УДК 665.652.72+544.478

СИНТЕЗ КАТАЛИЗАТОРА, ПОЛУЧЕННОГО С ИСПОЛЬЗОВАНИЕМ МЕТАЛЛОРГАНИЧЕСКИХ КАРКАСОВ, ДЛЯ ПРОЦЕССА ФИШЕРА–ТРОПША¹

© 2020 г. Н. Janani^{1, *}, А. Rezvani^{1, **}, А. А. Mirzaei^{1, ***}

¹Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, Zahedan, 98135-674 Iran *E-mail: halimehjanani@yahoo.com **E-mail: rezvani2001ir@yahoo.ca ***E-mail: mirzaei@hamoon.usb.ac.ir Поступила в редакцию 10.04.2019 г. После доработки 24.04.2020 г.

Принята к публикации 12.05.2020 г.

В данной работе для синтеза нового Co–Ni-катализатора процесса Фишера–Тропша использовали металлорганический каркас (MOK). Катализатор Co–Ni был приготовлен методом термоокислительной обработки смеси глицин–MOK: смесь нагревали в трубчатом реакторе в токе воздуха до 750°C (скорость нагрева 2°C/мин) в течение 6 ч. После прокаливания образец представлял собой сыпучий пористый материал низкой плотности, состоящий из регулярных кубических кристаллов. Значения удельной поверхности и объема пор полученного – материала – 276 м²/г и 0.31 см³/г соответственно. Катализатор на основе Co–Ni–MOK обладает селективностью по углеводородам (УВ) с длинной цепью $(C_5^+) - 52\%$, а по УВ с короткой цепью $(C_2-C_4) - 30\%$. Относительно высокая активность (TOF = 2.08 с⁻¹ при 340°C) объяснена высокой пористостью и большим размером пор катализатора, что облегчает диффузию УВ. Уникальные свойства данного катализатора, включающие структурные характеристики (высокая удельная поверхность, пористость, однородность и стабильность) позволяют ему быть активных катализатором синтеза Фишера–Тропша.

Ключевые слова: металлорганические сита, метод термоокислительной обработки смеси глицин–МОК, Ni–Co-катализатор, синтез Фишера–Тропша **DOI:** 10.31857/S0028242120050123

Металлорганические каркасы (МОК) – класс материалов, состоящих из ионов металла и органических лигандов. Они могут быть превращены в пористые структуры с помощью различных методов, таких как гидролиз, пиролиз, гидротермальная или сольвотермическая кристаллизация и др. В последнее время к разработке и производству МОК привлечено большое внимание ввиду их уникальных структурных и функциональных свойств [1-3]. Эти органо-неорганические гибридные материалы широко используют для хранения и разделения газов, в сенсорах и оптике, в медицине для транспорта лекарственных средств в организме человека, в нефтехимии, гетерогенном катализе и пр. [1-4]. В частности, катализ является одной из наиболее перспективных областей применения МОК. Данные материалы способны катализировать большое количество химических реакций с большой эффективностью. Материа-

¹ К статье имеется доп. материал.

лы, полученные из МОК, обладают высокой пористостью, большой удельной поверхностью, большим объемом пор и большой дисперсностью металлических частиц, что необходимо для осуществления каталитического процесса.

Синтез Фишера-Тропша (СФТ) – широко известный каталитический процесс превращения синтез-газа (СО + Н₂) в жидкие УВ. В результате реакции образуется смесь УВ различной молекулярной массы [5, 6]. Стандартные катализаторы СФТ содержат Fe, Ni, Co, Ru или Rh в качестве активного металла, при этом Fe и Co являются наиболее часто используемыми. Со-содержащие катализаторы характеризуются доступной ценой, высокой активностью, меньшим образованием СО₂ и малой активностью в реакции водяного газа, поэтому они являются наиболее используемыми катализаторами промышленных процессов СФТ. Синтез биметаллических катализаторов, состоящих из двух и более металлических или оксидных фаз, из металлорганических каркасов является новым подходом, предоставляющим несколько преимуществ, таких как синергизм металлических компонентов, дисперсия металлических фаз и максимальная концентрация активных компонентов, что может привести к разработке "идеального" катализатора СФТ [7, 8]. В последнее время было установлено, что Fe- и Со-содержащие катализаторы СФТ, полученные из МОК, обеспечивают высокую степень превращения СО и высокую селективность процесса. Полученные из МОК катализаторы обладают высокой дисперсностью металлической фазы, заключенной в пористую матрицу, и высокой активностью СФТ. Эти катализаторы были получены в методами пиролиза, гидролиза и сольвотермолиза [9, 10].

В данной работе для приготовления активного катализатора СФТ использовали биядерный металлорганический комплекс. Выбранный металлорганический каркас может быть приемлемым и перспективным для промышленной адаптации каталитической системы. В этой работе показан подход для приготовления активного и стабильного катализатора СФТ с использованием метода термоокислительной обработки смеси глицин-МОК. Этот способ синтеза основан на глициннитратном методе сжигания [11] и является альтернативным методом разработки новых активных катализаторов этого процесса. При этом для получения каталитической системы не используются промоторы и носители. Традиционные нанесенные катализаторы являются механически более стабильными и обладают большей каталитической активностью. Однако сильное взаимодействие между металлом и носителем может негативно влиять на их каталитическую активность. В зависимости от природы взаимодействия между металлом и носителем нанесенные катализаторы проявляют значительные различия в каталитических и адсорбшионных свойствах. Взаимодействия металл-носитель влияют также на каталитическую активность и распределение продуктов реакции [12].

Для исключения влияния взаимодействия металл-носитель на каталитические характеристики был приготовлен и протестирован кобальтовый катализатор синтеза Фишера-Тропша с высокой концентрацией и дисперсностью активного компонента. При использовании этого катализатора была достигнута конверсия СО 75% и хорошая селективность образования тяжелых УВ. Он оказался одним из немногих. обладающих хорошей каталитической эффективностью в СФТ по сравнению с другими МОК-производными кобальтовыми катализаторами, хотя для его приготовления не использовали никакие дополнительные промоторы или носители [1-4, 10]. В данной работе показана возможность использования нового способа получения катализаторов для СФТ с

высокой активностью и оптимальной селективностью, основанного на применении нового подхода к синтезу каталитической системы и подходящего прекурсора MOK.

Дополнительнпая информация по этой статье доступна по DOI для авторизованных пользователей (рисунки и табл.)

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Приготовление катализатора. Металлорганический комплекс готовили согласно [13]. Моноядерный комплекс Со синтезировали с помощью добавления 2-метил-2,4-бис(6-иминопиридин-2-ил)-1*H*-1,5-бензодиазепина к эквимолярному количеству дихлорида кобальта(II) в среде дихлорметан/этанол. Полученный комплекс реагировал с раствором дихлорида никеля(II) в этаноле с образованием Co-Ni-биядерного комплекса. Были получены желтые микрокристаллы с выходом 75%. Результаты элементного анализа, ИК-Фурье-спектроскопиии, УФ-спектроскопии МОК соответствовали литературным данным. Чистоту образца подтвердили методом рентгеновской дифракции монокристалла. Наблюдаемые полосы в ИК-Фурье-спектре образца (KBr, см⁻¹): 3361, 1620 ($v_{C=N}$), 1590, 1470, 1369, 1200, 808.1 и 769.1.

В дальнейшем полученный прекурсор МОК использовали для синтеза катализатора СФТ. Для этого 0.01 моль металлорганического комплекса и 0.04 моля глицина добавляли в дистиллированную воду. Полученную смесь перемешивали магнитной мешалкой при 60–70°С до тех пор, пока не образовывался гомогенный золь, который затем прокаливали в трубчатом реакторе при 750°С в течение 6 ч со скоростью нагрева 2°С/мин. После этого образец восстанавливали в токе H_2 (60 мл/мин) при 400°С в течение 10 ч, а затем исследовали в реакции СФТ.

Испытание катализатора. Со-Ni-катализатор испытывали в СФТ в трубчатом микрореакторе из нержавеющей стали с неподвижным слоем катализатора при давлении 1 МПа. 1 г катализатора восстанавливали в токе Н₂ (60 мл/мин) при атмосферном давлении при 400°С в течение 10 ч. Затем водород отключали и снижали температуру до 200°С. При этой температуре увеличивали давление до 1.0 МПа. Испытание активности проводили в диапазоне температур 260-340°С в течение 10 ч при каждой температуре после установления равновесия в среде синтез-газа состава $H_2/CO = 2$ (газовая смесь 32% CO, 63% H_2 , 5% N_2) и объемной скорости подачи газа (GHSV) 3600 ч⁻¹. Продукты реакции анализировали on line на газовом хроматографе, снабженном 10-ти ходовым краном (Supelco Company, Visi Model, USA) с простой петлей, детектором по теплопроводности, насадочной колонкой (Hayesep DB, Alltech Company) и ПИД. Селективность была рассчитана по углероду (рис. S1).

Изучение характеристик катализатора. Термогравиметрический анализ (ТГА) МОК проводили в среде воздуха в интервале температур от комнатной до 800°С (скорость нагрева 3°С/мин), используя термический анализатор BAHR-STA 503. Электронный спектр получали с помощью спектрофотометра JASCO 7850. ИК-Фурье спектр регистрировали с помощью ИК-Фурье спектрометра Perkin Elmer в таблетках КВг (рис. S2). Порошковую рентгеновскую дифракцию снимали с помощью рентгеновского дифрактометра Inel Equinox 3000 с СиК_а-излучением. Удельную поверхность (БЭТ) определяли с помощью микрометрического адсорбционного газоанализатора (Quantachrome Instrument, model Nova 2000), используя азот (чистота 99.99%) в качестве анализируемого газа – образцы медленно нагревали в атмосфере азота от температуры -196 до 300°С в течение 6 ч. Микрофотографии образца (СЭМ), результаты рентгеноспектрального микроанализа (РСМА) и энергодисперсионной рентгеновской спектроскопии (ЭРС) получали с помощью сканирующего электронного микроскопа Philips XL30 (Netherland). Элементный анализ катализатора проводили с помощью атомно-адсорбционной спектроскопии (AAnalyst 200, Perkin Elmer) и масс-спектрометрии с индуктивно связанной плазмой (ИСП-МС) (Perkin Elmer's NexION 2000 ICP Mass Spectrometer).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Физико-химические свойства МОК. Кристаллическая структура данного МОК состоит из одного катиона никеля(II), одного катиона кобальта(II), одной молекулы лиганда (2-метил-2,4-бис(6-иминопиридин-2-ил)-1*H*-1,5-бензодиазипин), одной молекулы этанола и четырех хлорид-ионов. Бидентантный лиганд связывает кобальт и никель. Центр кобальта принимает форму искаженной тригональной пирамиды. Экваториальное положение занимает азот (N(5)) пиридина и два хлорид-иона. Два других атома азота (N(4) и N(6)) находятся в аксиальной плоскости. Координационная геометрия никелевого центра – искаженный октаэдр. Полученные для МОК результаты ИК-Фурье-спектроскопии и элементного анализа согласуются с литературными данными [13]. Чистота образца была подтверждена с помощью порошковой рентгеновской дифракции. На кривой ТГА металлорганического каркаса находятся две области потери массы: первая (около 150°C) была отнесена к испарению этанола, а вторая (около 650°С) была отнесена к полному разрушению МОК. Таким образом, чтобы обеспечить полное восстановление металла, для прокаливания была выбрана высокая температура – 700°C (рис. S3).

Таблица 1. Размер частиц (нм), определенный по результатам рентгенофазового анализа

Образец	Co-Ni	Ni	Co	NiCo ₂ O ₄
До реакции	12	25	30	15
После реакции	22	40	46	23

Физико-химические свойства катализатора. Полученный катализатор был охарактеризован методами РФА, низкотемпературной адсорбции азота (БЭТ), сканирующей электронной микроскопии (СЭМ), рентгеноспектрального микроанализа (РСМА), энергодисперсионной рентгеновской спектроскопии (ЭРС) и атомно-адсорбционной спектроскопии (ААС).

На рис. 1 показана дифрактограмма свежего катализатора, на которой присутствуют пики шпинельных смешанных оксидов металлов NiCo₂O₄, сплава Co–Ni и металлических (Со и Ni). Согласно дифрактограмме, смешанные оксиды металлов кристаллизуются в виде шпинели с пространственной группой симметрии *Fd3m*. Как показано на рис. 1, дифракционные пики сплава Co–Ni находятся при значениях угла 20 равных 16°, 21.5°, 24.4°, 30.6°, 41.3° и 61°.

Данные результаты свидетельствуют о том, что металлические никель и кобальт восстанавливаются в виде сплава. Характерные дифракционные пики слабые и широкие, что свидетельствует о малых размерах и большой дисперсности металлических частиц. В табл. 1 приведены размеры частиц сплава Со-Ni, металлических фаз и шпинелеподобного оксида, полученные с помощью уравнения Дебая-Шеррера [14]. Размеры частиц сплава Co–Ni, металлических фаз Ni, Co и NiCo₂O₄ находятся в диапазоне 12-30 нм, что свидетельствует о высокой удельной поверхности частиц и их устойчивости к агломерации. После реакции размеры частиц сплава Со-Ni и металлических фаз Ni и Со увеличиваются до 22 и ~40-46 нм соответственно. В литературе сообщалось, что размер частиц сплава Co-Ni меньше, чем размер отдельных металлических частиц Ni и Co; данный факт свидетельствует о большей стабильности частиц сплава Со-Ni к агломерации, чем у отдельных металлических частиц [15]. Эти результаты согласуются с результатами низкотемпературной адсорбции азота, СЭМ и РСМА, свидетельствующими о том, что более пористая структура приводит к большей удельной поверхности образца. Такая большая удельная поверхность обеспечивает большую степень дисперсности образца.

Согласно результатам адсорбции азота, удельная поверхность по БЭТ и общий объем пор катализатора составляют 276 м²/г и 0.31 см³/г соответственно. Изотерма адсорбции/десорбции азота катализатора имеет резкий изгиб при относитель-

Рис. 1. Дифрактограмма катализатора.

Рис. 2. Изотерма адсорбции/десорбции азота катализатора.

ном давлении 0.5 (рис. 2) и соответствует IV типу изотермы с петлей гистерезиса (тип H3) между кривыми адсорбции и десорбции, что свидетельствует о наличии мезопористых полостей с очень широким распределением по размеру. В таком большом объеме пор катализатора могут существовать более активные для протекания целевой реакции металлические центры. Больший размер пор катализатора (20 нм) может облегчать диффузию VB с длинной цепью. Эти результаты согласуются с данными о среднем размере пор, полученными из ширины пиков в рентгеновских исследованиях. Меньший размер частиц приводит к большей удельной поверхности. Кроме того, более развитая удельная поверхность может привести к лучшему распределению частиц. Вместе с тем, широкие мезопоры также благоприятны для облегчения диффузии газа, что приводит к большей каталитической активности [10]. Эти результаты подтверждают данные СЭМ и РСМА.

Сканирующая электронная микроскопия в комбинации с элементным картированием (РСМА и ЭРС) дают дополнительную информацию о морфологии прекурсора МОК и соответствующего ему катализатора, полученного из МОК. Очевидно, что кристаллы прекурсора МОК имеют ярко выраженную кубическую структуру (рис. 3а). В ходе прокаливания в трубчатом реакторе морфо-

674

Рис. 3. Микрофотографии МОК (а) и полученного катализатора (б).

Рис. 4. Элементное картирование катализатора при рентгеноспектральном микроанализе.

логические характеристики катализатора, синтезированного из МОК, полностью меняются и он превращается в высокопористый и сыпучий материал с низкой плотностью (рис. 3б), что делает его подходящим для применения в катализе. На рис. 4 показаны результаты РСМА для катализатора. Распределение Со и Ni полностью однородно и неизменно на атомном уровне.

Для анализа элементного состава поверхности был проведен дополнительный комбинационный ЭРС-анализ. ЭРС-спектр катализатора (рис. 5) демонстрирует наличие атомов Со, Ni, С и N в образце, что подтверждается данными порошковой рентгеновской дифракции. Методом атомно-адсорбционной спектроскопии (AAnalyst 200, Perkin Elmer, USA) было определено содержание Со и Ni в катализаторе. Эти данные сопоставлены с результатами ИСП-МС (Perkin Elmer's NexION 2000 ICP Масс-спектрометр) анализа (22.38% Со и 21.97% Ni). Результаты атомно-адсорбционной спектроскопии свидетельствуют о большой концентрации металла и превосходной дисперсии Со и Ni (44.35%) на поверхности катализатора. Также, согласно элементному анализу, в полученном катализаторе содержатся азот, кислород и углерод (45.18% C, 5.41% О и 5.06% N).

НЕФТЕХИМИЯ том 60 № 5 2020

Рис. 5. Энергодисперсионный рентгеновский спектр (ЭРС) катализатора.

Испытания активности катализатора. Полученный из МОК катализатор испытали в реакции СФТ при давлении 1 МПа и $H_2/CO = 2$. В табл. 2 представлено распределение продуктов и значения каталитической активности. Активность катализатора исследовали в диапазоне температур 260-340°С. Стоит отметить, что при температурах ниже 260°С конверсия СО была мала (~40%). Степень превращения СО увеличивалась почти линейно с увеличением температуры реакции. Активность протекания реакции, очевидно, возрастает при повышении температуры. При 320°С конверсия СО возрастает до 75%, что свидетельствует о высокой активности синтезированного катализатора в реакции СФТ [2, 9, 10, 16]. Отмеченная высокая степень превращения СО на катализаторе связана с большим значением удельной поверхности (согласно данным БЭТ), большой концентрацией металлов (основываясь на результатах элементного анализа и РСМА) и пористой текстурой катализатора (подтвержденной СЭМ). Более того, большой размер пор данного катализатора может способствовать ускорению диффузии газа в углеродной матрице и, тем самым, увеличивать каталитическую активность (согласно результатам сорбции N₂). Также очевидна более высокая, по сравнению с другими кобальтовыми системами на основе МОК, селективность катализатора. Поскольку в СФТ СО превращается в CO₂ и УВ (C₁-C_n), а C₅⁺-продукты являются летучими жидкостями, они зачастую остаются в реакторе и не определяются с помощью ГХ. При 320°С селективность по C_5^+ -УВ достигла 52%, а селективность по олефинам с короткой цепью (C₂-C₄) была 30.3%. Обычно Co-Ni-катали-

пью (C_2-C_4) была 30.3%. Обычно Co-Ni-катализаторы СФТ имеют более высокую селективность по отношению к УВ с длинной цепью. Полученные нами результаты каталитической активности значительно выше, чем у большинства катализаторов СФТ, известных из литературы [2, 9, 10, 16–18]. Согласно литературным данным, азотсодержащие частицы поверхности катализатора являются важным компонентом его структуры. Известно, что именно эта часть поверхности рассматривается в качестве донора электронов для интенсификации процесса адсорбции-диссоциации СО и селективности образования конечных продуктов в СФТ. Кроме того, присутствие азотсодержащих фрагментов в каталитической структуре изменяет валентное состояние кобальта и, таким образом, способствует синтезу УВ с короткой цепью. Сильное электростатическое взаимодействие оказывает значительное влияние на физико-химические свойства частиц кобальта, особенно на его способность к восстановлению. Электростатическое взаимодействие оксида кобальта и азотсодержащих фрагментов катализатора может приводить к тому, что восстановление оксидов будет происходить за счет освобождения атомов кислорода из решетки. Об аналогичных явлениях сообщалось в работах [9, 10, 19-22].

Стабильность катализатора исследовали в 200часовом пробеге при 320° С, 1 МПа, $H_2/CO = 2$ и GHSV 3600 ч⁻¹. В ходе эксперимента активность катализатора и селективность по УВ значительно не изменялись. Текстурные свойства также приводят к превосходной стабильности катализатора. Согласно результатам сорбции N₂, у данного катализатора большой размер пор. Широкие мезопоры дополнительно увеличивают каталитическую активность, поскольку они ускоряют диффузию газа внутрь углеродной матрицы, вызывая тем самым отсрочку дезактивации катализатора. Противоположно этому, в узких порах катализатора после образования УВ продукты покрывают активные центры, и, таким образом, происходит дезактивация катализатора.

Наряду с образованием активных фаз, важными характеристиками данного катализатора, полученного из МОК, являются высокое содержание металла, высокая пористость и большое значение удельного объема пор. Катализатор с такими свойствами может служить в качестве "идеального" катализатора процесса Фишера–Тропша.

СИНТЕЗ КАТАЛИЗАТОРА

Температура, °С	Конверсия СО, %	Селективность по углеводородам, %				TOF, c^{-1}			
		$C_2 - C_4$	C_5^+	CH ₄	селективность по СО ₂ , %				
260	48	26.0	39.6	14.0	9.8	1.33			
280	51	27.5	46.0	14.8	6.4	1.41			
300	63	28.1	48.4	15.2	4.1	1.75			
320	75	30.3	51.8	15.7	1.2	2.08			
340	75	30.8	51.9	16.6	0.4	2.08			

Таблица 2. Активность катализатора, синтезированного из МОК, в реакции СФТ

Значение суммы селективностей ниже, чем 100%. Это может быть связано с гипотетической потерей летучей части C₅⁺ и это значение систематически возрастает при уменьшении температуры.

Как показывают результаты данной работы, каталитическая активность связана с физико-химическими характеристиками катализатора. На свойства катализатора зачастую влияют два фактора: метод приготовления и природа прекурсора. Вышеупомянутые результаты подчеркивают влияние метода приготовления на каталитические свойства и активность в реакции СФТ. Мы сравнили наш катализатор со множеством моно- и гетеробиметаллических кобальтсодержаших катализаторов, приготовленных различными методами. Многие характеристики и достигнутые результаты для данного катализатора сопоставимы с предыдущими работами, хотя необходимо отметить и достигнутые нами новые результаты. Так, например, стабильность катализатора была выше (200 ч работы без значительных изменений активности по сравнению со 102 [2] и 50 ч [23]). Данный катализатор обладает большей селективностью по отношению к УВ с короткой цепью (селективность по С₂-С₄ равна 30%) по сравнению с другими кобальтсодержащими катализаторами (6 [2], 14 [8], 22 [17] и 11% [18]). Этот катализатор также обеспечивал относительно высокую селективность по

С₅⁺ (примерно 52%) в сравнении с другими кобальтсодержащими катализаторами (10 [8], 54 [17] и 49.83% [18]). Было рассчитано значение ТОГ для рассматриваемого катализатора (табл. 2) и оно сравнимо (или больше), чем значения ТОГ, полученные на других катализаторах, синтезированных из MOK (TOF = 0.019, 0.031, 0.028 [2], 0.027, 0.091 [9] и 0.07, 0.11 с⁻¹ [16]). Степень преврашения СО на данном катализаторе (75%) также выше по сравнению с опубликованными ранее значениями: 15.8 [2], 30 [10], 44.5 [8], 16 [17] и 37.34% [18]. Приведенные выше результаты свидетельствуют о том, что данный катализатор очень перспективен в С Φ Т, в отличие от других синтезированных из МОК кобальтсодержащих катализаторов.

Таким образом, в данной работе в качестве металлорганической каркасной структуры для синтеза активного Co–Ni-катализатора СФТ был использован гетероядерный Co–Ni-комплекс. Катализатор СФТ, полученный из МОК, был

НЕФТЕХИМИЯ том 60 № 5 2020

приготовлен с помощью термоокислительной обработки смеси глицин-МОК. Синтез был осуществлен без подложки или какого-либо промотора. что привело к высокому содержанию металлической фазы (44.35 мас. %) в катализаторе. Полученный с помощью данного метода катализатор содержал большое количество металлических наночастиц (22.38 мас. % Co, 21.97 мас. % Ni) с высокой дисперсностью. Физико-химические характеристики и результаты каталитической активности свидетельствуют о том, что синтезированный катализатор проявляет заметную активность (TOF = 2.08 c^{-1}) и высокую селективность по C_5^+ -соединениям (52%). Результаты, представленные в данной работе, показывают, что метод приготовления катализатора, основанный на термоокислительной обработке смеси глицин-МОК, является хорошим способом получения высокодисперсных наночастиц металлов в пористой матрице с высокой активностью в СФТ. Насколько нам известно, данный монолитный МОК-катализатор является одним из наиболее активных и стабильных катализаторов СФТ. Его активность связана с увеличением удельной поверхности диспергированных наночастиц, структурой и большим объемом пор полученного катализатора. Мы обнаружили, что указанный метод синтеза привел к необходимым для металлических катализаторов свойствам, таким как пористая структура, высокая концентрация, стабильность и активность, о которых не сообщалось ранее, поэтому он может быть использован для производства

ФИНАНСИРОВАНИЕ

промышленных катализаторов.

Работа финансирована University of Sistan and Baluchestan.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы декларируют отсутствие конфликта интересов.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Halimeh Janani, ORCID: http://orcid.org/0000-0003-2750-7074

Alireza Rezvani, ORCID: http://orcid.org/0000-0003-2681-9906

Ali Akbar Mirzaei, ORCID: http://orcid.org/0000-0002-1753-2340

СПИСОК ЛИТЕРАТУРЫ

- Jiao L., Wang Y., Jiang H.L., Xu Q. // Adv. Mater. 2018. V. 30. P. 37.
- Sun X., Suarez A.I.O., Meijerink M., Van Deelen T., Ould-Chikh S., Zečević J., Gascon J. // Nat. Commun. 2017. V. 8. P. 1680.
- 3. *Cui Y., Li B., He H., Zhou W., Chen B., Qian G. //* Acc. Chem. Res. 2016. V. 49. P. 483.
- 4. Majewski M.B., Peters A.W., Wasielewski M.R., Hupp J.T., Farha O.K. // ACS Energy Lett. 2018. V. 3. P. 598.
- Almeida L.C., Echave F.J., Sanz O., Centeno M.A., Arzamendi G., Gandia L.M., Montes M. // Chem. Eng. J. 2011. V. 167. P. 536.
- Pour A.N., Housaindokht M.R., Zarkesh J., Tayyari S.F. // J. Ind. Eng. Chem. 2010. V. 16. P. 1025.
- Yan X., Huang Q., Li B., Xu X., Chen Y., Zhu S., Shen S. // J. Ind. Eng. Chem. 2013. V. 19. P. 561.
- Janani H., Rezvani A.R., Grivani G.H., Mirzaei A.A. // J. Inorg. Organomet. Polym. Mater. 2015. V. 25. P. 1169.

- An B., Cheng K., Wang C., Wang Y., Lin W. // ACS Catal. 2016. V. 6. P. 3610.
- Qiu B., Yang C., Guo W., Xu Y., Liang Z., Ma D., Zou R. // J. Mater. Chem. A. 2017. V. 5. P. 8081.
- 11. Wang Y., Zhu J., Zhang L., Yang X., Lu L., Wang X. // Mater. Lett. 2006. V. 60. P. 1767.
- 12. Vannice M.A., Garten R.L. // J. Catal. 1980. V. 66. P. 242.
- 13. Zhang S., Xing Q., Sun W.H. // RSC Adv. 2016. V. 6. P. 72170.
- 14. Ciambelli P., Cimino S., De Rossi S., Faticanti M., Lisi L., Minelli G., Turco M. // Appl. Catal., B. 2000. V. 24. P. 243.
- 15. Wang Z., Wang C., Chen S., Liu Y. // Int. J. Hydrogen Energy. 2014. V. 39. P. 5644.
- Santos V.P., Wezendonk T.A., Jaén J.J.D., Dugulan A.I., Nasalevich M.A., Islam H.U., Koeken A.C. // Nat. Commun. 2015. V. 6. P. 6451.
- Ye J., Haiquan S., Fenghua B., Yong D., Yulong Z. // Appl. Organometal. Chem. 2009. V. 23. P. 86.
- Shanghong Z., Dongping D., Fenghua B., Haiquan S. // J. Rare Earth. 2011. V. 29. P. 349.
- Fu T., Liu R., Lv J., Li Z. // Fuel Process. Technol. 2014. V. 122. P. 49.
- 20. *He L., Weniger F., Neumann H., Beller M. //* Angew. Chem. Int. Ed. 2016. V. 55. P. 12582.
- Yang Z., Guo S., Pan X., Wang J., Bao X. // Energy Environ. Sci. 2011. V. 4. P. 4500.
- Yang Y.F., Jia L.T., Hou B., Li D.B., Wang J.G., Sun Y.H. // J. Phys. Chem. C. 2014. V. 118. P. 268.
- 23. *Schulte H.J., Graf B., Xia W., Muhler M. //* Chem. Cat. Chem. 2012. V. 4. P. 350.