УДК 661.888:665.6.033:665.64

# ПОВЕДЕНИЕ ВАНАДИЯ И НИКЕЛЯ ПРИ ГИДРОКОНВЕРСИИ ГУДРОНА В ПРИСУТСТВИИ СУСПЕНЗИЙ НАНОРАЗМЕРНЫХ КАТАЛИЗАТОРОВ

© 2020 г. Х. М. Кадиев<sup>1</sup>, Л. А. Зекель<sup>1, \*</sup>, М. Х. Кадиева<sup>1</sup>, А. М. Гюльмалиев<sup>1</sup>, А. Е. Батов<sup>1</sup>, М. Я. Висалиев<sup>1</sup>, А. У. Дандаев<sup>1</sup>, Э. Э. Магомадов<sup>1</sup>, Н. А. Кубрин<sup>1</sup>

<sup>1</sup>Институт нефтехимического синтеза им. А.В. Топчиева РАН, Москва, 119991 Россия

\**E-mail: zekel@ips.ac.ru* Поступила в редакцию 10.05.2020 г. После доработки 11.05.2020 г. Принята к публикации 12.05.2020 г.

Исследовано распределение ванадия и никеля при гидроконверсии гудрона в присутствии суспензий наноразмерных частиц MoS<sub>2</sub>, Ni<sub>7</sub>S<sub>6</sub>, (NH<sub>4</sub>)<sub>0.25</sub> · WO<sub>3</sub> и Fe<sub>1 – x</sub>S. Эксперименты выполнены в автоклавном реакторе и на проточной установке гидроконверсии. Показано, что выход кокса растет в реакциях гидрокрекинга в ряду MoS<sub>2</sub>, Ni<sub>7</sub>S<sub>6</sub>, (NH<sub>4</sub>)<sub>0.25</sub> · WO<sub>3</sub> и Fe<sub>1 – x</sub>S. В той же последовательности возрастает доля металлов в нерастворимом в толуоле остатке гидроконверсии (HPT). С ростом температуры гидроконверсии увеличивается переход ванадия и никеля в продукты уплотнения. По данным электронной микроскопии HPT можно предположить, что ванадий и никель связаны с углеродом, входят в состав кокса и не образуют соединений с активной фазой катализатора MoS<sub>2</sub>.

*Ключевые слова:* остаток вакуумной дистилляции нефти, дисперсные катализаторы, гидрокрекинг, ванадий, никель

DOI: 10.31857/S0028242120050135

Согласно экспертным оценкам в ближайшем будущем решающую роль в производстве моторных топлив и химической продукции будут играть тяжелые виды нефтяного сырья (THC) – природные битумы, тяжелые нефти, остатки вакуумной дистилляции нефти [1]. Отличительными особенностями такого сырья являются низкое отношение Н/С, высокое содержание асфальтенов, гетероатомных компонентов, в том числе соединений металлов. Для переработки ТНС в настоящее время преимущественно используются процессы термического крекинга (коксование, висбрекинг и др.), которые позволяют получать относительно невысокие количества дистиллятных фракций низкого качества. Каталитический гидрокрекинг позволяет максимально превратить вещество ТНС в дистиллятные фракции. Традиционные катализаторы гидрокрекинга, представляющие собой пористые носители со стабилизированными на их поверхности каталитически активными компонентами, при гидрокрекинге ТНС быстро теряют активность в результате блокировки активных центров катализатора частицами кокса и соединениями металлов [2]. Активность таких катализатор при переработке тяжелого сырья в течение нескольких суток снижается более чем в 2 раза [3]. Регенерация дезактивированных катализаторов традиционным окислительным методом не позволяет полностью восстановить активность из-за отложений в порах катализатора соединений ванадия и никеля [4].

Для снижения коксообразования в процессах гидрокрекинга предложено использовать катализаторы без традиционного носителя в виде суспензий наноразмерных частиц. стабилизированных в исходном тяжелом сырье. Высокая концентрация наночастиц катализатора в реакционной среде способствует торможению реакций поликонденсации и полимеризации на начальной стадии, преодолевается существующий для традиционных нанесенных катализаторов диффузионный барьер при активации водорода, обеспечивается подвод активированного водорода к радикальным фрагментам термической деструкции макромолекул сырья при более низком давлении по сравнению с процессом гидрокрекинга с применением нанесенных катализаторов. Такие процессы получили название "сларри-процессов" [5-8].

Синтез суспензии катализаторов осуществляется как непосредственно в условиях гидроконверсии (*in situ*) из введенного в ТНС прекурсора, так и предварительно (*ex situ*) с последующим смешением синтезированной суспензии с ТНС. При синтезе суспензий катализатора *in situ* предполагается, что сульфидирование прекурсоров происходит в результате взаимодействия с сероводородом, образующимся при деструкции серосодержащих компонентов сырья [9, 10]. Эффективность сульфидирования определяется рядом факторов, основными из которых являются содержание соединений серы в сырье, условия синтеза и др. Для переработки малосернистого сырья необходимо дополнительно вводить сульфидирующий реагент или использовать синтезированные *ex situ* предварительно сульфидированные суспензии частиц катализаторов с известными показателями состава и свойств [11].

К настоящему времени выполнен большой объем экспериментальных исследований гидроконверсии различных видов ТНС в присутствии дисперсных катализаторов, полученных без твердого носителя, в которых исследован механизм формирования и состав активной фазы катализатора, влияние условий гидроконверсии на показатели процесса, установлены кинетические характеристики процесса, выявлены причины и закономерности формирования продуктов уплотнения в сларри-процессах гидроконверсии [5–8, 12]. Вместе с тем мало изучено поведение содержащихся в исходном сырье соединений ванадия и никеля в сларри-процессах гидроонверсии ТНС.

Ванадий и никель в нефти и продуктах ее переработки присутствуют преимущественно в форме порфириновых комплексов с усредненной структурной формулой:



Порфириновые комплексы ванадия и никеля, являясь сильно полярными соединениями, в углеводородной среде ассоциированы с молекулами смол и асфальтенов [13]. Около 80% ванадия и никеля связано с асфальтенами, 20% входит в состав смол [14]. Ni- и V-порфирины термически устойчивы до 550°С [15]. При дистилляции нефти порфириновые комплексы металлов переходят в атмосферные или вакуумные остатки.

Сведения о превращении порфириновых комплексов металлов ограничены результатами исследований гидрокрекинга ТНС с использованием катализаторов на носителях. При гидрокрекинге модельного остаточного масла, содержащего никелевые порфирины, на не сульфидированном CoMoAl<sub>2</sub>O<sub>3</sub>-катализаторе при 285–345°C и 4.58– 10.09 МПа сначала гидрируются периферийные двойные связи, а затем кольца с осаждением металла на катализаторе [16]. Введение в состав катализатора щелочных металлов (Cs, Na) значительно снижает кислотность катализатора и его активность в реакциях гидрирования кольца. Сульфидирование катализатора ускоряет разрушение кольца и осаждение металлов [17]. При изучении гидроконверсии ванадилпорфиринов на CoMoAl<sub>2</sub>O<sub>3</sub>-катализаторе установлено, что разложение порфириновых комплексов и осаждение металла наиболее интенсивно протекает на кислотных центрах катализатора [18]. При гидрокрекинге нафталина в присутствии порфиринов никеля, ванадия и сероводорода образуются сульфиды ванадия и никеля [19].

В данной работе исследованы некоторые закономерности поведения ванадия и никеля в сларри-процессе гидроконверсии ТНС в присутствии катализаторов, синтезированных из обратных эмульсий водорастворимых прекурсоров без традиционного твердого носителя методами *in situ* и *ex situ*, стабилизированных в углеводородной среде.

### ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве сырья использовали вакуумный остаток дистилляции нефти (гудрон), свойства которого приведены в табл. 1. Дисперсные катализаторы синтезировали двумя методами. По методу *ex situ* в гудроне эмульгировали водные растворы с высокой концентрацией солей молибдена, никеля, железа и вольфрама. Концентрированные суспензии дисперсных катализаторов получали в результате термической обработки обратных эмульсий в присутствии сульфидирующей добавки и водорода. Методика синтеза описана в [20]. Характеристики катализаторов приведены в табл. 2. Перед экспериментом в нагретый до 80°С гудрон вводили точную навеску концентрированной суспензии катализатора из расчета 0.1% активного металла на гудрон. Серию экспериментов гидроконверсии проводили в автоклаве объемом 1 л при температуре 425°С, давлении 7 МПа и расходе водорода на проток 18-20 нл/ч, длительности выдержки автоклава при рабочей температуре 2 ч. Схема автоклавной установки приведена в [21]. Опыты проводили также на установке гидроконверсии с вертикальным проточным реактором в восходящем газопродуктовом потоке смеси сырья с катализатором.

В некоторых экспериментах суспензию наноразмерных частиц  $MoS_2$  получали непосредственно при гидроконверсии (*in situ*) в результате термохимических превращений обратной эмульсии водного раствора прекурсора катализатора в сырье.

Газообразные продукты гидроконверсии анализировали хроматографически. Гидрогенизат

#### ПОВЕДЕНИЕ ВАНАДИЯ И НИКЕЛЯ

| Показатель                            | Значение | Показатель                  | Значение |
|---------------------------------------|----------|-----------------------------|----------|
| Плотность при 20°С, кг/м <sup>3</sup> | 1019     | Фракционный состав, мас. %: |          |
| Элементный состав, мас. %             |          | фракция 350-500°С           | 8.2      |
| С                                     | 85.2     | фракция 500°C+              | 91.8     |
| Н                                     | 10.7     | <b>F</b>                    |          |
| Ν                                     | 0.5      | 1 рупповои углеводородныи   |          |
| S                                     | 3.3      | cocras, mac. 70             |          |
| 0                                     | 0.3      | парафино-нафтеновые УВ      | 11.8     |
| V                                     | 0.022    | ароматические УВ            | 53.2     |
| Ni, ppm                               | 0.0073   | смолы                       | 28.6     |
| Коксуемость, мас. %                   | 18.7     | асфальтены                  | 6.4      |

Таблица 1. Состав и свойства гудрона

Таблица 2. Состав и свойства синтезированных ex situ суспензий катализаторов [20]

| Активный металл катализатора               | Мо          | Ni         | Fe                           | W                          | Mo + Ni             |  |  |  |
|--------------------------------------------|-------------|------------|------------------------------|----------------------------|---------------------|--|--|--|
| Характеристики суспензий катализаторов     |             |            |                              |                            |                     |  |  |  |
| Содержание каталитического металла, мас. % | 5.4         | 2.7        | 2.2                          | 2.2                        | 1.1                 |  |  |  |
| Вязкость, сП при 130°С                     | 241         | 155        | 573                          | 140                        | —                   |  |  |  |
| Харак                                      | теристики т | вердой фаз | Ы                            |                            | •                   |  |  |  |
| Средний диаметр частиц, нм                 | 364         | 274        | 273                          | 349                        | 302                 |  |  |  |
| Индекс полидисперсности                    | 0.475       | 0.590      | 0.166                        | 0.517                      | 0.450               |  |  |  |
| S/Me (атомное)                             | 3.2         | 1.3        | 2.7                          | 0.1                        | —                   |  |  |  |
| С/Ме (атомное)                             | 11.6        | 2.5        | 1.5                          | 2.4                        | —                   |  |  |  |
| Фазовый состав катализаторов по данным РФА |             |            |                              |                            |                     |  |  |  |
| Основная неорганическая фаза               | $MoS_2$     | $Ni_7S_6$  | $\operatorname{Fe}_{(1-x)}S$ | $(NH_4)_{0.25} \cdot WO_3$ | $MoS_2$ , $Ni_7S_6$ |  |  |  |

подвергали атмосферно-вакуумной дистилляции с получением фракций: НК- 80°С, 180-350°С, 350-500°С и остатка – фракция с температурой кипе-ния выше 500°С. Состав фракций исследовали стандартными методами. Из гидрогенизата после разбавления толуолом фильтрацией выделяли нерастворимую твердую фазу (НРТ), в которой содержатся продукты поликонденсации (кокс) с "захваченными" частицами катализатора, металлов сырья. Размеры частиц НРТ определяли С использованием лазерной корреляционной спектроскопии на анализаторе N5 Submicron Particle Size Analyzer, Beckman Coulter. Содержания металлов в сырье и продуктах гидроконверсии определяли на рентгено-флуоресцентном спектрометре ARL Perform'X. Фазовый состав HPT исследовали методом рентгено-дифракционнного анализа на рентгеновской установке Rigaku Rotaflex RU-200. HAADF-STEM-исследование структуры отдельных проб катализаторов проводили при использовании микроскопа Tecnai Osiris при ускоряющем напряжении 200 кВ. Исследования проводили в просвечивающем, просвечивающе-растровом режиме с *z*-контрастом с использованием высокоуглового детектора темного поля (HAADF). Карты распределения химических элементов получали с помощью микроскопа FEI Tecnai Osiris, оборудованного системой из четырех кремниевых детекторов для сверхбыстрого элементного картирования.

Глубину конверсии сырья (*Q*) рассчитывали по уравнению:

$$Q = 100 \left( M_{500(H)} - M_{500(K)} \right) / M_{500(H)},$$
(1)

где  $M_{500({\rm H})}$  и  $M_{500({\rm K})}-$  массы фракции  $500^{\circ}C+$  в сырье и продуктах гидроконверсии соответственно.

Выход асфальтенов в опыте определяли по формуле:

$$W = 0.01 M_{500(\kappa)} C_{ac\phi}, \text{ mac. \%},$$
 (2)

где  $C_{\rm ac\phi}$  – содержание асфальтенов во фракции 500°C+.

Конверсия асфальтенов:

$$F = 100(6.4 - W)/6.4), \text{ mac. \%},$$
 (3)

где 6.4 — содержание асфальтенов в сырье (табл. 1). Выход кокса в опыте:

#### КАДИЕВ и др.

| Катализатор                      | Без катализатора        | MoS <sub>2</sub> | Ni <sub>7</sub> S <sub>6</sub> | $MoS_2 + Ni_7S_6$ , | $Fe_{1-x}S$ | $(NH_4)_{0.25} \cdot WO_3$ |  |  |  |  |
|----------------------------------|-------------------------|------------------|--------------------------------|---------------------|-------------|----------------------------|--|--|--|--|
| Обозначение катализатора         | _                       | Mo               | Ni                             | Mo + Ni             | Fe          | W                          |  |  |  |  |
|                                  | Выход продуктов, мас. % |                  |                                |                     |             |                            |  |  |  |  |
| Газ                              | 7.71                    | 5.68             | 4.38                           | 4.44                | 8.65        | 8.32                       |  |  |  |  |
| Гидрогенизат                     | 88.34                   | 93.4             | 94.36                          | 94.81               | 85.37       | 86.41                      |  |  |  |  |
| Нерастворимые в толуоле (НРТ)    | 3.95                    | 0.92             | 1.26                           | 0.75                | 5.98        | 4.93                       |  |  |  |  |
| Характеристики частиц не         | ерастворимой тверд      | ой фазы (        | HPT), I                        | выделенных из       | гидроген    | низата                     |  |  |  |  |
| Средний диаметр частиц (НРТ), нм | —                       | 446              | 391                            | 393.8               | 832         | 908                        |  |  |  |  |
| Состав НРТ, мас. %               |                         |                  |                                |                     |             |                            |  |  |  |  |
| С                                | 84.9                    | 75.3             | 76.7                           | 74.4                | 82.8        | 83.4                       |  |  |  |  |
| Н                                | 5.31                    | 5.2              | 4.98                           | 5.05                | 4.89        | 5.01                       |  |  |  |  |
| S                                | 4.84                    | 9.87             | 8.98                           | 10.3                | 6.02        | 4.11                       |  |  |  |  |
| Ν                                | 1.56                    | 0.31             | 1.71                           | 1. 21               | 1.99        | 1.76                       |  |  |  |  |
| 0                                | 2.93                    | 0.461            | 0.807                          | 0.608               | 2.562       | 3.89                       |  |  |  |  |
| Н/С, мас.                        | 0.75                    | 0.83             | 0.78                           | 0.81                | 0.71        | 0.72                       |  |  |  |  |
| Мо                               | —                       | 8.33             | _                              | 4.67                | _           | —                          |  |  |  |  |
| Ni                               | 0.093                   | 0.105            | 6.58                           | 4.54                | 0.078       | 0.091                      |  |  |  |  |
| V                                | 0.367                   | 0.424            | 0.243                          | 0.432               | 0.32        | 0.309                      |  |  |  |  |
| Fe                               | _                       | _                | _                              | _                   | 1.34        | —                          |  |  |  |  |
| W                                | —                       | _                | _                              | —                   | _           | 1.43                       |  |  |  |  |
| Выход кокса, $G^*, \%$           | 3.95                    | 0.82             | 1.14                           | 0.66                | 5.83        | 4.84                       |  |  |  |  |
| Априв                            | 1.00                    | 0.135            | 0.44                           | 0.208               | 1.48        | 1.71                       |  |  |  |  |
| Пс                               | казатели эффектив       | ности гид        | роконв                         | ерсии               |             | •                          |  |  |  |  |
| Конверсия фр. 500°С+, мас. %     | 55.4                    | 53.4             | 54.0                           | 51.3                | 59.5        | 60.1                       |  |  |  |  |

**Таблица 3.** Гидроконверсия гудрона в присутствии синтезированных *ex situ* суспензий наноразмерных катализаторов.  $T = 425^{\circ}$ C,  $P = 7 \text{ M}\Pi a$ ,  $V_{H_2} = 18 - 20 \text{ нл/ч}$ , длительность -2 ч

\*Кокс в составе НРТ.

$$G = 0.01 M_{HPT} (C + H + N + O + S - S_{\kappa ar})_{HPT}, \quad (4)$$
  
mac. %,

где  $M_{HPT}$  – выход HPT, %; C, H, N, O, S – содержания элементов в HPT по данным анализа, мас. %;  $S_{\kappa a \tau}$  – сера, связанная с катализатором, рассчитанная по стехиометрии, мас. %.

#### РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В табл. 3 приведены результаты выполненных в автоклаве опытов гидроконверсии гудрона в присутствии синтезированных *ex situ* катализаторов.

Превращение ТНС в процессе гидроконверсии может протекать по двум направлениям: каталитический гидрокрекинг и термокаталитический крекинг [6, 10]. В первом случае асфальтены и смолы сырья превращаются в жидкие и газообразные продукты. Во втором случае присутствующие в сырье смолы и в особенности асфальтены помимо газа и жидких продуктов образуют кокс. Сопоставительная оценка выхода кокса позволяет оценить основное направление превращения сырья в процессе гидроконверсии.

Для характеристики направления превращения асфальтенов введен показатель *A*, равный отношению выхода кокса к конверсии асфальтенов:

$$A = G/F.$$
 (5)

Чем ниже значение *A*, тем большая часть сырья превращается по механизму гидрокрекинга, чем выше значение *A* – тем больше доля термическо-го крекинга сырья. Для большей наглядности удобно использовать приведенное значение *A*:

$$A_{\rm прив} = A / A_{\rm 6.K}, \tag{6}$$

где  $A_{6.\kappa}$  — значение A в опыте без катализатора.

При  $A_{прив} < 1$  превращение сырья происходит преимущественно по механизму гидрокрекинга; при  $A_{прив} > 1$  превалируют реакции термического крекинга сырья. Естественно значение  $A_{прив}$  в опыте без катализатора равно 1.

Как следует из значений  $A_{прив}$  (табл. 3), в присутствии (MoS<sub>2</sub> + Ni<sub>7</sub>S<sub>6</sub>), Ni<sub>7</sub>S<sub>6</sub> и MoS<sub>2</sub> протекает гидрокрекинг сырья; а в присутствии  $(NH_4)_{0.25} \cdot WO_3$  и Fe<sub>1-x</sub>S преобладают реакции термического крекинга. На рис. 1 представлена зависимость от выхода кокса доли ванадия, перешедшего в HPT, рассчитанная по данным табл. 3. В соответствии с активностью катализаторов в ряду (MoS<sub>2</sub> + Ni<sub>7</sub>S<sub>6</sub>), MoS<sub>2</sub>, Ni<sub>7</sub>S<sub>6</sub>, (NH<sub>4</sub>)<sub>0.25</sub> · WO<sub>3</sub> Fe<sub>1-x</sub>S растет количество образующегося кокса и содержащихся в нем металлов. Для проявляющих высокую активность в реакциях гидрирования Мо-содержащих катализаторов, переход ванадия в HPT не превышает 2% от его содержания в гудроне.

Сларри-процессы гидроконверсии предусматривают рециркуляцию дисперсного катализатора в составе непревращенного остатка гидроконверсии [6, 10]. В связи с этим исследовали поведение ванадия и никеля при гидроконверсии гудрона с рециркуляцией непревращенного остатка в присутствии синтезированной *ex situ* суспензии наноразмерных частиц  $MoS_2$ . Состав суспензии катализатора приведен в табл. 2. Эксперименты выполнены на проточной установке гидроконверсии при 440°С, давлении водорода 7 МПа, объемной скорости сырья 1.64–1.67 ч<sup>-1</sup>, объемном соотношении гудрон : водород 1 : 1000. Концентрация катализатора в гудроне, поступающем в процесс, составляла 0.05% в пересчете на молибден.

Методика гидроконверсии с рециркуляцией непревращенного остатка состояла в следующем. Гидрогенизат подвергали атмосферно-вакуумной дистилляции. После каждого цикла остаток дистилляции с температурой кипения выше 500°С (рисайкл) смешивали со свежим гудроном в заданном соотношении и проводили гидроконверсию полученной смеси. Результаты экспериментов приведены в табл. 4–6.



**Рис.** 1. Зависимость доли ванадия, перешедшего в нерастворимую твердую фазу, от выхода кокса при гидроконверсии гудрона в присутствии катализаторов, синтезированных *ex situ*.

По данным РФА, выделенные из гидрогенизатов нерастворимые в толуоле вещества содержат кокс (графит) и дисульфид молибдена (рис. 2). Соединения ванадия и никеля идентифицировать методом РФА не удалось из-за низкой концентрации металлов в HPT. На электронных снимках видны наноразмерные частицы кокса с включением более темных частиц MoS<sub>2</sub> (рис. 3). В процессе рециркуляции концентрация асфальтенов в рисайкле растет (табл. 5), что, как было показано [22], связано с разницей в скоростях гидроконверсии сырья и асфальтенов: у асфальтенов скорость гидроконверсии ниже. Поскольку асфальтены являются основным прекурсором продуктов уплотнения, с увеличением содержания асфальтенов в рисайкле растет выход кокса. При этом наблюдается снижение концентрации молибдена в частицах НРТ (рис. 4).

**Таблица 4.** Гидроконверсия гудрона с рециркуляцией остатка дистилляции гидрогенизата. Давление водорода – 7 МПа.  $T = 440^{\circ}$ С. Объемная скорость сырьевой смеси 1.64–1.67 ч<sup>-1</sup>. Соотношение водород : сырье = 1000 нл/л сырья. Катализатор – суспензия MoS<sub>2</sub>

| Цикл гидроконверсии                                          | 1    | 2    | 3    | 4    |
|--------------------------------------------------------------|------|------|------|------|
| Доля рисайкла в сырьевой смеси, мас. %                       | 0    | 40   | 30   | 30   |
| Объемная скорость сырьевой смеси, <i>v</i> , ч <sup>-1</sup> | 1.65 | 1.66 | 1.64 | 1.67 |
| Выход продуктов, мас. %                                      |      |      | I    | 1    |
| Газ                                                          | 1.48 | 2.15 | 2.67 | 2.98 |
| Гидрогенизат, в том числе:                                   | 98.0 | 97.0 | 95.5 | 94.5 |
| фракция НК-180°С                                             | 8.8  | 7.5  | 7.7  | 8.1  |
| фракция 180-350°С                                            | 23.5 | 21.8 | 20.2 | 21.4 |
| фракция 350-500°С                                            | 20.1 | 24   | 24.4 | 23.2 |
| фракция 500°C +                                              | 45.6 | 43.7 | 43.2 | 42.3 |
| Нерастворимая твердая фаза                                   | 0.52 | 0.85 | 1.83 | 2.52 |
| Конверсия за проход фракции 500+°C, %                        | 50.3 | 52.4 | 52.9 | 53.9 |

| Цикл гидроконверсии | Продукт      | Мо    | V     | Ni     | Асфальтены |
|---------------------|--------------|-------|-------|--------|------------|
| 1                   | Гидрогенизат | 0.044 | 0.023 | 0.0075 | 4.95       |
|                     | Рисайкл*     | 0.098 | 0.045 | 0.016  | 10.8       |
| 2                   | Гидрогенизат | 0.051 | 0.033 | 0.011  | 5.71       |
|                     | Рисайкл      | 0.11  | 0.072 | 0.025  | 13.1       |
| 3                   | Гидрогенизат | 0.047 | 0.037 | 0.013  | 7.23       |
|                     | Рисайкл      | 0.11  | 0.089 | 0.03   | 16.8       |
| 4                   | Гидрогенизат | 0.054 | 0.043 | 0.014  | 8.85       |
|                     | Рисайкл      | 0.13  | 0.11  | 0.029  | 17.5       |

Таблица 5. Результаты анализа продуктов гидроконверсии, %

\* Остаток вакуумной дистилляции гидрогенизата.

В термических процессах количество перешедших в кокс металлов возрастают пропорционально количеству кокса, образовавшегося при крекинге асфальтенов. По этой причине количество ванадия и никеля, перешедших в НРТ, зависят от выхода кокса. В первом и во втором циклах гидроконверсии степень перехода V и Ni в частицы катализатора не превышает 15% (табл. 6). Поскольку во всех опытах использовали одно и тоже сырье с одинаковым содержанием металлов, то содержания ванадия и никеля в НРТ слабо зависят от цикла гидроконверсии (табл. 6, рис. 4).

НААDF-STEM-исследование структуры частиц HPT представлено на рис. 5. Приведенное на этом рисунке изображение карты распределения элементов и спектр локальной точки показывают совпадение расположения атомов молибдена и серы. Карта распределения атомов ванадия в большей степени совпадает с картами распределения элементов, входящих в состав кокса – углерода и азота (рис. 5), это позволяет предполо-

Таблица 6. Состав нерастворимой твердой фазы, выделенной из гидрогенизатов

| Цикл<br>гидроконверсии                             | 1    | 2    | 3    | 4    |  |  |  |
|----------------------------------------------------|------|------|------|------|--|--|--|
| Выход НРТ, %                                       | 0.52 | 0.85 | 1.83 | 2.52 |  |  |  |
| Мо                                                 | 8.84 | 5.13 | 2.41 | 1.79 |  |  |  |
| V                                                  | 0.53 | 0.58 | 0.64 | 0.63 |  |  |  |
| Ni                                                 | 0.19 | 0.18 | 0.2  | 0.23 |  |  |  |
| С                                                  | 69.1 | 76.3 | 82.3 | 83.4 |  |  |  |
| Н                                                  | 5.09 | 5.37 | 4.73 | 5.81 |  |  |  |
| S                                                  | 8.43 | 6.87 | 4.86 | 4.21 |  |  |  |
| Ν                                                  | 2.13 | 1.98 | 2.1  | 2.3  |  |  |  |
| 0                                                  | 5.69 | 5.57 | 2.76 | 1.63 |  |  |  |
| Доля металлов в НРТ, % от содержания их в сырьевой |      |      |      |      |  |  |  |
| смеси                                              |      |      |      |      |  |  |  |
| V                                                  | 11.9 | 14.9 | 31.6 | 36.9 |  |  |  |

13.9

28.1

41.4

13.2

Ni

жить, что ванадий не вступают во взаимодействие с MoS<sub>2</sub>, а связывается с коксом.

Результаты опытов показывают, что в условиях эксперимента с увеличением образования кокса возрастает степень перехода ванадия и никеля в HPT.

Влияние температуры на переход ванадия и никеля в частицы катализатора изучали в экспериментах с использованием  $MoS_2$ , синтезированного *in situ*.

Эксперименты проводили следующим образом. В гудроне эмульгировали водный раствор ПМА при массовом соотношении гудрон : вода : ПМА = = 98 : 1.82 : 0.18, что соответствовало содержанию молибдена 0.1 мас. % на сырье. Водный раствор эмульгировали с использованием роторно-кавитационного диспергатора при 80°С в течение 40 мин.

Эмульсию подвергали гидроконверсии на проточной установке с реактором, оборудованным перемешивающим устройством, при давлении водорода 7 МПа, объемной скорости 0.7 ч<sup>-1</sup>, в интервале температур 350–430°С с рециркуляцией непревращенного остатка. В табл. 7–8 приведены результаты экспериментов.

С увеличением температуры растет конверсия смол и асфальтенов, сопровождающаяся увеличением выхода газа и содержания кокса (углерода) в частицах НРТ (табл. 7, 8), при этом наблюдается повышение размера частиц НРТ. Поскольку формирование кокса происходит в результате крекинга асфальтенов и смол, ассоциированные с молекулами асфальтенов и смол металлы переходят в кокс. Изменение состава кокса (НРТ) с увеличением температуры гидроконверсии обусловлено повышением конверсии смол и асфальтенов с образованием летучих компонентов, вследствие этого уменьшается отношение Н/С (табл. 8). В результате этого процесса содержания металлов в НРТ растут (рис. 6). Следует отметить, что с ростом температуры увеличиваются как выход кокса, так и содержание в нем металлов (рис. 7).



Рис. 2. Рентгенограмма НРТ, выделенного из гидрогенизата (1 цикл гидроконверсии).



Рис. 3. Светлопольные изображения скоплений частиц катализатора в частицах кокса (1 цикл гидроконверсии).

### ЗАКЛЮЧЕНИЕ

Выполненные исследования показали, что переход металлов, в т.ч. частиц катализатора, в НРТ происходит в результате процессов термической деструкции асфальтенов и смол, интенсивность которых определяется активностью катализатора, временем контакта и температурой гидроконверсии. Присутствующий в НРТ ванадий не входит в состав активной фазы катализатора. Учитывая высокую термическую устойчивость порфириновых комплексов ванадия и никеля, можно предположить, что в условиях минимального образования продуктов уплотнения (кокса) металлы (V, Ni) преимущественно остаются в жидкой фазе и присутствуют в форме порфиринов.

### ФИНАНСИРОВАНИЕ

Работа выполнена в рамках государственного задания ИНХС РАН.



Рис. 4. Содержание металлов в НРТ в процессе гидроконверсии с рециркуляцией остатка.

**Таблица 7.** Гидроконверсия гудрона на установке с реактором смешения в присутствии синтезированной *in situ* суспензии наноразмерного катализатора

| Температура в опыте, °С                           | 350     | 380          | 405   | 415   | 425   | 430   |
|---------------------------------------------------|---------|--------------|-------|-------|-------|-------|
|                                                   | Выход п | родуктов, м  | ac. % |       |       |       |
| Газ                                               | —       | —            | 0.87  | 1.66  | 4.27  | 4.65  |
| НРТ                                               | 0.36    | 0.49         | 0.92  | 1,22  | 2,34  | 3,98  |
| Гидрогенизат                                      | _       | _            | 98.21 | 97.12 | 93.39 | 91.37 |
|                                                   | Выход и | і состав фра | кций  |       |       |       |
| Плотность гидрогенизата (20°С), кг/м <sup>3</sup> | 997     | 992          | 981   | 957   | 949   | 922   |
| Сера в гидрогенизате, мас %                       | 3.32    | 3.09         | 2.48  | 2.61  | 2.34  | 2.04  |
| Выход фр. НК-180°С, мас. %                        | —       | —            | 4.91  | 7.71  | 13.5  | 14.8  |
| Иодное число, г I <sub>2</sub> /100 г             | _       | _            | 47.5  | 49.1  | 52.1  | 55.6  |
| Содержание серы, мас. %                           | _       | _            | 1.11  | 0.95  | 0.79  | 0.65  |
| Выход фр. 180-350°С, мас. %                       | —       | -            | 10.6  | 18.1  | 22.1  | 25.4  |
| Иодное число, г I <sub>2</sub> /100 г             | _       | _            | 31.9  | 32.3  | 34.7  | 34.0  |
| Содержание серы, мас. %                           | _       | _            | 2.12  | 1.94  | 1.87  | 1.73  |
| Выход фр. 350-500°С, мас. %                       | —       | —            | 15.1  | 20.4  | 16.8  | 18.3  |
| Содержание серы, мас. %                           | _       | _            | 2.59  | 2.17  | 1.92  | 1.80  |
| Выход фр. 500°С+ , мас. %                         | —       | —            | 67.6  | 50.9  | 41.0  | 32.9  |
| Содержание серы, мас. %                           | _       | _            | 3.23  | 3.01  | 2.76  | 2.62  |
| Групповой состав, мас. %:                         |         |              |       |       |       |       |
| парафино-нафтеновые УВ                            | —       | _            | 22.7  | 23.2  | 26.3  | 27.4  |
| ароматические УВ                                  | —       | _            | 50.1  | 48.3  | 44.5  | 44.1  |
| СМОЛЫ                                             | —       | _            | 20.3  | 21.4  | 21.9  | 20.7  |
| асфальтены                                        | —       | _            | 6.9   | 7.1   | 7.3   | 7.8   |
| Результаты гидроконверсии                         |         |              |       |       |       |       |
| Конверсия асфальтенов, мас. %                     | —       | —            | 27.1  | 43.5  | 53.2  | 59.9  |
| Конверсия смол, мас. %                            | —       | —            | 52.0  | 61.9  | 68.6  | 76.2  |
| Выход кокса в составе НРТ, мас. %                 | 0.21    | 0.33         | 0.78  | 1.1   | 2.2   | 3.82  |
| Конверсия фр. 500°С+, мас. %                      | —       | —            | 15.5  | 29.3  | 41.4  | 51.6  |
| Выход фракции НК-500°С, мас. %                    | —       | —            | 30.61 | 46.21 | 52.4  | 58.5  |

## ПОВЕДЕНИЕ ВАНАДИЯ И НИКЕЛЯ



**Рис. 5.** НААDF-STEM-изображения, соответствующие карты распределения химических элементов и характерный спектр локальной точки на карте.

#### КАДИЕВ и др.

| Таблі | ица 8. | Размеры и состав | частиц НРТ в з | ависимости от | г температуры | в реакторе |
|-------|--------|------------------|----------------|---------------|---------------|------------|
|-------|--------|------------------|----------------|---------------|---------------|------------|

| Температура в опыте, °С       | 350    | 380    | 405    | 415    | 425   | 430   |
|-------------------------------|--------|--------|--------|--------|-------|-------|
| Выход НРТ, мас. %             | 0.36   | 0.49   | 0.92   | 1.22   | 2.34  | 3.98  |
| Средний размер частиц НРТ, нм | 350    | 342    | 398    | 448    | 598   | 723   |
| Элементный состав НРТ, мас. % |        |        |        |        |       |       |
| Ν                             | 0.35   | 0.94   | 1.89   | 2.43   | 2.43  | 2.5   |
| С                             | 48.6   | 57.4   | 72     | 76.7   | 79.8  | 81.5  |
| Н                             | 4.31   | 4.11   | 4.55   | 4.49   | 4.58  | 4.4   |
| S                             | 11.9   | 9.82   | 6.32   | 5.21   | 4.09  | 4.06  |
| О (расч.)                     | 8.45   | 7.91   | 5.21   | 4.96   | 3.3   | 3.96  |
| Н/С, атомное                  | 1.06   | 0.86   | 0.76   | 0.70   | 0.69  | 0.65  |
| Мо                            | 22.8   | 17.9   | 8.69   | 6.54   | 3.43  | 2.26  |
| Ni                            | 0.0061 | 0.0083 | 0.011  | 0.0141 | 0.016 | 0.014 |
| V                             | 0.018  | 0.0255 | 0.0375 | 0.042  | 0.045 | 0.047 |



**Рис. 6.** Изменение содержания ванадия и никеля в НРТ с ростом температуры гидроконверсии.



**Рис.** 7. Влияние температуры на переход металлов в НРТ при гидроконверсии гудрона.

#### КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

### СВЕДЕНИЯ ОБ АВТОРАХ

Кадиев Хусаин Магамедович д.х.н. ORCID: https://orcid.org/0000-0001-8705-114X

Зекель Леонид Абрамович, к.т.н., ORCID: https://orcid.org/0000-0003-3336-5367

Кадиева Малкан Хусаиновна, к.х.н., ORCID: https://orcid.org/0000-0001-9964-4516

Гюльмалиев Агаджан Мирза-оглы, д.х.н., ORCID: https://orcid.org/0000-0003-2458-6686

Батов Александр Евгеньевич, к.х.н., ORCID: https://orcid.org/0000-0003-0802-4077

Висалиев Мурат Яхъяевич, к.х.н. ORCID: https://orcid.org/0000-0002-4336-8599

Дандаев Асхаб Умалтович, к.х.н., ORCID: https://orcid.org/0000-0002-6644-9287

Магомадов Эльдар Элиевич, к.х.н., ORCID: https://orcid.org/0000-0003-3020-2618

Кубрин Никита Александрович, ORCID: https://orcid.org/0000-0003-3639-1317

### СПИСОК ЛИТЕРАТУРЫ

- Kapustin N.O., Grushevenko D.A. // Rev. IFP Energies nouvelles. 2018. V. 73. № 67. P. 1. https://doi.org/10.2516/ogst/2018063
- Shaban S.A., Ahmed H.S., Menoufy M.F., Fathy Y. // Egyptian J. Petrol. 2013. V. 22. P. 367. https://doi.org/10.1016/j.ejpe.2013.10.006
- 3. *Ancheyta J.* Deactivation of Heavy Oil Hydroprocessing Catalysts: Fundamentals and Modeling. New Jersey, Hoboken: John Wiley & Sons, 2016. 326 p.
- Maity S.K., Pérez V.H., Ancheyta J., Rana M.S. // Energy & Fuels. 2007. V. 21. P. 636. https://doi.org/10.1021/ef060495z
- 5. Хаджиев С.Н., Кадиев Х.М., Кадиева М.Х. // Нефтехимия. 2014. Т. 54. № 5. С. 327 [Petrol. Chemistry. 2014. V. 54. № 5. Р. 323.

https://doi.org/10.1134/S0965544114050065]. https://doi.org/10.7868/S0028242114050062

- Bellussi G., Rispoli G., Landoni A., Millini R., Molinari D., Montanari E., Moscotti D., Pollesel P. // J. Catal. 2013. V. 308. P. 189. https://doi.org/10.1016/j.jcat.2013.07.002
- Manh T.N., Ngoc T.N., Joung M.C. // J. of Industrial and Engineering Chemistry. 2016. V. 43. P. 1. https://doi.org/10.1021/ef700253f
- Angeles M.J., Leyva C., Ancheyta J., Ramírez S. // Catalysis Today. 2014. V. 5. P. 274. https://doi.org/10.1016/j.cattod.2013.08.016
- 9. *Хаджиев С.Н.* // Наногетерогенный катализ. 2016. Т. 1. № 1. С. 3 [Petrol. Chemistry. 2016. V. 56. № 6. P. 465.
  - https://doi.org/10.1134/S0965544116060050]
- Bellussi G., Rispoli G., Molinari D., Landoni A., Pollesel P., Panariti N., Millini R., Montanari E. // Catalysis Science & Technology. 2013. № 3. P. 176. https://doi.org/10.1039/c2cy20448g
- Кадиев Х.М., Хаджиев С.Н., Кадиева М.Х., Догова Е.С. // Наногетерогенный катализ. 2017. Т. 2. № 1. Р. 64 [Petrol. Chemistry. 2017. V. 57. № 7. Р. 608. https://doi.org/10.1134/S0965544117070039] https://doi.org/10.1134/S2414215817010038
- Shuyi Zhang, Dong Liu, Wenan Deng, Guohe Que. // Energy Fuels. 2007. V. 21. № 6. P. 3057. https://doi.org/10.1021/ef700253f
- Dechaine G.P., Gray M.R. // Energy Fuels. 2010. V. 24. № 5. P. 2795. https://doi.org/10.1021/ef100173j

- Chirinos J.. Oropeza D., González J., Ranaudo M., Russo R.E. // Energ. Fuels. 2013. № 27. P. 2431. https://doi.org/10.1021/ef3020052
- Caga I.T., Carnell I. D., Winterbottom J.M. // J. Chem. Technol. Biotechnol. 2001. V. 76. P. 179. https://doi.org/10.1016/S0926-860X(00)00587-1
- 16. Ware R.A., Wei J. // J. of Catalysis. 1985. V. 93. № 1. P. 100. https://doi.org/10.1016/0021-9517(85)90155-1
- Ware R.A., Wei J. // J. of Catalysis. 1985. V. 93. № 1. P. 135. https://doi.org/10.1016/0021-9517(85)90157-5
- Philip C.H., Carlos M., Scott E. // Polyhedron. 1986.
  V. 5. № 1–2. P. 237. https://doi.org/10.1016/S0277-5387(00)84916-5
- Liu H., Fan S., Wang Z., Chen K., Guo A. // Chemistry Select. 2017. V. 2. P. 16139. https://doi.org/10.1002/slct.201601936
- 20. Максимов А.Л., Зекель Л.А., Кадиева М.Х., Гюльмалиев А.М., Дандаев А.У., Батов А.Е., Висалиев М.Я., Кадиев Х.М. // Нефтехимия. 2019. Т. 59. № 5. С. 1.
- Kadiev Kh.M., Oknina N.V., Maksimov A.L., Kadieva M.Kh., Batov A.E., Dandaev A.U. // Research J. of Pharmaceutical, Biological and Chemical Sciences. 2016. V. 7(5). P. 704.
- 22. Хаджиев С.Н., Кадиев Х.М., Зекель Л.А., Кадиева М.Х. // Наногетерогенный катализ. 2018. Т. З. № 1. С. 1 [Petrol. Chemistry. V. 58. № 7. Р. 535. https://doi.org/10.1134/S0965544118070046]. https://doi.org/10.1134/S2414215818010045