УДК 544.476.2:544.723.54

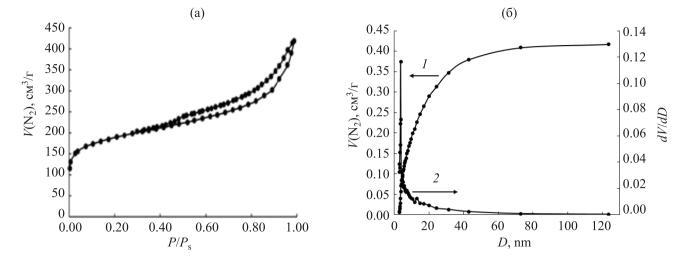
ОСОБЕННОСТИ ХЕМОСОРБЦИИ КРЕЗОЛА НА ПОРИСТОМ ЖЕЛЕЗОСОДЕРЖАЩЕМ СОРБЕНТЕ, ПОЛУЧЕННОМ ИЗ УГЛЕРОДНОГО ОСТАТКА ПЕРЕРАБОТКИ ЛИГНИНА СООБЩЕНИЕ І. ПОРИСТАЯ СТРУКТУРА И АДСОРБЦИОННАЯ СПОСОБНОСТЬ СОРБЕНТА

© 2021 г. Г. Н. Бондаренко¹, А. С. Колбешин¹, Е. Ю. Либерман², А. В. Чистяков¹, В. И. Пасевин³, М. В. Цодиков^{1,*}

¹ Институт нефтехимического синтеза им. А.В. Топчиева РАН, Москва, 119991 Россия ² Российский химико-технологический университет им. Д.И. Менделеева, Москва, 125047 Россия ³ ООО «СОРБИС ГРУПП», Москва, 119361 Россия *E-mail: tsodikov@ips.ac.ru

Поступила в редакцию 22 июля 2020 г. После доработки 13 сентября 2020 г Принята к публикации 18 сентября 2020 г.

Представлены результаты по изучению пористой структуры и особенностей хемосорбции *м*-крезола на поверхности нового адсорбента, полученного из углеродсодержащих остатков углекислотного каталитического риформинга лигнина древесного происхождения. Основная стадия формирования пористой структуры – обработка углеродного железосодержащего остатка диоксидом углерода в плазменно-каталитическом режиме, стимулированным микроволновым излучением. Железосодержащие кластеры были сформированы на поверхности исходного лигнина и использованы в качестве катализатора на первой стадии его переработки. Сорбент имеет развитую пористую структуру. Суммарный объем пор составляет 0.65 см³/г, при этом объем микропор – 0.18 см³/г, объем мезопор – 0.42 см³/г. Адсорбент характеризуется мономодальным распределением адсобционных пор по эффективным размерам с диаметром 3.8 нм. Методом ИК-спектроскопии исследована *in situ* динамика адсорбции *м*-крезола. Показано, что в процессе адсорбции происходит химическое превращение крезола с образованием связей Ph–O–C между фенильным кольцом крезола и концевыми (углеродными или кислородными) атомами адсорбента.


Ключевые слова: лигнин, адсорбент, эффективный размер адсорбционных пор, микроволновое облучение, плазменно-каталитический режим, ИК-спектроскопия

DOI: 10.31857/S0028242121010093

Материалы на основе углерода занимают особое место в различных отраслях современной экономики благодаря сочетанию таких свойств, как химическая стойкость в агрессивных средах, жаростойкость, высокая механическая прочность при повышенных температурах, электропроводность, повышенный/пониженный коэффициент трения, высокая пористость и развитая поверхность, биологическая совместимость с живой материей. Все это позволяет создавать на основе углеродных материалов уникальные детали сложнейшей конфигурации, область применения которых простирается от медицины и военной техники до решения экологических проблем, связанных с антропогенным загрязнением окружающей среды. Особую роль среди углеродных материалов играют пори-

стые адсорбенты, используемые в различных областях, в том числе, для удаления токсичных и вредных примесей [1].

Одно из таких направлений относится к созданию широкого спектра пористых материалов в ряду смешанных форм углерода, таких как активные угли, сибунит, углеродные волокна и ткани, углерод-углеродные композиции и т.п., представляющих практический интерес в качестве адсорбентов, катализаторов и носителей [2]. В настоящее время крупнейшими потребителями углеродных адсорбентов (более 50% общего выпуска) являются пищевая промышленность и водоочистка. Значительный расход углеродных адсорбентов на очистку питьевой воды (обесцвечивание, дезодорирование, дехлорирование, детоксикация) и сточ-

Рис. 1. Изотермы адсорбции—десорбции N_2 (а) и распределение объема пор по эффективным размерам (б) для образца, приготовленного из углеродного остатка лигнина.

ных вод для создания замкнутого водооборота на промышленных предприятиях связан с ограниченностью подземных источников чистой воды с одной стороны, и резким увеличением в последние годы загрязнения мирового водного бассейна за счет бытовых и промышленных жидких отходов, с другой. Причем при очистке сточных вод активные угли могут использоваться как на стадии предварительного удаления токсичных примесей, так и для окончательной их доочистки [1, 2].

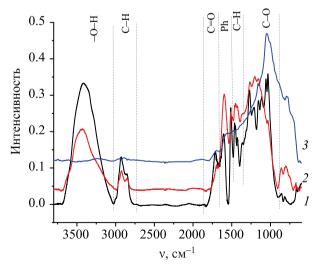
Возможности применения лигнина в качестве сырьевого источника для получения сорбентов наиболее широко изучены на базе технических лигнинов, в частности, щелочных лигнинов (образуются при варке древесины в растворах щелочей), лигносульфонатов (при сульфитной варке древесины) и гидролизных лигнинов (при кислотном гидролизе древесины) [3–6].

Углеродные адсорбенты предназначены для многоцелевого назначения и производятся в крупных масштабах. Уровень и состояние углеадсорбционной технологии охраны воздушного бассейна от загрязнений в основном определяется наличием дешевых и высокоактивных адсорбентов, обладающих высокой механической прочностью. В качестве прекурсора для приготовления активированного угля методом парогазовой активации используют черный щелок целлюлозно-бумажного производства [7]. Оптимизированные условия получения качественного активированного угля на основе лигнина включают предварительную карбонизацию лигнинсодержащего щелока при температуре 450°C в течение 60 мин и последующую активацию паром при 725°C в течение 40 мин. Полученные активированные угли обладают адсорбционной емкостью по метиленовому синему 92.5 M Γ/Γ [8].

В настоящее время адсорбционный метод успешно развивается для оказания помощи в экстремальных ситуациях и относится к наиболее эффективным методам очищения организма от токсинов. Перспективным направлением является создание селективных моно- или полифункциональных энтеросорбентов, извлекающих компоненты химуса и стимулирующих транспорт конкретных метаболитов или токсинов. В этом направлении большое значение имеет сорбционная емкость и однородность структуры пор [9].

Ранее нами была показана возможность получения адсорбента из железосодержащего углеродного остатка углекислотного риформинга смешанного лигнина древесного происхождения при использовании микроволнового облучения (МВО) [10]. Железосодержащие кластеры были сформированы на поверхности исходного лигнина и использованы в качестве катализатора на первой стадии его переработки. В процессе углекислотного риформинга, стимулированного микроволновым облучением, конверсия органической массы лигнина в синтез-газ составляет 63-65% [11]. Адсорбент был получен из углеродного остатка этого процесса путем нескольких стадий, описанных в [10]. На первой стадии остаток был обработан разбавленной НС1 с целью удаления слабосвязанного оставшегося в остатке железа. На второй стадии остаток был обработан СО₂, при микроволновом облучении при повышенной, индуцированной облучением температуре 1000-1100°C. После второй стадии поверхность углеродного остатка возросла до 360 м²/г. На последней стадии пористый остаток насыщали гидроксидом аммония и обрабатывали термическим ударом при 400°C в течение 20-30 мин. После термического удара удельная поверхность адсорбента возрастала до $578-620 \text{ м}^2/\Gamma$.

Образец	Удельная поверхность, $S_{\rm yg},{\rm m}^2/\Gamma$	Суммарный объем адсорбционных пор, V_{y_2} см 3 /г	Адсорбционный объем ми- кропор, $V_{\rm MH}$, t-метод, см 3 /г	Адсорбционный объем мезопор, $V_{\rm BHJ}$, см $^3/_{\rm T}$	Эффективный размер пор, соотвествующий максимуму на кривой распределения, <i>D</i> , нм
Иходный	616	0.65	0.18	0.42	3.8
адсорбент					

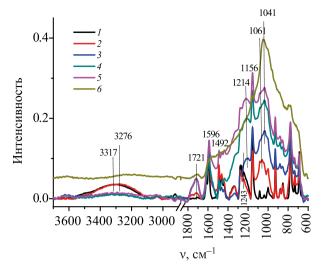

Таблица 1. Величина удельной поверхности, объем микро- и мезопор, эффективный размер пор

В настоящей статье представлены результаты по изучению пористой структуры и адсорбционной способности по отношению к *м*-крезолу адсорбента, полученного из остатка углекислотного риформинга лигнина [10]. Выбор в качестве адсорбата *м*-крезола обусловлен тем, что молекула крезола является аналогом ароматических соединений, образуемых при превращении сырья нефтяного и растительного происхождения. При этом молекула *м*-крезола обладает двумя активными центрами адсорбции: бензольное кольцо по строению подобное строению слоистых графитированных адсорбентов, и кислородсодержащая группа, способная взаимодействовать с пористой структурой адсорбента.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Пористый адсорбент готовили из остатка углекислотного риформинга смешанного лигнина древесного происхождения по методике, представленной в [10].

Суммарный адсорбционный объем определяли эксикаторным методом [12]. Навеску предварительно прогретого при 150°С и при вакууме (2 мм рт. ст.) адсорбента помещали в эксикатор совместно с открытым бюксом, наполненным *м*-крезолом, и выдерживали при температуре 20°С до насыще-

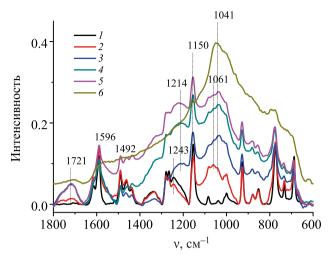

Рис. 2. ИК-спектры отражения лигнина (1), твердого остатка после риформинга лигнина (2), адсорбента (3).

ния парами сорбата. Количество адсорбированного крезола определяли весовым методом. Неизменным вес адсорбента достигался после 4-х часовой адсорбции паров *м*-крезола. Суммарный адсорбционный объем по крезолу составил 2.27 г на 1 г адсорбента.

Исследование текстурных характеристик образцов проводили методом низкотемпературной адсорбции азота на анализаторе NOVA 2000 (Quantachrome Instruments, США). Предварительную очистку поверхности образцов осуществляли путем вакуумирования при температуре 300°C в течение 2 ч. Расчет удельной поверхности проводили с помощью уравнения БЭТ в интервале относительных давлений $P/P_S = 0.05-0.3$ [13–15]. Суммарный объем пор V_{Σ} определяли по количеству адсорбированного азота при относительном давлении $P/P_S = 0.99$. Распределение объема пор по эффективным размерам определяли на основании кривой десорбции рассчитывали по уравнению Баррета-Джойнера-Халенды (ВЈН) [16, 17]. Объем микропор определяли t-методом, используя при расчетах программное обеспечение, входящее в комплектацию прибора.

Для изучения особенностей адсорбции методом ИК-спектроскопии m -крезол добавляли небольшими порциями с помощью шприца с последующим встряхиванием сорбента. Завершение процесса пропитки определяли по комкованию порошкового сорбента. В среднем на навеску сорбента $\approx 0.7~\mathrm{r}$ наносилось $1.5~\mathrm{cm}^3~\mathit{m}$ -крезола. После нанесения крезола емкость закрывали крышкой и выдерживали $2~\mathrm{q}$, периодически перемешивая сорбент, затем крышку открывали и оставляли сорбент сушиться под тягой на $20~\mathrm{q}$. Исследуемый материал предварительно высушивали в вакуумном шкафу при $150°\mathrm{C}$ в течение $2~\mathrm{q}$.

Изучение особенностей (динамики) адсорбции крезола на поверхности синтезированного материала (адсорбента) исследовали *in situ* методом ИК-спектроскопии на ИК-микроскопе HYPERION 2000. Для проведения исследований образцы смешивали с КВг и прессовали в таблетки. ИК-спектры образцов лигнина, порошков исходного адсорбента, а также адсорбента, пропитанного крезолом, получали в режиме пропускания для образцов в виде таблеток, прессованных с бромистым калием (IFS-


Рис. 3. ИК-спектры отражения: 1 - м-крезол; 2 - 2 мин контакта м-крезол + сорбент; 3 - 10 мин контакта; 4 - 30 мин контакта; 5 - 2 ч контакта; 6 - сорбент.

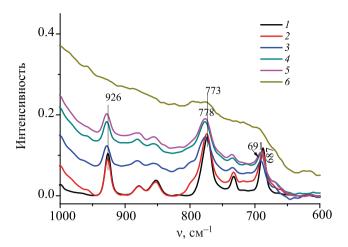
66v/sBruker, разрешение 2 см⁻¹, скан. 30, диапазон 400–4000 см⁻¹), в режиме отражения с поверхности (ATR) (кристалл Ge, скан. 100, разрешение 2 см⁻¹, диапазон 600–4000 см⁻¹). ИК-спектры пропускания и отражения для исследуемых образцов полностью идентичны, однако, в спектрах пропускания из-за гигроскопичности КВг наблюдаются полосы колебаний ОН-группы воды. Эксперименты по изучению динамики хемосорбции крезола в ячейке ИК-спектрометра повторяли дважды.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис. 1а представлены изотермы адсорбции—десорбции азота образца исходного адсорбента, приготовленного из углеродного остатка лигнина. Материал обладает высокой удельной поверхностью, величина которой, рассчитанная по методу БЭТ, составляет $619 \text{ m}^2/\text{г}$.

Представленная изотерма адсорбции имеет капиллярно-конденсационный гистерезис, характерный для мезопористых структур. Форма петли гистерезиса близка, согласно классификации Де Бура, к "В"-типу, характерному для переходной области на границе раздела микро- и мезо- пористой структуры и обладающей порами щелевидной структуры [12, 14]. Исследованный материал имеет развитую пористую структуру, основные параметры которой приведены в табл. 1. Суммарный объем пор составляет $0.65 \text{ cm}^3/\Gamma$, при этом объем микропор – $0.18 \text{ см}^3/\text{г}$, объем мезопор, рассчитанный по методу ВНЈ, $-0.42 \text{ см}^3/\Gamma$. На рис. 16 представлена зависимость распределения объема пор по эффективным размерам на основании результатов десорбции. Анализ кривой показал, что для исследованного образца характерно мономодальное распределение

Рис. 4. ИК-спектры отражения — детализация в области поглощения связей С—О: 1 - м-крезол; 2 - 2 мин контакта m-крезол + сорбент; 3 - 10 мин контакта; 4 - 30 мин контакта; 5 - 2 ч контакта; 6 - сорбент.


пор по размерам. Эффективный диаметр пор D, соответствующий максимуму на кривой распределения, составляет $3.8\,$ нм.

Адсорбент продемонстрировал высокую адсорбционную способность по крезолу: 1 г адсорбента при комнатной температуре поглощает 2.27 г M-крезола.

Данные ИК-спектроскопии показали, что графитизация сорбента выражена намного ярче, чем в углеродном остатке, полученном после риформинга лигнина. Это следует из сравнения ИК-спектров лигнина, твердого остатка после риформинга лигнина, описанного в работе [18], и сорбента, представленного на рис. 2. Анализ этих спектров показывает, что в твердом остатке лигнина после риформинга частично сохраняются отдельные ароматические кольца и алкильные группы, связанные простыми эфирными связями, в то время как в сорбенте таких групп практически не остается и основными структурными группами являются конденсированные ароматические кольца с концевыми окисленными группами.

Полоса в спектре сорбента С–О-связей (1041 см⁻¹) в концевых окисленных графитовых кольцах имеет значительно более высокую интенсивность, чем в спектрах твердого остатка после риформинга лигнина. С другой стороны, полосы С–Н в области 2840–3100 см⁻¹, имеющие достаточно высокую интенсивность в ИК-спектрах твердого остатка после риформинга лигнина [18], практически отсутствуют в спектре сорбента.

На рис. 3-5 представлены ИК-спектры сорбента, пропитанного крезолом, зарегистрированные в разное время контакта в сравнении со спектром M-крезола (I). Уже после 2 мин контакта (спектр 2

Рис. 5. ИК-спектры отражения: детализация в области поглощения неплоских деформационных колебаний С=С-Н ароматических колец: 1- M-крезол; 2-2 мин контакта M-крезол + сорбент; 3-10 мин контакта; 4-30 мин контакта; 5-2 ч контакта; 6- сорбент.

на рис. 3) в спектре сорбента хорошо проявляются полосы, характеризующие *м*-крезол; при этом интенсивная полоса $1041 \,\mathrm{cm^{-1}}$ (спектр 6 на рис. 3 и 4) сорбента, относящаяся к связям С-О-С и С-О-Н в окисленных поверхностных структурах углеродного материала, практически не фиксируется.

Из данных рис. З видно, что вся поверхность сорбента покрыта *м*-крезолом. В спектре 3 наблюдается возникновение новых слабых полос, а некоторые полосы сдвинуты по сравнению со спектром исходного *м*-крезола (рис. 3–5). В частности, широкая полоса 3317 см⁻¹, относящаяся к валентным колебаниям связей –ОН в спектре жидкого крезола, сдвинута на 41 см⁻¹ в область длинных волн в спектре смеси сорбент–крезол (спектр 2), что свидетельствует об образовании водородных связей с участием –ОН-групп (рис. 3).

Появление новой полосы 1061 см⁻¹, которая может быть отнесена к связям С–О, подтверждает возможность ассоциации между атомами кислорода в структуре сорбента и –ОН-группами *м*-крезо-

Рис. 6. Схема взаимодействия крезола с концевыми атомами кислорода в графитоподобных структурах сорбента.

ла (рис. 4). В спектрах, зарегистрированных после 10, 30 и более минут контакта крезола с сорбентом, наблюдается практически полное исчезновение полосы в области 3300–3200 и 1243 см⁻¹, относящихся, соответственно, к валентным колебаниям связей О–Н и Ph–О м-крезола, а также возникновение и рост интенсивности новых широких полос 1214 и 1061см⁻¹, которые могут быть отнесены к связям Ph–О–С в простых эфирах (рис. 3, 4). То есть, можно констатировать, что ассоциация крезола с концевыми окисленными группами сорбента приводит к исчезновению ароматических гидроксильных групп крезола и возникновению новых ковалентных эфирных связей между ароматическим кольцом крезола и графитовыми структурами сорбента.

После 2 ч контакта м-крезола и сорбента спектры больше не меняются. Из данных, полученных при анализе ИК-спектров смесей м-крезол-сорбент, можно заключить, что в ходе контакта происходит химическое превращение крезола с образованием связей Ph-O-C между фенильным кольцом крезола и концевыми (углеродными или кислородными) атомами сорбента. Кроме простых эфирных связей, возникающих при взаимодействии крезола с сорбентом, в спектре появляется и растет по интенсивности полоса 1721 см⁻¹, которая относится к валентным колебаниям карбонильной группы С=О (рис. 3, 4). Следует отметить, что в спектре м-крезола полосы в этой области отсутствуют, а в спектре сорбента очень слабая полоса при 1717 см-1 проявляется (спектр 6 на рис. 3, 4). В спектре 3 после двухминутного контакта крезола с адсорбентом, полоса в этой области расщепляется (1740, 1721 см⁻¹) и растет по интенсивности. После 10 мин контакта полоса 1721 см⁻¹ резко увеличивается по интенсивности и во всех других спектрах (3-5) сохраняет эту интенсивность (рис. 3, 4). Из этого можно заключить, что карбонильные группы на поверхности адсорбента возникают сразу же после контакта с крезолом.

Анализ спектров, представленных на рис. 5 позволяет отметить еще одну особенность ИК-спектров смеси M-крезол-адсорбент, отличающиеся разными временами контакта. Полосы крезола, относящиеся к валентным колебаниям связей С-С в ароматическом кольце (1596 и 1492 см⁻¹, рис. 2), не меняются в зависимости от времени контакта в спектрах смеси крезол-адсорбент. С другой стороны, полосы неплоских деформационных колебаний углов H-C-С (M-замещенное фенильное кольцо) – 773 и 687см⁻¹, а также деформационных колебаний в узле CH_3 —C(Ph), которые бывают очень чувствительны к π -координации по ароматическому кольцу, в спектрах смесей смещены на 6-4 см⁻¹ в сторону коротких волн по сравнению со спектром чистого M-крезола (рис. 5). Из этого следует, что

крезол может координироваться ароматическим кольцом с концевыми ароматическими кольцами плоских графитоподобных частиц в составе адсорбента, вследствие чего происходит ассоциация с концевыми окисленными группами, приводящая к последующему образованию эфиров. Если это так, то данный адсорбент может быть перспективным материалом для связывания не только ароматических спиртов, но и других ароматических соединений, в частности тяжелых нефтяных фракций.

Присутствие графитоподобных структур в составе адсорбента подтверждено наличием в Raman-спектре достаточно интенсивных полос G и D [18].

Химические превращения, которые происходят при взаимодействии *м*-крезола с концевыми окисленными группами на поверхности графитоподобных частиц, входящих в состав углеродного сорбента, схематически представлены на рис. 6.

Однако следует отметить, что на поверхности лигнина остаются кластеры железосодержащей каталитической системы, используемой в качестве катализатора в процессе углекислотного риформинга лигнина, которые также могут быть каталитически активными центрами хемосорбции крезола.

ЗАКЛЮЧЕНИЕ

На основании проведенных исследований можно сделать вывод, что адсорбент, получаемый из остатка углекислотного риформинга лигнина древесного происхождения, имеет высокую удельную поверхность, обладает развитой пористой структурой и имеет мономодальное распределение пор по размерам.

Данный материал обладает высокой адсорбционной способностью по отношению к *м*-крезолу. Данные колебательной спектроскопии указывают на химическое взаимодействие *м*-крезола с активными центрами поверхности адсорбента.

Разработка адсорбента, проявляющего высокую активность к хемосорбции кислородсодержащих ароматических соединений, приготовленного из углеродсодержащего остатка углекислотного риформинга лигнина в синтез-газ [11], обеспечивает в этих двух процессах исчерпывающую переработку лигнина в важные продукты нефтехимии.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках Государственного задания ИНХС по теме № 47.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

СВЕДЕНИЯ ОБ АВТОРАХ

Бондаренко Галина Николаевна, д.х.н., г.н.с.; ORCID – 0000-0002-0653-9598

Колбешин Александр Сергеевич, инженер ИНХС РАН

Либерман Елена Юрьевна, к.х.н., доцент; ORCID – 0000-0002-3387-9248

Чистяков Андрей Валерьевич, к.х.н., в.н.с.; ORCID -0000-0002-4443-7998

Пасевин Вячеслав Иванович, главный инженер OOO»Сорбис групп»

Цодиков Марк Вениаминович, д.х.н., зав. лаб.; ORCID – 0000-0002-8253-2945

СПИСОК ЛИТЕРАТУРЫ

- 1. Kuznetsov B.N., Chesnokov N.V., Ivanov I.P., Veprikova E.V., Ivanchenko N.M. Methods of porous materials obtaining from lignin and wood bark // J. of Siberian Federal University. Chemistry. 2015. V. 2. № 8. P. 232–255
- 2. Kuznetsov B.N., Chesnokov N.V., Ivanov I.P., Veprikova E.V., Ivanchenko N.M. Porous carbon materials produced by the chemical activation of birch wood // Solid fuel chemistry. 2016. V. 50. № 1. P. 23–30.
- 3. *Haq I., Mazumder P., Kalamdhad A.S.* Recent advances in removal of lignin from paper industry wastewater and its industrial applications: a review // Bioresource Technology. 2020. C. 123636–123647.
- Rabinovich M.L., Fedoryak O., Dobele G., Andersone A., Gawdzik B., Lindström M.E., Sevastyanova O. Carbon adsorbents from industrial hydrolysis lignin: the USSR/ Eastern European experience and its importance for modern biorefineries // Renewable and Sustainable Energy Reviews. 2016. V. 57. P. 1008–1024.
- 5. Ayyachamy M., Cliffe F.E., Coyne J.M., Collier J., Tuohy M.G. Lignin: untapped biopolymers in biomass conversion technologies // Biomass Conv. Bioref. 2013. № 3. P. 255–269.
- 6. Suhas S., Carrott P.J.M., Carrott M.M.L.R. Lignin from natural adsorbent to activated carbon: a review // Biores. Technol. 2007. № 98. P. 2301–2312.

- 7. Fu K., Yue Q., Gao B. Preparation, characterization and application of lignin-based activated carbon from black liquor lignin by steam fctivation // Chem. Eng. J. 2013. V. 228. № 15. P. 1074–1082.
- 8. *Jawaid M., Tahir P. M., Saba N.* Lignocellulosic fibre and biomass-based composite materials: processing, properties and applications. Woodhead Publishing, 2017. 505 p.
- 9. *Alkhatib A.J., Al Zailaey K.* Medical and environmental applications of activated charcoal: review article // European Scientific J. 2015. V. 11. № 3. P. 50–56.
- Tsodikov M.V., Nikolaev S.A., Chistyakov A.V., Bukhtenko O.V., Fomkin A.A. Formation of adsorbents from fecontaining processing residues of lignin // Microporous and Mesoporous Materials. 2020. V. 298. P. 110089– 110096.
- 11. Tsodikov M.V., Ellert O.G., Nikolaev S.A., Arapova O.V., Bukhtenko O.V., Maksimov Yu.V., Kirdyankin D.I., Vasil'kov A.Yu. Fe-Containing nanoparticles used as effective catalysts of lignin reforming to syngas and hydrogen assisted by microwave irradiation // J. of Nanoparticle Research. 2018. V. 20. № 3. P. 86–101.
- 12. Гиллебрант В.Ф., Лендель Г.Э., Брайт Г.А., Гофман Д.И. Практическое руководство по неорганическому анализу. «Химия»: М., 1966. 654 с.
- 13. *Gregg S.J.*, *Sing K.S.W.* Adsorption, surface area and porosity. L.: Academic Press, 1982. 957 p.
- 14. *Elliot S*. The physics and chemistry of solids. New York: Wiley&Sons, 1998. 794 p.
- 15. *Barrett E.P., Joyner L.G., Halenda P.P.* The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms // J. Am. Chem. Soc. 1951. P. 373–380.
- 16. *Dubinin M.M., Plavnik G.M.* Microporous Structures of Carbonaceous Adsorbents // Carbon. 1968. V. 6. P. 183–192.
- 17. *Feldman L.C., Mayer J.W.* Fundamentals of surface and thin film analysis. Amsterdam: Elsevier Sciens, 1986. 352 p.
- 18. *Arapova O.V., Bondarenko G.N., Chistyakov A.V., Tsodikov M.V.* Vibrational spectroscopy studies of structural changes in lignin under microwave irradiation // Russ. J. Phys. Chem. A. 2017. V. 91. № 9. P. 1717–1729.