УДК 544.47:547.27

ПРОИЗВОДСТВО ДИМЕТИЛОВОГО ЭФИРА ИЗ АЗОТСОДЕРЖАЩЕГО СИНТЕЗ-ГАЗА

© 2021 г. Г. И. Лин¹, М. А. Кипнис^{1,*}

¹ Институт нефтехимического синтеза им. А.В. Топчиева РАН, Москва, 119991, Россия *E-mail: kipnis@ips.ac.ru

> Поступила в редакцию 17 июня 2020 г. После доработки 23.июня 2020 г. Принята к публикации 10 июля 2020 г.

В проточной пилотной установке проведена серия экспериментов по конверсии синтез-газа с высоким содержанием азота (более 40 об. %) с получением диметилового эфира (ДМЭ). В качестве компонентов бифункционального катализатора использованы коммерческие катализаторы: метанольный – ДВ-8-2 и дегидратирующий – γ-Al₂O₃. Введено понятие «реагирующий газ», содержание которого в синтез-газе отвечает сумме содержаний оксидов углерода и водорода. Установлено, что метанол и ДМЭ отсутствуют в конвертированном газе на выходе из реактора, т.к. конденсируются в охлаждаемом водой сепараторе. Селективность образования ДМЭ не ниже 66%, максимальная производительность по ДМЭ 340 л⋅(кг_{кат}·ч)⁻¹. Общее время работы бифункционального катализатора более 600 ч. Проведенные исследования одностадийного синтеза ДМЭ из азотсодержащего синтез-газа демонстрируют практическую возможность создания промышленной технологии с использованием коммерческих компонентов бифункционального катализатора.

Ключевые слова: диметиловый эфир, бифункциональный катализатор, оксид алюминия, азотсодержащий синтез-газ

DOI: 10.31857/S0028242121010123

Различное углеродсодержащее сырье (уголь, нефтезаводской или природный газ, бытовые отходы, биомасса), как показывают исследования последнего времени, может быть переработано в ценные химические продукты. Одно из направлений переработки – окислительная конверсия такого сырья с получением синтез-газа.

При этом рассматриваются различные варианты окислителей, но при использовании воздуха, как окисляющего агента, в составе синтез-газа появляется значительное количество азота [1–6]. Полученный синтез-газ далее может быть конвертирован до оксигенатов – метанола или диметилового эфира (ДМЭ) – сырья для дальнейшего синтеза таких химических продуктов, как метилацетат, этанол, формальдегид и др., углеводородов (в частности, олефинов) [3, 7–11], топливных фракций.

Азотсодержащий синтез-газ представляет собой смесь H₂, CO, CO₂, N₂. Нежелательные примеси, появляющиеся при окислительной конверсии, должны быть из смеси предварительно удалены. В частности, требуется глубокая очистка от серы, являющейся ядом для медьсодержащего метанольного катализатора конверсии синтез-газа в метанол; нежелательной примесью является и ацетилен, легко гидрирующийся на металлической меди. В то же время, примесь бензола, согласно [12], не влияет на стабильность работы катализатора.

Для характеристики синтез-газа обычно используется понятие функционала F (модуля, стехиометрического соотношения) [13]: $F = (C_{\rm H2} - C_{\rm CO2})/(C_{\rm CO} + C_{\rm CO2})$; очевидно, что понятие функционала может быть использовано и в случае азотсодержащего синтез-газа, поскольку не зависит от содержания азота.

При синтезе ДМЭ из синтез-газа протекают три экзотермические реакции:

непосредственно синтез метанола гидрированием CO₂:

 $CO_2 + 3H_2 \rightarrow CH_3OH + H_2O, \Delta H_0 = -49.8$ кДж/моль, (1) паровая конверсия CO (реакция водяного газа):

СО + $H_2O \rightarrow CO_2$ + H_2 , $\Delta H_0 = -41.2$ кДж/моль, (2)

дегидратация образующегося метанола до ДМЭ:

2CH₃OH \rightarrow CH₃OCH₃ +H₂O, $\Delta H_0 = -23$ кДж/моль. (3)

Скорости реакций (1)–(3) зависят от парциальных давлений реагирующих компонентов синтез-газа. Парциальное давление азота, входящего в состав

синтез-газа, по крайней мере, при умеренных давлениях синтеза ДМЭ, не должно влиять на характер протекающих реакций. Поэтому при наличии в синтез-газе инертного компонента целесообразно, на наш взгляд, использовать понятие «реагирующий газ» (рг), введя параметр α , под которым будем понимать суммарную долю содержания H₂, CO, CO₂. Тогда давление «реагирующего газа» можно определить, как: $P_{\rm pr} = \alpha P$. Также можно говорить об объемной скорости (GHSV_{pr}) или времени контакта «реагирующего газа» ($\tau_{\rm pr}$) по отношению к объемной скорости или времени контакта синтез-газа: GHSV_{pr} = α GHSV, $\tau_{\rm pr} = \tau/\alpha$.

С учетом реакций (1)–(3) для прямого синтеза ДМЭ требуется бифункциональный катализатор, содержащий, как метанольный, так и дегидратирующий компоненты.

Наличие в синтез-газе большого содержания азота не позволяет использовать проточно-циркуляционную технологию, как это принято в синтезе метанола. В настоящей статье рассмотрено получение ДМЭ из синтез-газа с высоким содержанием азота на пилотной установке с проточным реактором.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез-газ готовили смешением индивидуальных газов: CO_2 (ГОСТ 8050-85); N_2 (ГОСТ 9293-74); H_2 (ГОСТ 3022-80); оксида углерода (ТУ 6213979) в газгольдере с последующим компримированием.

В качестве метанольного компонента катализатора обычно используют композиции на основе оксидов меди, цинка, а в качестве дегидратирующегоу-Al₂O₃ или цеолиты [14–17]. В данной работе метанольным компонентом служил промышленный катализатор ДВ-8-2 (ТУ 113-03-00209510-82-97, НИАП, Новомосковск), дегидратирующим – у-Аl2O3 (ТУ 2163-001-43919676-01, ООО «Новокуйбышевский завод катализаторов»). Исходные гранулы катализаторов дробили и растирали, смешивая полученные порошки в весовом соотношении ДВ-8-2/оксид Al = 2/1 и таблетируя на ручном прессе. Таблетки затем дробили до фракции 2-3 мм. Состав бифункционального катализатора, в пересчете на оксиды, мас. %: CuO – 23.25; ZnO – 23.25; $Cr_2O_3 - 16.6$; $Al_2O_3 - 36.9$.

Эксперименты проводили на проточной установке высокого давления конструкции СКБ ИНХС РАН. Исходная газовая смесь через регулятор давления «после себя» поступала в реактор, заключенный в алюминиевый блок с электроподогревом. Температуру блока измеряли с точностью ±0.5°С, и поддерживали с точностью ±1°С. Навеску катализатора (5 г) помещали в среднюю часть реактора, остальной объем заполняли насадкой из металлического алюминия для нагрева исходного синтез-газа. Образующиеся жидкие продукты (воду и метанол) отделяли в двух последовательных охлаждаемых проточной водой приемниках-сепараторах, расположенных на выходе из реактора. После выхода из приемника-сепаратора газовую смесь дросселировали при помощи вентиля до атмосферного давления и пропускали через реометр и газовые часы для оценки расхода. Часть газового потока после дросселирования направляли в газовый хроматограф.

Расход газа на входе в реактор рассчитывали, исходя из материального баланса по азоту. Реактор после загрузки катализатора продували водородом и восстанавливали катализатор, поднимая температуру в потоке водорода 10 л/ч при атмосферном давлении до 220°С в течение 7 ч. После 2-х часовой выдержки при этой температуре водород заменяли на синтез-газ и поднимали давление и температуру. Условия экспериментов приведены в табл. 1. Состав синтез-газа подбирали, исходя из содержания азота не менее 40 об. %, варьируя значения функционала в пределах 0.9–2.6 (серии I–VI).

Испытания вели, варьируя объемную скорость исходного синтез-газа. Цикл непрерывной работы занимал рабочую неделю (около 100 ч). При продолжении испытаний (после перерыва на выходные) введение катализатора в рабочий режим проводили в потоке синтез-газа при рабочем давлении, поднимая температуру от комнатной со скоростью 30°С/ч до температуры опыта.

В составе газа вода, метанол и ДМЭ практически отсутствовали: использование охлаждаемого проточной водой сепаратора, работающего под давлением, привело к их конденсации. При этом растворимость оксидов углерода в сконденсированной жидкой фазе, как показывают оценки, незначительна. ДМЭ, растворенный в конденсате, при сливе конденсата дегазируется. Соответственно, состав слива по содержанию характеризуется водой и метанолом. Анализ газов и конденсата, периодически сливаемого из сепаратора, проводили на хроматографе ЛХМ-8МД (газ-носитель – водород) с детектором по теплопроводности. В качестве адсорбента использовали активированный уголь марки СКТ (анализ CO, CO_2 , N_2 , CH_4) и порапак Q (анализ H₂O, CH₃OH, ДМЭ, углеводороды C₁-C₄). Отметим, что углеводороды в составе конвертированного газа выше пределов детектируемости не обнаружены.

Расчеты проводили по приведенным ниже формулам. Использовали следующие обозначения: C_i , C_i^0 – концентрации *i*-го компонента (об. %) в конвертированном и исходном синтез-газе.

Расход на входе в реактор ($V_{\rm BX}$, нл/ч) рассчитывали, исходя из материального баланса по азоту: $V_{\rm BX} = V_{\rm BMX} \cdot K$, где $V_{\rm BMX} -$ расход газа на выходе из реактора, нл/ч, K- контракция азота, равная отноше-

НЕФТЕХИМИЯ том 61 № 1 2021

ПРОИЗВОДСТВО ДИМЕТИЛОВОГО ЭФИРА

№ серии	T, °C	Состав синтез-газа, об. %				E	
		N ₂	СО	CO ₂	H ₂		$P_{\rm pr}$, MIIIa
Ι	260	44.6	21.9	1.3	32.3	1.3	2.2
II	260	50.8	19.9	3.7	25.6	0.9	2.5
III	260	55.5	18.0	3.4	23.1	0.9	2.8
IV	260	41.1	13.3	2.5	43.1	2.6	2.1
V	280	56.6	18.1	3.4	21.9	0.9	2.8
VI	280	41.1	13.3	2.5	43.1	2.6	2.1

Таблица 1. Условия получения ДМЭ из азотсодержащего синтез-газа при 5 МПа

нию концентраций азота на выходе (C_{N_2}) и входе $(C_{N_2}^0)$ в реактор: $K = C_{N_2}/C_{N_2}^0$.

Количество конвертированного СО, $\Delta V_{\rm CO}$, л/ч: $\Delta V_{\rm CO} = V_{\rm BX} C_{\rm CO}^0 - V_{\rm Bbix} C_{\rm CO}$.

Количество СО, превратившегося в СО₂, ΔV_{CO_2} , л/ч: $\Delta V_{CO_2} = V_{BX}C_{CO_2}^0 - V_{Bbix}C_{CO_2}$.

Количество СО, превратившегося в CH₃OH, V_{CH_3OH} , л/ч, исходя из количества метанола в конденсате: $V_{CH_3OH} = g_{CH_3OH} \cdot 24/32$, где $g_{CH_3OH} -$ количество образовавшегося метанола в конденсате (г/ч), 24 – объем моля газа в литрах при комнатной температуре, 32 – вес грамм-моля метанола.

Количество СО, превратившегося в ДМЭ, л/ч: $\Delta V_{\text{ДМЭ}} = \Delta V_{\text{CO}} - V_{\text{CH}_{3}\text{OH}} - \Delta V_{\text{CO}_{2}}$.

Конверсия CO, X_{CO} , %: $X_{CO} = 100 \Delta V_{CO} / V_{BX} C_{CO}^0$

Селективность по продукту *i* (CO₂, CH₃OH, ДМЭ), S_i (%) рассчитывали по формуле: $S_i = 100\Delta V_i / \Delta V_{CO}$.

Конверсия метанола в ДМЭ, X_{Me} (%): $X_{Me} = 100S_{ДМЭ}/(S_{ДМЭ} + S_{CH_3OH})$.

Производительности по СО₂, ДМЭ и оксигенатам (метанол, ДМЭ) рассчитывали, соответственно: $\Pi_{\rm CO_2} = \Delta V_{\rm CO_2}/m$, $\Pi_{\rm ДМЭ} = 0.5 \Delta V_{\rm ДМЭ}/m$, $\Pi_{\rm окс} = (\Delta V_{\rm ДМЭ} + V_{\rm CH_3OH})/m$, где m – масса навески. Коэффициент 0.5 при расчете $\Pi_{\rm ДМЭ}$ связан со стехиометрией реакции (3). Равновесные содержания компонентов рассчитывали по программе, разработанной в Госнииметанолпроект (г. Северодонецк, Украина, А.С. Шмелев).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Для І-ой серии экспериментов зависимости производительности по оксигенатам, CO₂, ДМЭ от объемной скорости «реагирующего газа» представлены на рис. 1. Как видно из рис. 1, с ростом нагрузки примерно до 3000 л · (кг_{кат} · ч)⁻¹ наблюдается начальный линейный рост для всех зависимостей. Далее кривые начинают отклоняться от линейности, приближаясь к предельным значениям. Как отмечено нами ранее [14, 15, 18], подобные зависимости отражают постепенный переход реакции от термодинамически равновесного режима к ки-

НЕФТЕХИМИЯ том 61 № 1 2021

нетическому. В кинетическом режиме производительность ограничена активностью катализатора.

Интересно, что производительность по ДМЭ примерно вдвое меньше суммарной производительности по оксигенатам. Поскольку при синтезе ДМЭ на 1 моль ДМЭ расходуется 2 моля метанола, это означает, что конверсия метанола в ДМЭ близка к 100%.

Действительно, как видно из рис. 2, конверсия метанола в ДМЭ, с учетом экспериментальной погрешности, равна равновесной для данной температуры (93%) величине в диапазоне времен контакта по «реагирующему» газу 0.63 с и более. Независимость конверсии метанола от времени контакта говорит о высокой активности дегидратирующего компонента в выбранных условиях. Конверсия СО при временах контакта по реагирующему газу выше 1.2 с [объемная скорость по рг 3000 л·(кг_{кат}·ч)⁻¹] изменяется слабо. Это отражает протекание реакции в режиме, близком к термодинамически равновесному.

Аналогичные зависимости наблюдаются и для остальных серий. Очевидно, что снижение времени контакта ниже 1.2 с [увеличение объемной скорости выше $3000 \text{ л}(\text{кг}_{\text{кат}}\text{ч})^{-1}$] не эффективно: снижается конверсия СО и не растет производительность. Распределение соответствующих селективностей от времени контакта представлено на рис. 3 и 4.

То есть, селективности образования продуктов практически не зависят от выбранного времени контакта и составляют, в среднем, для ДМЭ – 66.4%, CO₂ – 30%, метанола – 3.6%. Такая же картина наблюдалась и в случае серий II, III, V – две трети углерода из конвертирующегося СО переходят в ДМЭ, треть – в CO₂ и метанол. В случае серий IV, VI, отличающихся высоким значением функционала, ситуация иная (рис. 4):

селективность образования ДМЭ на уровне \approx 70% при увеличении времени контакта, селективности образования CO₂ и метанола изменяются антибатно.

Для сравнения некоторые сводные данные для всех серий представлены в табл. 2. Экспериментальные значения конверсии СО и селективностей

Рис. 1. Зависимость производительности от объемной скорости «реагирующего газа» (І-ая серия экспериментов): *1* – оксигенаты в расчете на метанол, *2* – ДМЭ, *3* – СО₂.

выбраны для времени контакта по реагирующему газу, равному 6 с [объемная скорость по реагирующему газу 600 л·(кг_{кат}·ч)⁻¹]. Для сравнения приведены соответствующие равновесные значения.

Как видно, результаты, по численным значениям селективности, можно разбить на две группы: в одной – данные серий I, II, III, V, в другой – серий IV, VI. Такое разбиение, как отмечено выше, соответствует разбиению исходного синтез-газа на две группы по значению функционала (табл. 1): для серий I, II, III, V функционал близок к 1, а для серий IV, VI составляет 2.6. Как видно из табл. 2, экспериментальная селективность образования ДМЭ, практически равна равновесной; селективности образования метанола и CO₂, а также конверсия CO также близки к равновесным значениям.

Сравнивая между собой данные серий II и V, а также IV и VI, можно отметить, что увеличение температуры синтеза с 260 до 280°С (серии V, VI)

Рис. 2. Зависимость конверсии CO (1) и метанола в ДМЭ (2) от времени контакта по «реагирующему газу» (І-ая серия экспериментов).

практически не повлияло на селективность образования продуктов.

Суммарно катализатор проработал более 600 ч при вариации режимов работы и периодических остановках/пусках после примерно каждых 100 ч работы, что говорит о стабильности бифункциональной композиции катализатора.

Отметим, что, согласно [14], производительность по ДМЭ может быть увеличена при повышении давления. Очевидно, что выбор условий переработки синтез-газа с высоким содержанием азота может быть сделан на основе анализа технико-экономических данных.

ЗАКЛЮЧЕНИЕ

Проведенные в проточной пилотной установке эксперименты по каталитической конверсии синтез-газа с высоким содержанием азота (более

№ серии	Время работы, ч	X _{CO} , %		Селективность, мол %					
				CO ₂		ДМЭ		CH ₃ OH	
		эксп	равн	эксп	равн	эксп	равн	эксп	равн
Ι	168	76	84.3	28.8	31.3	66.6	66.6	4.6	2.2
II	130	64.6	73.7	30.2	31.8	66.3	66.3	3.5	1.9
III	178	59	69.7	30.9	32.0	66.3	66.3	2.8	1.7
IV	77	88	89.1	20.3	23.7	70.8	70.9	8.9	5.4
V	30	47.3	55.7	31.3	31.5	66.3	66.3	2.4	2.2
VI	24	отс	79.5	19.9	24.8	69.4	69.9	10.7	5.3

Таблица 2. Сводные экспериментальные данные для всех серий экспериментов, время контакта по реагирующему газу 6 с

100

Рис. 3. Зависимость селективностей образования ДМЭ (*1*), CO₂ (*2*), CH₃OH (*3*) от времени контакта по «реагирующему газу» (І-ая серия экспериментов).

40 об. %) в ДМЭ показали достаточно высокую эффективность его переработки. Бифункциональный катализатор синтеза ДМЭ, приготовленный из коммерческих компонентов: метанольного катализатора ДВ-8-2 и гамма-оксида алюминия таблетированием соответствующей шихты, стабильно проработал более 600 ч.

Установлено, что в процессе работы вода, метанол и ДМЭ конденсируются в охлаждаемом водой сепараторе и отсутствуют в конвертированном газе на выходе из реактора. При температурах 260–280°С, давлении 5 МПа и вариации объемной скорости получены зависимости производительности по ДМЭ, метанолу, СО₂ от расхода сырья и селективности их образования от времени контакта. Селективность образования ДМЭ не ниже 66% независимо от функционала синтез-газа.

Проведенные исследования одностадийного синтеза ДМЭ из синтез-газа с высоким содержанием азота подтверждают возможность применения продуктов окислительной конверсии углеродсодержащего сырья для переработки в оксигенаты. Выбранная технология может служить прототипом промышленной технологии одностадийного синтеза ДМЭ из азотсодержащего синтез-газа. Сепарирование жидких продуктов, использование коммерческих катализаторов для синтеза бифункционального катализатора, безусловно, применимы в промышленности при соответствующем масштабировании. Окончательный выбор условий переработки синтез-газа с высоким содержанием азота может быть сделан на основе анализа соответствующих технико-экономических данных.

Рис. 4. Зависимость селективностей образования ДМЭ (1), CO₂ (2) и метанола (3) от времени контакта по «реагирующему газу» (IV-ая серия экспериментов).

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках Государственного задания ИНХС РАН.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Лин Галина Ивановна, к.х.н., в.н.с., ORCID – 0000-0002-0526-3155

Кипнис Михаил Аронович, к.х.н., г.н.с., ORCID-0000-0003-4192-8473

СПИСОК ЛИТЕРАТУРЫ

- Yan Q., Yu F., Liu J., Street J., Gao J., Cai Z., Zhang J. Catalytic conversion wood syngas to synthetic aviation turbine fuels over a multifunctional catalyst // Bioresour. Technol. 2013. V. 127. P. 281–290.
- Pohořely M., Jeremiaš M., Svoboda K., Kamenikova P., Skoblia S., Beňo Z. CO₂ As moderator for biomass gasification // Fuel. 2014. V. 117. P. 198–205.
- Wang Z., He T., Qin J., Wu J., Li J., Zi Z., Liu G., Wu J., Sun L. Gasification of biomass with oxygen-enriched air in a pilot scale two-stage gasifier // Fuel. 2015. V. 150. P. 386–393.
- Li Y., Wang T., Yin X., Wu C., Ma L., Li H., Lv Y., Sun L. 100 t/a-Scale demonstration of direct dimethyl ether synthesis from corncob-derived syngas // Renew. Energ. 2010. V. 35. P. 583–587.
- 5. Арутюнов В.С., Шмелев В.М., Лобанов И.Н., Политенкова Г.Г. Генератор синтез-газа и водорода на ос-

НЕФТЕХИМИЯ том 61 № 1 2021

нове радиационной горелки // ТОХТ. 2010. Т. 44. № 1. С. 21–30 [Theor. Found. Chem. Eng. 2010. V. 44. Р. 20.]

- Арутюнов В.С., Стрекова Л.Н., Савченко В.И., Седов И.В., Никитин А.В., Елисеев О.Л., Крючков М.В., Лапидус А.Л. Перспективы конверсии углеводородных газов в жидкие продукты на основе азотсодержащего синтез-газа (обзор) // Нефтехимия. 2019. Т. 59. № 3. С. 246–255. [Petrol. Chemistry. 2019. V. 59. Р. 370.]
- Baliban R.C., Elia J.A., Floudas C.A. Biomass and natural gas to liquid transportation fuels: process synthesis, global optimization, and topology analysis // Ind. Eng. Chem. Res. 2013. V. 52. P. 3381–3406.
- Маркова Н.А., Букина З.М., Ионин Д.А., Колесниченко Н.В., Хаджиев С.Н. Диметиловый эфир в процессе переработки попутного нефтяного газа в смесь синтетических углеводородов // Нефтехимия. 2016. Т. 56. № 6. С. 639–656. [Petrol. Chemistry. 2016. V. 56. P. 857.]
- Ионин Д.А., Колесниченко Н.В., Букина З.М., Хаджиев С.Н. Синтез бензиновых фракций из СО и H₂ через оксигенаты // Нефтехимия. 2015. Т. 55. № 2. С. 119–124. [Petrol. Chemistry. 2015. V. 55. Р. 112].
- Ilias S., Bhan A. Mechanism of the catalytic conversion of methanol to hydrocarbons // ACS Catal. 2013. V. 3. P. 18–31.
- 11. Волнина Э.А., Кипнис М.А., Хаджиев С.Н. Каталитическая химия диметилового эфира (обзор) // Нефтехимия. 2017. Т. 57. № 3. С. 243–262. [Petrol. Chemistry. 2017.V. 57. Р. 353.]

- Bukhtiyarova M., Lunkenbein T., Kahler K., Schlogl R. Methanol synthesis from industrial CO₂ sources: a contribution to chemical energy conversion // Catal. Lett. 2017. V. 147. P. 416–427.
- Караваев М.М., Леонов В.Е., Попов И.Г., Шепелев Е.Т. Технология синтетического метанола / Под ред. Караваева М.М. М.: Химия, 1984. 240 с.
- Кипнис М.А., Самохин П.В., Белостоцкий И.А., Туркова Т.В. Синтез диметилового эфира из синтез-газана катализаторе Мегамакс 507/γ-Al₂O₃ // Катализ в промышленности. 2017. Т. 17. № 6. С. 442–449. [Catal. Ind. 2018. V. 10. Р. 97.]
- Кипнис М.А., Белостоцкий И.А., Волнина Э.А., Лин Г.И., Маршев И.И. Синтез диметилового эфира из синтез-газана катализаторах с цеолитами ZSM-5 // Кинетика и катализ. 2018. Т. 59. № 6. С. 715–727. [Kinet. Catal. 2018. V. 59. Р. 754.]
- Saravanan K., Ham H., Tsubaki N., Bae J.W. Recent progress for direct synthesis of dimethyl ether from syngas on the heterogeneous bifunctional hybrid catalysts // Appl. Catal. B: Env. 2017. V. 217. P. 494– 522.
- 17. Sun J., Yang G., Yoneyama Y., Tsubaki N. Catalysis Chemistry of Dimethyl Ether Synthesis // ACS Catal. 2014. V. 4. P. 3346–3356.
- Кипнис М.А., Белостоцкий И.А., Волнина Э.А., Лин Г.И. Синтез оксигенатов из синтез-газа на CuO/ ZnO/Al₂O₃-катализаторе: роль дегидратирующего компонента // Катализ в промышленности. 2018. Т. 18. № 5. С. 12–18. [Catal. Ind. 2019. V. 11. Р. 53.]