УДК 547.53:547.525+665.652.4+661.183.6

АЛКИЛИРОВАНИЕ ТОЛУОЛА ИЗОПРОПАНОЛОМ НА ЦЕОЛИТЕ ТИПА ZSM-5, МОДИФИЦИРОВАННОМ ЛАНТАНОМ

© 2021 г. Н. М. Абдуллаева¹, Л. Г. Воскрессенский², Н. Ф. Ахмедова^{1,*}, С. Э. Мамедов¹

¹ Бакинский Государственный Университет, Баку, AZ1148 Азербайджан ² Российский Университет дружбы народов, Москва, 117 198 Россия *E-mail: n_akhmed@mail.ru

> Поступила в редакцию 5 июля 2019 г. После доработки 20 июля 2020 г. Принята к публикации 17 октября 2020 г.

Изучено влияние концентрации лантана на физико-химические и каталитические свойства цеолита HZSM-5 в реакции алкилирования толуола изопропанолом в интервале температур 250–350°С. На основании данных, полученных с помощью методов рентгеноструктурного анализа, низкотемпературной адсорбции азота (БЭТ) и ИК-спектроскопии было показано, что при увеличении концентрации лантана в HZSM-5 с 1.0 до 7.0 мас. % кристаллическая структура цеолита сохраняется, однако удельная площадь поверхности и объем пор уменьшаются. При этом происходит перераспределение кислотных центров – уменьшение концентрации сильных кислотных центров Бренстеда (В) и увеличение концентрации кислотных центров Льюиса (L) средней силы (снижение соотношения В/L-кислотных центров с 3.53 до 0.20). Все это оказывает решающее влияние на селективность продуктов реакции и селективность по *п*-изопропилтолуолу (4-ИПТ): максимальная селективность (72.4%) достигается на цеолите, содержащем 5.0 мас. % лантана при отношении центров В/L, равном 0.25.

Ключевые слова: алкилирование, толуол, изопропанол, лантан, цеолит ZSM-5

DOI: 10.31857/S002824212102009X

В настоящее время повышение спроса на *n*-замещенные алкилароматические углеводороды (УВ) приводит к необходимости разработки селективных гетерогенных катализаторов для синтеза n-ксилола, n-метилэтилтолуола, n-диэтилбензола и п-изопропилбензола. Продукты алкилирования толуола изопропанолом – м- и п-ИПТ – широко используются для получения изо- и терефталевых кислот [1-3], крезолов и других важных продуктов органического синтеза [4, 5]. В работах [2, 3] показано, что в настоящее время не существует совершенной технологии процесса получения 4-ИПТ. В качестве катализаторов алкилированиябыли предложены комплексы на основе AlCl₃, TiCl₄, BF₃ и фосфорной кислоты [3-6] на кизельгуре, которые не обеспечивают высокого выхода ИПТ при промышленном производстве.

В присутствии большинства катализаторов получается смесь ИПТ, содержащая все изомеры. Использование фосфорной кислоты на кизельгуре приводит к получению смеси, обогащенной 2-ИПТ

[3, 6]. При использовании AlCl₃ получается смесь, обогащенная м-изомером и практически свободная от о-изомера. Подробные исследования показали, что информация о получении преимущественно 4-ИПТ путем алкилирования в присутствии H_2SO_4 или $TiCl_4$ не подтверждается. Кислотные катализаторы, используемые в промышленности, не позволяют получать смесь ИПТ, обогащенную *n*-изомером. Кроме того, эти катализаторы имеют существенные недостатки (коррозия оборудования, высокий расход катализатора, загрязнение окружающей среды и т.д.), что привело к необходимости поиска гетерогенных катализаторов на основе цеолитов. Так, в работе [7] было обнаружено, что модифицирование цеолита NaX катионами Се повышает каталитическую активность в реакции алкилирования толуола. В исследуемом интервале температур 280-300°C содержание *п*-изомера в смеси ИПТ всегда было меньше м-изомера. На цеолитах типа Y, Beta и морденита с крупными порами предпочтительным является образование разветвленных изомеров, однако эти цеолиты не проявляют высокой селективности по синтезу n-изопропилбензола [8, 9]. В последнее время высококремнистые цеолиты типа ZSM-5, благодаря своей уникальной структуре с размером окон 0.51×0.57 нм, а также адсорбционным и кислотным свойствам, обеспечивающим высокую каталитическую активность и селективность, постепенно заменяют традиционные катализаторы типа Фриделя—Крафтса.

Создание региоселективных гетерогенных катализаторов на основе цеолита типа ZSM-5 для алкилирования алкилароматических УВ одноатомными спиртами С1-С3 является одним из наиболее важных в органическом катализе [8, 9]. Одним из возможных путей изменения каталитических и молекулярных ситовых свойств цеолитов с целью получения пара-селективных катализаторов является их химическая модификация [10-15]. пара-Ориентирующее влияние модификаторов на активность цеолитов в реакциях алкилирования алкилароматических УВ метанолом и этанолом показано в [10–13]. Природа редкоземельного металла (La, Ho, Yb, Pr) существенно влияет на *пара*-селективность в реакции алкилирования толуола изопропанолом [14]. Наибольшую пара-селективность проявляет HZSM-5, модифицированный лантаном. В связи с этим цель данной работы – изучение влияния модифицирования высококремнеземного цеолита типа ZSM-5 лантаном на его физико-химические и каталитические свойства в реакции алкилирования толуола изопропанолом.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исходную H-форму цеолита H-ZSM-5 получали ионным обменом ZSM-5 (ЗАО Нижнегородские сорбенты, Россия, Si/Al = 33) с NH₄Cl: 5.0 г ZSM-5 дважды кипятили с обратным холодильником в 100 мл 1.0 М раствора NH₄Cl в течение 6 ч, а затем прокаливали (на воздухе) при 550° С в течение 4 ч [15]. Модифицированные цеолиты La/H-ZSM-5 готовили методом пропитки (0.03–0.30 г/10 мл) с использованием водного раствора нитрата лантана La(NO₃)₃·5H₂O при 70– 80° C в течение 24 ч.

Катализатор 5% La/H-ZSM-5 готовили последовательной двукратной пропиткой цеолита H-ZSM-5 раствором La(NO₃) $_3$ ·5H₂O (в расчете 3.0% La₂O₃+2.0% La₂O₃) с промежуточным прока-

ливанием при 500°С в течение 4 ч для разложения первой порции соли. Полученный порошок высушивали при 110°С в течение 4 ч, а затем прокаливали при 550°С в течение 4 ч на воздухе с получением La/HZSM-5, в котором содержание лантана составляло 1.0–7.0 мас. %. Перед использованием цеолиты гранулировали прессованием без связующего вещества при максимальном давлении 2.5×10⁷ Па и просеивали для получения частиц диаметром 0.2–0.3 мм.

Инфракрасные спектры (4000–400 см⁻¹) получали на приборе BIO-RADFTS 3000МХ. Образцы готовили в форме пластины диаметром 20 мм путем прессования однородного слоя порошкообразных образцов. Затем пластину устанавливали в ИК-вакуумной ячейке, снабженной окнами КВг, и предварительно нагревали в вакууме (~10⁻⁴ Па) при 450°С в течение 2 ч. Адсорбцию пиридина проводили при 150°С.

Концентрацию кислотных центров Бренстеда (В) и Льюиса (L) определяли по интенсивностям ИК-полос при 1550 и 1450 см $^{-1}$ [5, 15, 16], соответственно при 200°С и 350°С (см. ниже).

Содержание лантана в катализаторе определяли с помощью атомно-абсорбционного спектрофотометра (AASTJA, Atomsan 16).

Рентгенофазовый анализ катализаторов проводили с помощью порошкового рентгеновского дифрактометра с $\text{Си}K_{\alpha}$ -излучением ($\lambda=0.15046\,\text{ hm}$), работающего при 40 кВ и 30 мА. Диапазон сканирования 2 θ от 10° до 80° с шагом сканирования 0.0167°.

Исследование пористой структуры образцов осуществляли методом низкотемпературной адсорбции азота при 77 К на установке ASAP-2010 фирмы Micromeritics. Перед измерением образцы (ок. 220 мг) дегазировали при 250°С и 1×10^{-3} Па в течение 4 ч. Удельную площадь поверхности рассчитывали по методу ВЕТ (БЭТ), а распределение мезопор было получено по методу ВЈН.

Каталитические эксперименты осуществляли в кварцевом реакторе (длина 10 см, внутренний диаметр 1.0 см), который помещали в печь с микропроцессорным управлением. Загрузка катализатора составляла 2.0 г. Перед началом экспериментов катализаторы активировали в атмосфере воздуха в течение при 500°С в течение часа. Реакцию алки-

Катализаторы	Содержание La, мас. %	Содержание La по AAS, мас. %	$S_{ m BET.} { m M}^2/\Gamma$	$V_{\rm nop},{\rm cm}^3/\Gamma$
HZSM-5	_		266	0.24
La/HZSM-5	1.0	0.91	264	0.23
La/HZSM-5	2.0	1.92	250	0.21
La/HZSM-5	3.0	2.86	235	0.19
La/HZSM-5	5.0	4.87	223	0.17
La/HZSM-5	7.0	6.83	216	0.16

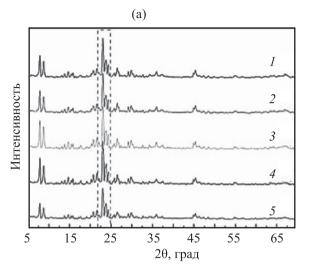
Таблица 1. Зависимость удельной поверхности и объема пор катализаторов от содержани ялантана

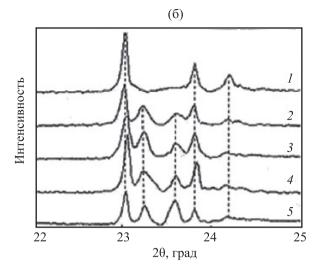
лирования проводили при атмосферном давлении в присутствии водорода в интервале температур $300-400^{\circ}\text{C}$ с объемной скорость юподачи сырья $1~\text{ч}^{-1}$ и мольным отношение C_7H_8 :u3o- $\text{C}_3\text{H}_7\text{OH}$: H_2 = 2:1:1.

Продукты реакции анализировали на газовом хроматографе AgilentHP с капиллярной колонкой ($100 \text{ м} \times 250 \text{ мм}$) с пламенно-ионизационным де-

тектором. Анализ проводили в режиме программирования температуры от 50 до 250°C со скоростью нагрева 10°C в мин. По результатам газохроматографического анализа рассчитывали селективность и выход продуктов.

Конверсию, выход продукта, селективность и *пара*-селективность определяли, используя следующие соотношения:


Конверсия толуола,
$$\% = \frac{\text{Содержание толуола в продукте, мас.\%}}{\text{Содержание толуола в сырье, мас.\%}} \times 100\%;$$
Выход продукта i , $\% = \frac{\text{Продукт } i$, мас. $\%}{\text{Содержание толуола в сырье, мас.\%}} \times 100\%;$
Селективность, $\% = \frac{\text{Изопропилтолуолы, мас.\%}}{\text{АРУ в продукте, мас.\%}} \times 100\%;$
 $napa$ -Селективность, $\% = \frac{n$ -Изопропилтолуол, мас. $\%$


РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В табл. 1 приведены данные о влиянии содержания модификатора на удельную площадь поверхности $S_{\rm BET}$ и объем пор катализаторов $V_{\rm non}$. Реальное содержание лантана было несколько ниже расчетного. Введение 1.0 мас. % La в цеолит не влияет на его удельную площадь поверхности и объем пор цеолита. При содержании лантана 2.0 мас. % наблюдается заметное снижение удельной поверхности (с 266.3 до 250.2 $\text{м}^2/\Gamma$) и объема пор (с 0.24 до 0.21 см³/г). Дальнейшее увеличение содержания лантана приводит к существенному снижению удельной поверхности и объема пор цеолита. Так, например, увеличение концентрации лантана в HZSM-5 до 5.0 мас. % приводит к уменьшению удельной поверхности до 223.4 M^2/Γ , а объема пор до $0.17 \, \text{г/см}^3$.

Рентгенограммы исходного HZSM-5 и модифицированного La/HZSM-5 (рис. 1) показывают, что при модифицировании структура цеолита остается практически неизменной. Пики дифракции катализаторов La/HZSM-5 соответствуют пикам дифракции HZSM-5 ($2\theta = 7.8^{\circ}$; 8.7° ; 23.0° ; 23.8° ; 24.2°) [16, 17]. С другой стороны, по сравнению с исходным H-ZSM-5, появляются в La/H-ZSM-5 новые пики при $2\theta = 23.2^{\circ}$ и 23.6° , тогда как пик при 24.2° значительно снижается. Это связано с тем, что в результате химического модифицирования различные виды La диспергируются на внешне- и внутрицеолитной структуре. Кроме того, некоторая часть La занимает обменные позиции, выступая в роли внерешеточных катионов La³⁺ [18].

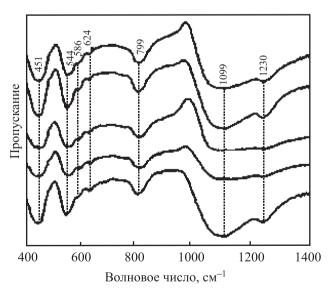

Дифракционные пики, относящиеся к оксидам La, обнаружены не были.

Рис. 1. Рентгенограммы катализаторов: (а) — дифракционные пики 2θ (град) в области 5—70; (б) — дифракционные пики 2θ (град) в области 22—25; 1 — HZSM-5; 2 — 1.0 мас. % La/HZSM-5; 3 — 2.0 мас. % La/HZSM-5; 4 —3.0 мас. % La/HZSM-5; 5 —5.0 мас. % La/HZSM-5.

ИК-спектры в области колебаний алюмосиликатного каркаса 400–1400 см⁻¹ (рис. 2) подтверждают утверждение о сохранении кристаллической структуры цеолита после модифицирования его раствором соли лантана, т.е. пропитка не влияет на расстояния, характерные для фрагментов Si–O–Si и Si–O–Al [18, 19] в цеолите. В то же время катализаторы имеют характерную полосу 799 см⁻¹ внешних

Рис. 2. Инфракрасные спектры катализатороа: I-HZSM-5, 2-1.0 мас. % La/HZSM-5, 3-2.0 мас. % La/HZSM-5, 4-3.0 мас. % La/HZSM-5, 5-5.0 мас. % La/HZSM-5.

связей, асимметричную и симметричную валентные полосы (около 624, 586, 544 и 451 см $^{-1}$), принадлежащие цеолиту ZSM-5 [19, 20].

Влияние модифицирования катализатора лантаном на концентрацию его B- и L-центров, определенную по интенсивностям ИК-полос при 1550 и 1450 см⁻¹ приведено в табл. 2.

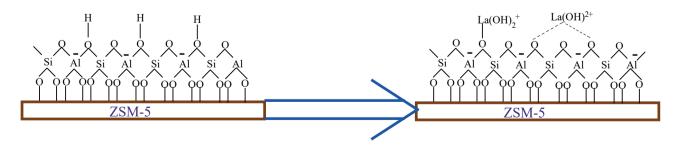
Эффекты, обнаруженные при 200°С, были отнесены к слабым, а обнаруженные при 350°С – к сильным кислотным центрам [16, 17, 21]. Как видно, с увеличением концентрации лантана в цеолите концентрация кислотных центров Бренстеда уменьшается (десорбция при 200 и 350°С), что приводит к увеличению концентрации более слабых (десорбция при 200°С) и уменьшению концентрации более сильных (десорбция при 350°С) кислотных центров Льюиса. Как видно из табл. 2, в результате происходит значительное снижение соотношения В/L-центров с 3.53 до 0.20 (табл. 2).

Можно предположить, что активные центры модифицированного цеолита имеют кислотные центры различной силы, реализуемые индукционными эффектами при взаимодействии центров Бренстеда с соседними апротонными центрами, т.е. катионами лантана. Активация молекул воды в катионном поле ${\rm La}^{3+}$ может сопровождаться образованием одной гидроксильной группы типа Бренстеда и двух гидроксилов, связанных с лантаном ${\rm [La(OH)_2^+]}$, и любой из них приводит к образованию двух цен-

Таблица 2. Концентрация и распределение	кислотных центров	Бренстеда (В)	и Льюиса (L) в	катализаторах при
200°С и 350°С				

	Концентр	рация В, мкм	юль/г	Концентр				
Катализаторы	слабые и средние, 200°C	средние, сильные, 350°C		слабые и средние, 200°C	сильные, 350°С	всего	B/L	
HZSM-5	542	360	902	145	110	255	3.53	
1.0 мас. % La/HZSM-5	75	180	255	200	70	270	0.94	
3.0 мас. % La/HZSM-5	65	170	235	480	60	540	0.44	
5.0 мас. % La/HZSM-5	55	160	216	790	50	840	0.25	
7.0 мас. % La/HZSM-5	50	150	200	880	40	920	0.22	

Таблица 3. Состав продуктов алкилирования толуола изопропанолом на HZSM-5


	Конвер	осия, %	Селект	ивность по	продуктам	Изомерный состав ИПТ, мас. %				
<i>T</i> ,°C	полуол	изопропанол	бензол	изопропилтолуолы (ИПТ)	пропил-толуолы	С ₅₊ -алиф. углеводы	АРУ С ₈ и выше	3-ИПТ	4-ИПТ	2-ИПТ
250	92	94.5	0.4	52.4	33.6	12.2	1.4	50.6	44.2	5.2
300	19.8	99.4	2.2	54.0	30.4	8.6	4.8	53.6	40.1	6.3
330	27.7	99.9	2.7	55.8	29.8	6.1	5.6	57.3	34.3	7.9

тров Бренстеда и одного гидроксила, связанного с лантаном [La(OH) $^{2+}$] (схема 1) [18, 22, 23].

В табл. 3 приведены данные об активности и селективности HZSM-5 в реакции алкилирования толуола изопропанолом. Как видно, температура реакции мало влияет на конверсию спирта, которая составляет 94.5–99.9%. С увеличением температуры конверсия толуола возрастает с 9.2 до 27.7 мас. %. Помимо бензола, ИПТ и пропилтолуолов в углеводородной части катализата были обнаружены газообразные и жидкие алифатические углеводородь C_{5+} и алкилароматические углеводо-

роды C_{8+} . При увеличении температуры реакции до 330°C происходит увеличение выхода побочных продуктов и снижение содержания 4-ИПТ в смеси ИПТ с 44.2% до 34.3%, т.е. происходит изомеризация 4-ИПТ в 2- и 3-ИПТ.

Вероятный путь изопропилирования толуола показан на схеме 2: изопропанол хемосорбируется на бренстедовских кислотных центрах цеолита с образованием изопропильных катионов. Электрофильная реакция между толуолом и изопропильными катионами приводит к образованию 4-изопропилтолуола (4-ИПТ).

Схема 1. Процесс образования кислотных центров Льюиса при модификации цеолитов HZSM-5 лантаном.

НЕФТЕХИМИЯ том 61 № 2 2021

Схема 2. Формирование 4-ИПТ на бренстедовских кислотных центрах.

$$2 \bigcirc + \bigcirc + \bigcirc Al \bigcirc Al \bigcirc + \bigcirc CH_2 + \bigcirc$$

Схема 3. Диспропорционирование толуола.

Схема 4. Частичная изомеризация 4-ИПТ на кислотных центрах Бренстеда.

Помимо алкилирования изопропилтолуола, также наблюдалось протекание реакции диспропорционирования толуола, но оно было минимальным (схема 3).

Поскольку кинетический диаметр 2- и 3-ИПТ составляет 0.66–0.68 нм, они могут образовываться путем изомеризации 4-ИПТ на внешней поверхности цеолита (схема 4). Изомер же 4-ИПТ может образовываться в устьях каналов или вдоль каналов цеолита и свободно диффундировать, поскольку его кинетический диаметр наименьший и составляет 0.55 нм.

Образование пропилтолуолов (см. табл. 2) происходит за счет частичной изомеризации 4-ИПТ на кислотных центрах Бренстеда (схема 4)

Как видно из табл. 4, введение лантана пропиткой HZSM-5 раствором $La(NO_3)_3$ с последующим разложением соли при 550°C приводит к значительному изменению свойств катализаторов. Концентрация оксида лантана оказывает решающее влияние на селективность продуктов реакции и распределение изопропилтолуолов.

Из полученных данных видно, что введение 1.0 мас. % La в состав HZSM-5 мало влияет на его каталитические свойства. Например, при 300°С конверсия толуола снижается с 19.8 мас. % до 18.1 мас. %, а селективность по 4-ИПТ возрастает до 48.8%. Увеличение концентрации лантана в составе HZSM-5 до 3.0 мас. % приводит к значительному снижению содержания побочных продуктов, увеличению селективности по ИПТ (62.0–64.6%), а также увеличение содержания 4-ИПТ в смеси цимолов до 66.2%. Дальнейшее увеличение содержания лантана в HZSM-5 до 5.0 мас. % способствует увеличению селективности к ИПТ до 70.0% и резкому увеличению содержания 4-ИПТ в смеси ИПТ

Табица 4. Влияние температуры и содержания лантана в HZSM-5 на состав продуктов алкилирования толуола изс)5
пропанолом	

		Конверсия, %		Селективность по продуктам в катализате,						Изомерный состав ИПТ, мас. %		
Концентрация La, мас. %	T, °C	толуол	изопропанол	бензол	ИПТы	пропилтолуолы	С ₅₊ - алифатические углеводороды	АРУ С ₈ и выше	3-ИПТ	4-ИПТ	2-ИПТ	
1.0	280	12.8	95.8	0.4	57.6	30.0	10.7	1.3	47.3	50.0	2.7	
	300	18.1	97.7	1.9	58.7	28.8	8.3	2.3	47.6	48.8	3.6	
	330	25.9	98.3	2.6	59.6	28.1	6.1	3.6	50.5	45.1	4.4	
2.0	330	25.4	98.2	2.2	60.2	28.2	6.0	3.4	43.3	54.8	1.9	
	350	30.1	98.9	2.4	61.4	27.1	5.4	3.7	46.5	51.1	2.4	
3.0	300	16.4	94.7	1.5	62.0	27.8	6.7	2.0	32.6	66.2	1.2	
	330	24.6	97.5	1.8	63.8	26.1	5.7	3.2	35.6	62.8	1.6	
	350	28.8	98.8	2.0	64.6	24.9	5.2	3.5	38.3	59.7	2.0	
5.0	300	15.3	93.9	1.3	67.4	23.1	6.5	1.7	27.6	72.4	_	
	330	22.1	97.3	1.6	68.3	21.7	5.4	3.0	30.9	69.1	_	
	350	24.9	98.4	1.9	70.3	19.6	5.1	3.2	35.6	63.8	0.6	
5.0 ^a	330	19.8	96.6	1.4	64.3	24.8	6.2	3.3	33.7	66.3	_	
	350	22.7	97.8	1.6	65.5	23.6	5.9	3.4	37.5	62.1	0.4	
7.0	330	18.1	96.1	1.2	65.1	25.4	5.2	2.9	32.2	67.8	_	
	350	21.6	97.3	1.4	65.8	24.7	5.0	3.1	37.4	62.4	0.5	

^а Последовательная двукратная пропитка HZSM-5 (3.0 мас. % La + 2.0 мас. % La) с промежуточным прокаливанием при 550°C.

до 72.4%. Причем, при температурах 300 и 330°C на образце, содержащем 5.0 мас. % лантана, образование 2-ИПТ не наблюдается. Увеличение содержания лантана в HZSM-5 до 7.0 мас. % не приводит к увеличению селективности по 4-ИПТ. На этом образце при 330°C селективность по 4-ИПТ составляет 67.8%, однако при этом наблюдается значительное снижение конверсии толуола.

Модифицирующий эффект лантана также зависит от способа его введения в состав HZSM-5. Введение 5.0 мас. % лантана с последовательной пропиткой HZSM-5 (3.0% La + 2.0% La) с промежуточным прокаливанием при 550°С не приводит к образованию катализатора, обладающего более высокой *пара*-селективностью, чем образец, полученный при однократном введении 5.0 мас. % лантана в составе HZSM-5: при температуре реакции 330°С, селективность по 4-ИПТ составляет 69.1 мас. %, а на образце, полученном при двукрат-

ной последовательной пропиткой цеолита HZSM-5 раствором нитрата лантана, она снижается до $66.3~{\rm Mac}$. %. Это, по-видимому, связано с неодинаковым состоянием и распределением ${\rm La_2O_3}$ внутри и на поверхности кристаллов цеолита, приготовленном путем одно- и двукратной пропиткой цеолита раствором нитрата лантана

Зависимость *пара*-селективности катализаторов от концентрации лантана в HZSM-5 может быть связана с перераспределением кислотных центров в цеолите, а также с изменением текстурных свойств катализаторов в результате химического модифицирования, т.к. в процессе пропитки HZSM-5 раствором нитрата лантана происходит обмен ионов H^+ на ионы La^{3+} , $La(OH)^{2+}$ или $La(OH)^+_2$, образующиеся при гидролизе соли. что при модифицировании структура цеолита остается практически неизменной. После прокаливания модифицированного цеолита образуется основной оксид La_2O_3 [22–25],

который может взаимодействовать с H⁺-цеолитом твердой кислотой по схеме:

 $La_2O_3 + 6H^+$ -цеолит $\to 2La^{3+}$ -цеолит $+ 3H_2O$.

Часть La₂O₃ остается в каналах и на внешней поверхности кристаллов цеолита, изменяя размеры каналов и входных окон из них. Частичное блокирование каналов цеолита атомами лантана подтверждается данными, полученными при изучении текстурных свойств катализатора (табл. 2). Видно, что с увеличением концентрации лантана происходит уменьшение удельной поверхности и объема пор цеолита. По сравнению с немодифицированным цеолитом на образцах, содержащих 5.0–7.0 мас. % лантана удельная поверхность и объем пор цеолита снижается примерно на 16.2–18.2 и 29.2–33.4% соответственно.

Таким образом, селективность алкилирования толуола изопропанолом и увеличение *пара*-селективности по отношению к 4-ИПТ обусловлено значительным уменьшением концентрации сильных кислотных центров и уменьшением объема пор цеолита в результате модифицирования.

ЗАКЛЮЧЕНИЕ

Введение лантана пропиткой HZSM-5 раствором нитрата лантана приводит к значительному изменению текстурных и каталитических свойств катализаторов. При введении La в HZSM-5 происходит взаимодействие различных структур лантана с каркасом цеолита. Модифицирование и прокаливание цеолита приводит к локализации модификатора в микропорах и распределению их на поверхности цеолита, где они при взаимодействии с кристаллической решеткой образуют дополнительные льюисовские кислотные центры, а при взаимодействии с поверхностными ОН-группами происходит уменьшение концентрации сильных бренстедовских и увеличение числа новых льюисовских кислотных центров. Таким образом, в результате модифицирования происходит уменьшение объема пор и соотношения В/L-центров, которые играют важную роль в каталитической активности и селективности La/HZSM-5. Катализатор 5% La/HZSM-5 демонстрирует высокий выход 4-ИПТ, главным образом благодаря изменению микропор и оптимальному сочетанию бренстедовских и льюисовских кислотных центров умеренной силы. Максимальная селективность по 4-ИПТ достигается на катализаторе 5.0 мас. % La/HZSM-5 и составляет 72.4%.

Модифицирующий эффект лантана зависит от способа его введения в состав HZSM-5. Катализаторы, приготовленные пропиткой однократным введением раствора нитрата лантана, проявляют более высокую селективность по 4-ИПТ, чем катализаторы, полученные двукратной последовательной пропиткой. Видимо, модифицирующий эффект La связан с уменьшением концентрации сильных кислотных центров и образованием кислотных центров умеренной силы на поверхности цеолита и изменением его пористой структуры.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках финансирования, предоставленного Министерством образования Азербайджана.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов в данной статье.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Абдуллаева Нигяр Мовлуд-гызы, диссертант, ORCID-0000-0001-8312-4698

Воскрессенский Леонид Геннадиевич, д.х.н., профессор РАН, ORCID $-\,0000\text{-}0002\text{-}9676\text{-}5846$

Ахмедова Наргиз Фирудин-гызы, к.х.н, научный сотрудник, ORCID – 0000-0003-0912-8687

Мамедов Сабит Эйюб-оглы, д.х.н., профессор, ORCID – 0000-0002-8099-9496

СПИСОК ЛИТЕРАТУРЫ

- 1. *Upadhyayula S*. Gas phase tolueneisopropylation over high silicamordenite // J. Chem. Sci. 2010. V. 122. № 4. P. 613–619.
- 2. Кошель Г.Н., Нестерова Т.Н., Румянцева Ю.Б., Курганова Е.А., Иванова А.А. Цимолы. 4. получение крезолов и их применение // Вестник МИТХТ. 2012. Т. 7. № 6. С. 56–59.
- 3. *Wichterlová B.*, *Čejka J.*, *Zikova N*. Selective synthesis of cumene and *p*-cymeneover aland Fe silicates with largeand medium pore structures // Microporous Mater. 1996. V. 6. P. 405–414.

- 4. Neaţu F., Culică G., Florea M., Parvulescu V.I., Cavani F. Synthesis of terephthalic acid by p-cymene oxidation using oxygen: toward a more sustainable production of bio-polyethylene terephthalate // ChemSusChem. 2016. V. 9. P. 3102–3104.
- Upadhyayula S. Alkylationof toluenewith isopropyl alcoholover SAPO-5 catalyst // J. Chem. Sci. 2009.
 V. 121. № 2. P. 199–207.
- Abbaspourrad A., Javadkalbasi R., Zamani F. Vapor phase alkylationof toluene using various alcoholsover H₃PO₄/MCM-41 catalyst: influence of reaction parameterson on selectivity and conversion // Turk J. Chem. 2010. V. 34. P. 875–878.
- 7. Barman S., Maity S.K., Pradhan N.C. Alkylation of toluene with isopropyl alcohol catalyzedby Ceexchanged NaX-zeolite // The Chem. Eng. J. 2005. V. 114. № 1–3. P. 39–43.
- 8. *Thakur R., Gupta R.K., Barman S.* A Comparative study of catalytic performance of rare earth metal-modified beta zeolites for synthesis of cymene // Chem. Pap. 2017. V. 71. P. 137–148.
- 9. *Odedairo T., Al-Khattaf S.* Comparative studyof zeolite catalyzed alkylation of benzene with alcohols of different chain length: H-ZSM-5 versus mordenite // Catal. Today. 2013. V. 204. P. 73–84.
- Chiang T.-C., Chan J.-C., Tan C.-S. Alkylation of toluene with isopropyl alcohol over chemical liquid deposition modified HZSM-5 under atmospheric and supercritical operations // Ind. Eng. Chem. Res. 2003. V. 42. P. 1334–1340.
- 11. *Janardhan H.L., Shanbhag G., Halgeri A.B.* Shape-selective catalysis by phosphate modified ZSM-5: generation of new acid sites with pore narrowing // Appl. Catal. A: Gen. 2014. V. 471. P. 12–18.
- Antony Raj K.J., Padma Malar E.J., Vijayaraghavan V.R. Shape-selective reactions with AEL and AFI type molecular sieves alkylation of benzene, toluene and ethylbenzene with ethanol, 2-propanol, methanol and t-butanol // J. Mol. Catal. A: – Chem. 2006. V. 243. P. 99–105.
- 13. *Герзелиев И.М., Хаджиев С.Н., Сахарова И.Е.* Синтез этилбензола и трансалкилирование бензола диэтилбензолами на цеолитных катализаторах // Нефтехимия. 2011. Т. 51. № 1. С. 40–49. https://doi.org/10.1134/S0965544111010038
- 14. *Abdullayeva N.M.* Alkylation of Toluene with Isopropanol on ZSM-5 type zeolite modified by rare-earth metals // Chemical problems. 2020. № 1(18). P. 49–54.
- 15. *Мамедов С.Э., Ахмедов Э.И., Дадашева С.С., Ахмедова Н.Ф.* Превращение газоконденсата на Zn-содер-

- жащем ВК-цеолите типа ультрасила // Нефтехимия. 2016. Т. 56. № 4. С. 354–357. https://doi.org/10.1134/S0965544116070112
- 16. Gil B., Zones S.I., Hwang S.-J., Bejblova M., Cejka J. Acidic properties of SSZ-33 and SSZ-35 novel zeolites: a complex infrared and MAS NMR study // J. Phys. Chem. C. 2008. V. 112. № 8. P. 2997–3007.
- 17. Zilkova N., Bejblova M., Gil B., Zones S.I., Burton A.W., Chen C.Y., Musilová-Pavlcková Z., Kosova G., Cejka J. The role of the zeolite channel architecture and acidity on the activity and selectivity in aromatic transformations: The effect of zeolite cages in SSZ-35 zeolite // J. Catal. 2009. V. 266. P. 79–91.
- Gong T., Zhang X., Bai T., Zhang Q., Tao L., Qi M., Duan C., Zhang L. Coupling conversion of methanol and C₄ hydrocarbon to propylene on La-modified HZSM-5 zeolite catalysts // Ind. Eng. Chem. Res. 2012. V. 51. P. 13589–13598.
- 19. Kazansky V.B., Borovkov V.Yu., Serykh A.I., Santen R.A., Anderson B.G. Nature of the sites of dissociative adsorption of dihydrogen and light paraffins in Zn-HZSM-5 zeolite prepared by incipient wetness impregnation // Catal. Lett. 2000. V. 66. P. 39–47.
- 20. Zhang X., Zhong J., Wang J., Zhang L., Gao J., Liu A. Catalytic performance and characterization of Ni-doped HZSM-5 catalysts for selective trimerization of *n*-butene // Fuel Process. Technol. 2009. V. 90. P. 863–870.
- 21. *Jaumain D., Su B.-L.* Monitoring the Brönsted acidity of zeolites by means of in situ FT-IR and catalytic testing using chloromethane as probe molecule // Catal. Today. 2002. V. 73. P. 187–196.
- 22. *Tynjala P., Pakkanen T.T.* Acidic properties of ZSM-5 zeolite modified with Ba²⁺, Al³⁺ and La³⁺ ion-exchange // J. Mol. Catal. A: Chem. 1996. V.110. P. 153–161.
- 23. Xue N., Liu N., Nie L., Yu Y., Gu M., Peng L., Guo X., Ding W. 1-Butene crackingto propene over P/HZSM-5: effect of lanthanum //J. Mol. Catal. A. 2010. V. 327. P. 12–19.
- 24. Xiaoning W., Zhen Z., Chunming X., Aijun D., Zhang L., Guiyuan J. Effects of light rare earthon acidity and catalytic performance of H-ZSM-5 zeolite for catalytic cracking of butane to light olefins // J. Rare Earth. 2007. V. 25. P. 321–328.
- 25. *Керимли Ф.Ш., Магеррамов А.М., Мамедов С.Э.* Влияние природы и концентрации редкоземельных элементов на физико-химические и каталитические свойства *н*-пентасила в реакции диспропорционирования этилбензола // Химические проблемы. 2017. № 4. С. 425–428.