из этилен-гексеновых сополимеров, полученных с использованием комплексов **1–6**, активированных  $\{3Et_2AlCl + Bu_2Mg\}$  (слева) и  $\{1.5Et_3Al_2Cl_3 + Bu_2Mg\}$  (справа).

родные по толщине пленки, результаты исследования механических характеристик которых приведеныв табл. 3 и на рис. 4.

Деформация сополимеров с низким содержанием гексена типична для полукристаллических термопластов. С увеличением содержания сомономера (и уменьшением кристалличности) сополимеры проявляют меньшую устойчивость к деформации. Кривые напряжения—деформации для этих экспериментов показаны на рис. 4.

## ЗАКЛЮЧЕНИЕ

Алкоксо-титановые(4+) комплексы **1–6** с 1,2диолатными лигандами при активации  $\{3Et_2AlCl + Bu_2Mg\}$  или  $\{1.5Et_3Al_2Cl_3 + Bu_2Mg\}$  проявляют умеренную или высокую активность в сополимеризации этилена и гексена-1, образуя достаточно высокомолекулярные сополимеры со степенью включения гексена в пределах 1.17–20.12%. В отличие от высокоактивных бис-феноксииминных титановых комплексов (катализаторы FI), которые требуют больших количеств дорогого активатора метилалюмоксана, комплексы **1–6** "работают" в присутствии обычных алюминийорганических и магнийорганических соединений.

Использование смеси  $\{3Et_2AlCl + Bu_2Mg\}$  в качестве сокатализатора позволяет достичь более высоких значений активности и более высоких степеней включения сомономера посравнению со смесью  $\{1.5Et_3Al_2Cl_3 + Bu_2Mg\}$ .

Таблица 2. Распределение триад в <sup>13</sup>С ЯМР-спектрах этилен-гексеновых сополимеров<sup>а</sup>

| Опыт | Е, %  | Н, %  | Распределение триад, % |       |       |       |        |       |       | r    | <i>v v</i> |
|------|-------|-------|------------------------|-------|-------|-------|--------|-------|-------|------|------------|
|      |       |       | EEE                    | EEH   | HEH   | EHE   | HHE    | HHH   | 'E    | 'H   | ′Е′Н       |
| 1    | 0.928 | 0.072 | 0.752                  | 0.147 | 0.029 | 0.062 | 0.001  | 0.015 | 24.34 | 0.06 | 1.51       |
| 2    | 0.988 | 0.012 | 0.939                  | 0.042 | 0.007 | 0.023 | 0.001  | 0.001 | 87.16 | 0.02 | 1.39       |
| 3    | 0.799 | 0.201 | 0.412                  | 0.296 | 0.092 | 0.126 | 0.063  | 0.012 | 8.16  | 0.07 | 0.56       |
| 4    | 0.867 | 0.133 | 0.597                  | 0.212 | 0.058 | 0.088 | 0.008  | 0.037 | 14.48 | 0.11 | 1.62       |
| 5    | 0.819 | 0.181 | 0.448                  | 0.285 | 0.087 | 0.119 | 0.041  | 0.021 | 9.02  | 0.07 | 0.67       |
| 6    | 0.915 | 0.085 | 0.709                  | 0.172 | 0.035 | 0.073 | 0.006  | 0.006 | 19.97 | 0.03 | 0.59       |
| 7    | 0.839 | 0.160 | 0.365                  | 0.388 | 0.086 | 0.155 | 0.001  | 0.105 | 6.39  | 0.17 | 1.09       |
| 8    | 0.967 | 0.033 | 0.872                  | 0.080 | 0.015 | 0.029 | 0.009  | 0.001 | 46.22 | 0.04 | 1.89       |
| 9    | 0.923 | 0.077 | 0.713                  | 0.173 | 0.037 | 0.077 | 0.001  | 0.011 | 19.54 | 0.04 | 0.73       |
| 10   | 0.946 | 0.055 | 0.803                  | 0.121 | 0.022 | 0.049 | 0.001- | 0.019 | 31.50 | 0.09 | 3.11       |
| 11   | 0.972 | 0.028 | 0.890                  | 0.067 | 0.015 | 0.023 | 0.001  | 0.011 | 44.18 | 0.12 | 5.41       |
| 12   | 0.974 | 0.026 | 0.872                  | 0.087 | 0.015 | 0.026 | 0.001  | 0.023 | 52.62 | 0.22 | 11.68      |

<sup>а</sup> Нумерация соответствует табл. 1.

НЕФТЕХИМИЯ том 60 № 4 2020

#### ТУСКАЕВ и др.

| Опыт | Каталитическая система                                                | ε, % | σ, МПа | Опыт | Каталитическая система                                                | ε, % | σ, МПа |
|------|-----------------------------------------------------------------------|------|--------|------|-----------------------------------------------------------------------|------|--------|
| 1    | 1/Et <sub>2</sub> AlCl/Bu <sub>2</sub> Mg                             | 500  | 11     | 8    | 4/Et <sub>3</sub> Al <sub>2</sub> Cl <sub>3</sub> /Bu <sub>2</sub> Mg | 580  | 11     |
| 2    | 1/Et <sub>3</sub> Al <sub>2</sub> Cl <sub>3</sub> /Bu <sub>2</sub> Mg | 500  | 13     | 9    | 5/Et <sub>2</sub> AlCl/Bu <sub>2</sub> Mg                             | 340  | 7      |
| 3    | 2/Et <sub>2</sub> AlCl/Bu <sub>2</sub> Mg                             | 100  | 1      | 10   | 5/Et <sub>3</sub> Al <sub>2</sub> Cl <sub>3</sub> /Bu <sub>2</sub> Mg | 470  | 16     |
| 4    | 2/Et <sub>3</sub> Al <sub>2</sub> Cl <sub>3</sub> /Bu <sub>2</sub> Mg | 700  | 5      | 12   | 6/Et <sub>3</sub> Al <sub>2</sub> Cl <sub>3</sub> /Bu <sub>2</sub> Mg | 650  | 14     |
| 6    | 3/Et <sub>3</sub> Al <sub>2</sub> Cl <sub>3</sub> /Bu <sub>2</sub> Mg | 470  | 9      |      |                                                                       |      |        |

Таблица 3. Механические характеристики пленок из этилен-гексеновых сополимеров

<sup>а</sup> Нумерация опытов соответствует табл. 1.

Комплексы с перфторфенильными заместителями 2–3 проявляют более высокую активность и позволяют достичь более высоких степеней включения сомономера. Распределения сомономеров для сополимеров, полученных с этими комплексами, являются статистическими.

#### ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при финансовой поддержке Российского научного фонда (проект № 18-13-00375). Синтез комплексов 5 и 6 выполнен при финансовой поддержке Российского фонда фундаментальных исследований (проект № 19-03-00312). Исследования методом ДСК проведены при поддержке Министерства науки и высшего образования Российской Федерации в ИНЭОС РАН.

#### КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

#### ИНФОРМАЦИЯ ОБ АВТОРАХ

Тускаев Владислав Алиханович, к.фарм.н., ORCID: https://orcid.org/0000-0001-7182-462X

Гагиева Светлана Черменовна, к.х.н., ORCID: https://orcid.org/0000-0003-4654-9974

Лядов Антон Сергеевич, к.х.н., ORCID: https://orcid.org/0000-0001-9969-7706

Курмаев Дмитрий Альбертович, ORCID: https://onsrcid.org/0000-0002-6462-8230

Зубкевич Сергей Вадимович, ORCID: https://orcid.org/0000-0001-5371-0901

Сарачено Даниэле, ORCID: https://orcid.org/0000-0002-3290-1597

Сизов Александр Ильич, к.х.н., ORCID: https://orcid.org/0000-0002-8655-675X Булычев Борис Михайлович, д.х.н., ORCID: https://orcid.org/0000-0003-3999-3137

#### СПИСОК ЛИТЕРАТУРЫ

- 1. *Galli P., Vecelli, G.* // J. Polym. Sci. Part A. Polym. Chem. 2004. V. 42. P. 396.
- Baier M.C., Zuideveld M.A., Mecking S. // Angew. Chem. Int. Ed. 2014. V. 53. P. 9722. https://doi.org/10.1002/anie.201400799
- Makio H., Terao H., Iwashita A., Fujita T. // Chem. Rev. 2011. V. 111. P. 2363. Janas Z. // Coord. Chem. Rev. 2010. V. 254. P. 2227.
- Nakata N., Toda T., Ishii A. // Polym. Chem. 2011. V. 2. P. 1597.
- Mashima K., Tsurugi H. //J. Organomet. Chem. 2005. V. 690. P. 4414.
- 6. *Budagumpi S., Kim K.-H., Kim I. //* Coord. Chem. Rev. 2011. V. 255. P. 2785.
- 7. Padmanabhan S., Vijayakrishna K., Mani R. // Polym. Bull. 2010. V. 65. P. 13.
- 8. Vijayakrishna K., Sundararajan G. // Polymer. 2006. V. 47. P. 8289.
- Wu J.-Q., Mu J.S., Zhang S.-W., Li Y.-S. // J. Polym. Sci. Part A. Polym. Chem. 2010. V. 48. P. 1122.
- Kolosov N.A., Tuskaev V.A., Gagieva S.C., Fedyanin I.V., Khrustalev V.N., Polyakova O.V., Bulychev B.M. // Eur. Polym. J. 2017. V. 87. P. 266.
- Rishina L.A., Lalayan S.S., Gagieva S.Ch., Tuskaev V.A., Shchegolikhin A.N., Shashkin D.P., Kissin Y.V. // J. Res. Updates in Polym. Sci. 2014. V. 3. P. 216.
- Rishina L.A., Galashina N.M., Gagieva S.Ch., Tuskaev V.A., Bulychev B.M., Belokon' Yu.N. // Polym. Sci. Ser. A. 2008. V. 50. P. 110.
- Gagieva S.Ch., Tuskaev V.A., Fedyanin I.V., Buzin M.I., Vasil'ev V.G., Nikiforova G.G., Afanas'ev E.S., Zubkevich S.V., Kurmaev D.A., Kolosov N.A., Mikhaylik E.S., Golubev E.K., Sizov A.I., Bulychev B.M. // J. Organomet. Chem. 2017. V. 828. P. 89.
- 14. Tuskaev V.A., Gagieva S.Ch., Kurmaev D.A., Khrustalev V.N., Dorovatovskii P.V., Mikhaylik E.S., Golubev E.K., Buzin M.I., Zubkevich S.V., Nikiforova G.G., Vasil'ev V.G.,

НЕФТЕХИМИЯ том 60 № 4 2020

*Bulychev B.M., Magomedov K.F.* // J. Organomet. Chem. 2018. V. 877. P. 85.

- 15. Skupiñska J. // Chem. Rev. 1991. V. 91. P. 613.
- Illai S.M., Ravindranathan M., Sivaram S. // Chem. Rev. 1986. V. 86. P. 353.
- 17. Cazaux J.-B., Braunstein P., Magna L., Saussine L., Olivier-Bourbigou H. // Eur. J. Inorg. Chem. 2009. P. 2942.
- Rishina L.A., Kissin Y.V., Lalayan S.S., Krasheninnikov V.G., Perepelitsina E.O., Medintseva T.I. // Polym. Sci. Ser. B. 2016. V. 58. P. 152.
- 19. Kiesewetter E.T., Waymouth R.M. // Macromolecules 2013. V. 46. P. 2569.
- 20. Quijada R., Scipioni R.B., Mauler R.S., Galland G.B., Miranda M.S.L. // Polym. Bull. 1995. V. 35. P. 299.
- 21. *Hsieh E.T., Randall J.C.* // Macromolecules. 1982. V. 15. P. 1402.
- 22. *Randall J.C.* // J. Macromol. Sci. Part C. Polym. Rev. 1989. V. 29. P. 201.
- 23. Yu T.C. // Polym. Engin. Sci. 2001. V. 41. P. 656-671.
- 24. Galimberti M., Piemontesi F., Fusco O., Camurati I., Destro M. // Macromolecules. 1998. V. 31. P. 3409.