УДК 66.011+665.644.

ДИСКРЕТНАЯ КИНЕТИЧЕСКАЯ МОДЕЛЬ ПРОЦЕССА M-DSO ДЛЯ ГИДРООЧИСТКИ БЕНЗИНА КАТАЛИТИЧЕСКОГО КРЕКИНГА

© 2021 r. Ying Xiang¹, Jiaying Shen¹, Fusheng Ouyang^{1,*}

¹ International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology, Shanghai, 200237 China *E-mail: ouyfsh@ecust.edu.cn

> Поступила в редакцию 03 сентября 2020 г. После доработки 27 декабря 2020 г. Принята к публикации 18 марта 2021 г.

Селективное гидрирование бензина каталитического флюид-крекинга (FCC) является эффективным методом снижения содержания в нем серы и олефинов для получения чистого бензина. На основе характеристик процессов DSO-M и M-DSO для гидроочистки тяжелой фракции бензина FCC и определения вклада различных углеводородов в октановое число разработаны две пятикомпонентные реакционные схемы для стадии обогащения M и стадии гидродесульфурации DSO, соответственно. По экспериментальным данным, полученным при использовании микротрубчатого реактора с неподвижным слоем для гидроочистки бензина FCC, с помощью алгоритма Рунге–Кутта и генетического алгоритма были рассчитаны кинетические параметры 5-компонентных моделей для стадий M и DSO, соответственно. Кинетический анализ показывает, что процесс M-DSO лучше, чем процесс DSO-M. Более того, проверка показывает, что установленные модели обладают хорошей надежностью и пригодны для экстраполяции.

Ключевые слова: бензин FCC, гидроочистка, процесс M-DSO, дискретная кинетическая модель **DOI:** 10.31857/S0028242121030072

В связи с постоянным ужесточением требований по охране окружающей среды почти во всех странах предъявляются более высокие требования к содержанию серы и олефинов в бензине. Между тем, бензин FCC составляет более 30% объема мирового производства бензина. Следовательно, очистка бензина FCC является ключом к повышению качества бензина. Был разработан целый ряд процессов гидроочистки бензина FCC, в частности, процессы RSDS [1], Prime-G⁺ [2], SCANfining [3], DSO-М и т. д. Среди них процесс DSO-М [4], разработанный компанией PetroChina, сыграл важную роль в десульфуризации и восстановлении олефинов. Однако после первого использования этого процесса потеря октанового числа бензина составила около 1.7 единицы, что серьезно повлияло на экономический эффект.

Процесс M-DSO развивается путем реверсирования стадий DSO и М. Функции катализатора М заключаются в ароматизации, снижении содержания олефинов и восстановлении октанового числа [5]. Функция катализатора DSO заключается в гидродесульфурации бензина FCC [6]. Промышленные результаты показали, что процесс M-DSO имел такое же влияние на десульфурацию и снижение содержания олефинов в бензине FCC, при этом октановое число было увеличено примерно на 0.8 единицы, по сравнению с процессом DSO-M.

Существующие кинетические модели для гидроочистки бензина FCC [7] не учитывают в достаточной степени все реакции, поэтому они не играют большой роли при моделировании и оптимизации процессов гидроочистки бензина FCC. Хотя гидроочистка бензина FCC была улучшена за счет преобразования процесса DSO-M в процесс M-DSO, мало что известно об изменениях в протекании этих реакций и влиянии условий реакции на процесс. В этом исследовании, основанном на всестороннем рассмотрении различных реакций бензина FCC и метода дискретной кинетики

Рис. 1. Дискретные схемы реакций стадий (a) М и (б) DSO. k_j – константа скорости реакции на стадии М; k'_j – константа скорости реакции на стадии DSO; A, O, N, nP, iP – ароматические соединения, олефины, нафтены, *н*-парафины и изопарафин, соответственно.

[8], ожидается прояснение того, почему процесс M-DSO демонстрирует более высокую эффективность при очистке бензина по сравнению с процессом DSO-M.

РАЗРАБОТКА ДИСКРЕТНОЙ РЕАКЦИОННОЙ МОДЕЛИ И СОСТАВЛЕНИЕ КИНЕТИЧЕСКОГО УРАВНЕНИЯ

Поскольку выход бензина в обоих процессах DSO-М и M-DSO составляет около 99%, газы от крекинга бензина в этом исследовании не учитывались. Для углеводородов с одинаковым числом атомов углерода порядок распределения их октанового числа от высокого к низкому следующий: ароматические углеводороды > изопарафины > нафтены ~ олефины > *н*-парафины. В соответствии с вкладом различных углеводородов в октановое число реакции стадий DSO и М были разделены на пять групп, а именно: ароматические углеводороды (А), олефины (О), нафтены (N), н-парафины (nP) и изопарафины (iP). На основе механизма гидроочистки и характеристик стадий DSO и М были созданы две 5-компонентные схемы реакций для стадий М и DSO, соответственно (как показано на рис. 1).

Кинетическое уравнение было составлено на основе следующих допущений: согласно существующей литературе по дискретной кинетике, все реакции обычно рассматриваются как реакции первого порядка, что подходит и для данного исследования; активные центры всех реакций имеют одинаковую активность; используемый трубчатый реактор с неподвижным слоем можно приблизительно рассматривать как реактор идеального вытеснения, поэтому диффузия внутри частиц не учитывается; благодаря защите циркулирующего водорода деактивацией катализатора можно пренебречь.

На основании сделанных выше предположений кинетическое уравнение реакции может быть выражено формулой (1) [9–11]:

$$\frac{da}{dX} = -\frac{P\overline{MW}}{S_{\rm WH}RT}K_a,\tag{1}$$

где K – матрица констант скорости реакции, состоящая из k_j ; a – вектор массовых долей всех компонентов (рис. 2, 3); X – безразмерное относительное расстояние в сечении X в слое пласта; S_{WH} – объемная скорость (WHSV). Пояснения ко всем символам приводятся в работе [12].

ЭКСПЕРИМЕНТЫ ПО СОВЕРШЕНТСВОВАНИЮ ГИДРООЧИСТКИ

Эксперименты по гидроочистке бензина FCC проводили с тяжелыми фракциями бензина FCC из ректификационной колонны (далее именуемыми сырьем) в лабораторном устройстве, представляющем собой микротрубчатый реактор с неподвижным слоем.

Для процесса M-DSO сначала сырьем стадии M было исходное сырье (номер 0#), а катализатором –

НЕФТЕХИМИЯ том 61 № 3 2021

K =	N O	$f N \ k_N \ k_7$	${ m O} \ k_8 \ k_{ m O}$	A k_{11} 0	iP 0 0	nP 0 0
	А	k_{10}	k_9	$k_{\rm A}$	0	0
	iP	k_6	k_2	0	$k_{ m iP}$	k_3
	nP	k_5	k_1	0	k_4	k _{nP}
	L					
		-				- T

 $\mathbf{a} = [a_{\mathrm{N}} \ a_{\mathrm{O}} \ a_{\mathrm{A}} \ a_{\mathrm{iP}} \ a_{\mathrm{nP}}]^T$

Рис. 2. Матрица констант скорости для кинетической модели стадии М. $[k_{\rm N} = -(k_5 + k_6 + k_7 + k_{10}), k_{\rm O} = -(k_1 + k_2 + k_8 + k_9), k_{\rm A} = -k_{11}, k_{\rm iP} = -k_4, k_{\rm nP} = -k_3).$

М при давлении 2.0 МПа, объемной скорости 1.0 ч⁻¹ (WHSV), температурах 350, 370 и 390°С, соответственно; полученные продукты были последовательно пронумерованы как 1#, 2#, 3#. Для стадии DSO сырьем были продукты 1#, 2#, 3#, а катализатором – М при 2.3 МПа, WHSV 2.0 ч⁻¹, соответственно. Когда сырьем стадии DSO был продукт 1#, эксперименты проводили при температурах 240, 260 и 280°С, соответственно; соответствующие продукты реакции были последовательно пронумерованы как 4#, 5#, 6#. Когда сырьем стадии DSO был продукт 2#, эксперименты проводились при температурах 240, 260 и 280°С, соответственно; соответственно; соответственно; продукт 2#, эксперименты проводились при температурах 240, 260 и 280°С, соответственно; соответственно; соответственно; соответственно; соответственно; при температурах 240, 260 и 280°С, соответственно; соот

	Γ	Ν	0	А	iP	nP]		
	Ν	$k_{\rm N}$	k_8	0	0	0		
K =	0	k_7	$k_{\rm O}$	0	0	0		
	А	k_{10}	k_9	$k_{\rm A}$	0	0		
	iP	k_6	k_2	0	$k_{ m iP}$	k_3		
	nP	k_5	k_1	0	k_4	k _{nP}		
$\mathbf{a} = \begin{bmatrix} a_{\mathrm{N}} & a_{\mathrm{O}} & a_{\mathrm{A}} & a_{\mathrm{iP}} & a_{\mathrm{nP}} \end{bmatrix}^{T}$								

Рис. 3. Матрица констант скорости для кинетической модели стадии DSO. $[k_N = -(k_5+k_6+k_7+k_{10}), k_O = -(k_1+k_2+k_8+k_9), k_A = 0, k_{1P} = -k_4, k_{PP} = -k_3).$

рьем стадии DSO был продукт 3#, эксперименты проводились при температуре 240, 260 и 280°С, соответственно; соответствующие продукты были последовательно пронумерованы как 10#, 11#, 12#.

Точно также для процесса DSO-M сначала сырьем стадии DSO было исходное сырье (номер 0#), а катализатором – DSO при 2.3 МПа, WHSV 2.0 ч⁻¹ и 240, 260, 280°С, соответственно; эти продукты были последовательно пронумерованы как 13#, 14#, 15#. Сырье на стадии M представляло собой экспериментальные продукты 13#, 14#, 15#, соответственно, а катализатором был M при давлении 2.0 МПа, объемной скорости 1.0 ч⁻¹, температурах реакции 350, 370, 390°С, соответственно; эти продукты были последовательно пронумерованы

Рис. 4. Схема расчета кинетических параметров.

No.	Продукт реакции	А, мас. %	О, мас. %	N, мас. %	iP, мас. %	nР, мас. %	ОЧИ
0#	Сырье	34.41	20.23	16.78	23.89	4.69	85.72
1#	M350	33.86	14.58	17.28	28.10	6.18	86.92
2#	M370	34.26	16.68	16.40	26.91	5.75	87.06
3#	M390	34.11	15.8	16.61	27.17	6.32	88.09
4#	M350–D240	33.94	11.87	17.87	29.82	6.51	86.28
5#	M350–D260	33.47	9.40	18.76	31.43	6.94	86.02
6#	M350–D280	33.33	6.96	19.63	32.92	7.16	85.96
7#	M370–D240	33.7	11.46	17.92	30.26	6.66	86.46
8#	M370–D260	33.82	9.91	19.20	31.06	6.01	86.67
9#	M370–D280	33.48	6.92	19.85	32.83	6.92	85.97
10#	M390–D240	34.13	12.81	17.31	28.88	6.88	87.27
11#	M390-D260	34.60	10.11	18.10	30.06	7.13	86.87
12#	M390–D280	34.61	8.19	19.12	31.05	7.03	86.29
13#	D240	33.02	14.23	17.35	28.72	6.68	84.14
14#	D260	33.02	12.72	17.83	29.42	7.01	84.06
15#	D280	32.68	10.28	18.50	31.28	7.25	83.84
16#	D240-M350	33.11	12.43	17.39	29.84	7.23	85.66
17#	D240-M370	33.24	12.15	17.27	29.80	7.54	86.05
18#	D240-M390	33.39	12.95	17.18	29.12	7.36	86.33
19#	D260-M350	33.18	11.32	17.67	30.59	7.26	85.25
20#	D260-M370	32.86	11.38	17.78	30.50	7.48	85.50
21#	D260-M390	33.45	10.07	17.99	30.88	7.61	85.69
22#	D280-M350	32.80	8.24	18.90	32.36	7.71	84.75
23#	D280-M370	32.94	9.31	18.53	31.51	7.71	84.90
24#	D280–M390	32.98	9.33	18.35	31.49	7.85	85.29

Таблица 1. Состав продуктов эксперимента^а

^а ОЧИ: октановое число по исследовательскому методу; D240–M350 – продукт реакции после стадии DSO при температуре 240°C и стадии М при температуре 350°C.

как 16#...24#. В табл. 1 приведены результаты анализа экспериментальных данных по углеводородному составу для процессов M-DSO и DSO-M.

чение. Процесс расчета кинетических параметров показан на рис. 4.

$$func = \sum_{1}^{n} (y_{ic} - y_{ir})^{2}.$$
 (2)

РАСЧЕТ КИНЕТИЧЕСКИХ ПАРАМЕТРОВ

Расчет кинетических параметров производили путем программирования в МАТLAB. С одной стороны, для решения дифференциальных уравнений использовали метод Рунге–Кутта четвертого порядка (из-за его высокой точности). С другой стороны, для оптимизации целевой функции использовали генетический алгоритм (GA), поскольку он представляет собой алгоритм глобальной оптимизации, позволяющий найти оптимальное решение, имитируя естественный отбор и генетический механизм, чтобы избежать попадания в цикл локальных значений [13]. Целевая функция (*func*) – формула (2), где *y*_{ic} – расчетное значение, *y*_{ir} – фактическое зна-

С использованием продуктов 0#, 1#, 2#, 3#, 4#, 5#, 6#, 7#, 8# 9# из табл. 1 в качестве исходных данных были получены кинетические параметры стадий М и DSO в процессе М-DSO, как показано в табл. 2 и 3. С использованием продуктов 0#, 13#, 14#, 15#, 18#, 19#, 20#, 21#, 22#, 24# из табл. 1 в качестве исходных данных, были получены кинетические параметры стадий DSO и М в процессе DSO-M, как показано в табл. 2 и 3.

Анализ данных табл. 2 показывает, что:

1) У констант скорости реакции значения k₁ (превращение олефина в *н*-парафин), k₂ (превраще-

НЕФТЕХИМИЯ том 61 № 3 2021

ДИСКРЕТНАЯ КИНЕТИЧЕСКАЯ МОДЕЛЬ

№ реакции	аправление реакции	Энергия активации, кДж/моль	Предэкспоненциальный множитель, см ⁻³ .г.ч ⁻¹	Энергия активации, кДж/моль	Предэкспоненциальный множитель, см ⁻³ .г.ч ⁻¹	<i>k</i> (ко	нстанта	скорост	и реакци	и), см ⁻³ ·	г·ч ⁻¹
	H	стадия pre-M		стадия post-М		стадия pre-M			стадия post-M (DSO260-M)		
						350°C	370°C	390°C	350°C	370°C	390°C
1	O→nP	15.64	3.42E+01	55.99	2.44E+04	1.67	1.84	2.01	0.49	0.69	0.95
2	O→iP	4.90	1.16E+01	50.22	2.20E+04	4.52	4.66	4.79	1.36	1.84	2.44
3	nP→iP	51.53	3.07E+04	46.86	1.27E+04	1.47	2.00	2.68	1.50	1.99	2.59
4	iP→nP	60.99	2.91E+04	57.17	1.90E+04	0.22	0.32	0.46	0.31	0.43	0.60
5	N→nP	68.92	4.35E+04	65.98	9.72E+04	0.07	0.11	0.16	0.29	0.43	0.62
6	N→iP	58.93	5.54E+04	59.77	5.26E+04	0.64	0.91	1.26	0.51	0.74	1.03
7	N→O	86.10	1.21E+06	86.24	1.12E+06	0.07	0.12	0.20	0.07	0.11	0.18
8	O→N	36.59	4.96E+02	58.75	4.66E+04	0.43	0.53	0.65	0.55	0.79	1.10
9	О→А	134.41	3.13E+09	130.97	9.29E+09	0.02	0.04	0.08	0.10	0.21	0.45
10	A→N	120.68	1.92E+09	120.57	2.03E+09	0.15	0.30	0.60	0.16	0.33	0.65
11	O→nP	230.70	9.98E+17	230.39	8.11E+17	0.05	0.18	0.67	0.04	0.16	0.58

Таблица 2. Сравнение кинетических параметров стадии М процессов DSO-М и M-DSO^a

^а Направление реакции (A → B): реакция превращения дискретного вещества A в дискретное вещество B; стадия Pre-M: стадия M в процессе DSO-M.

ние олефина в изопарафин) и k_3 (изомеризация *н*парафинов) намного больше, чем у других констант на стадии М; это указывает на то, что эти три реакции являются основными реакциями, влияющими на стадию М в обоих процессах DSO-М и M-DSO. Между тем, значение k_2 на стадии pre-М (стадия М в процессе M-DSO) намного больше, чем на стадии post-М (стадия М в процессе DSO-М). Причина заключается в том, что при поддержании концентрации олефина на высоком уровне нормальный (изомерный) олефин с большей вероятностью получит протоны водорода из кислотных центров катализатора с образованием вторичных (или трет-) карбокатионов, а вторичные карбокатионы будут легко превращаться в трет-карбокатионы с более высокой стабильностью. Если трет-карбокатионы теряют протоны, они образуют изоолефин, а затем изоолефин насыщается путем гидрирования в изопарафин с высоким октановым числом. Таким образом, функция изомеризации может быть улучшена, а катализатор М может быть полностью ис-

НЕФТЕХИМИЯ том 61 № 3 2021

пользован для снижения потери октанового числа на стадии pre-M.

2) Константа скорости насыщения олефинов $(k_1+k_2+k_8+k_9)$ стадии pre-М намного выше, чем стадии post-М. Таким образом, функция уменьшения содержания олефинов может быть улучшена для стадии pre-М.

3) Что касается энергии активации, то энергия активации превращения олефина в изопарафин на стадии pre-M намного меньше, чем на стадии post-M, так что реакции изомеризации протекают легче и могут улучшить качество бензина на стадии pre-M.

4) Ароматические углеводороды имеют высокое октановое число, но реакции превращения олефина и нафтена в ароматические углеводороды на стадии М протекают нелегко из-за больших значений энергии активации и малых значений констант скорости реакции. Следовательно, функция ароматизации катализаторов М нуждается в дальнейшем улучшении.

Nº реакции	аправление реакции	Энергия активации, кДж/моль	Предэкспоненциальный множитель, см ⁻³ .г.ч ⁻¹	Энергия активации, кДж/моль Предэкспоненциальный множитель, см ⁻³ .г.ч ⁻¹				и реакции), см ⁻³ ·г·ч ⁻¹			
	H	стадия pre-DSO		стадия post-DSO		стадия pre-DSO			стадия post-DSO (M350-DSO)		
						240°C	260°C	280°C	240°C	260°C	280°C
1	O→nP	34.98	9.80E+03	44.8	5.89E+04	2.69	3.66	4.87	1.62	2.40	3.46
2	O→iP	30.92	1.20E+04	65.18	1.80E+07	8.54	11.21	14.43	4.17	7.40	12.60
3	nP→iP	51.44	2.15E+05	53.99	5.50E+05	1.25	1.96	2.98	1.40	2.28	3.57
4	iP→nP	55.95	2.49E+05	57.32	1.35E+05	0.50	0.82	1.30	0.20	0.33	0.52
5	N→nP	70.99	4.51E+06	59.67	3.07E+05	0.27	0.50	0.89	0.26	0.44	0.71
6	N→iP	68.99	6.90E+06	55.99	2.24E+05	0.65	1.20	2.11	0.45	0.73	1.16
7	N→O	87.40	5.90E+07	73.94	2.10E+06	0.07	0.16	0.33	0.06	0.12	0.22
8	O→N	56.18	8.59E+05	58.12	2.21E+06	1.64	2.69	4.25	2.68	4.47	7.18
9	О→А	142.7	4.90E+11	133.38	1.00E+13	0.00	0.01	0.02	0.27	0.86	2.54
10	A→N	95.90	3.05E+09	68.15	1.86E+06	0.53	1.23	2.68	0.22	0.39	0.68

Таблица 3. Сравнение кинетических параметров стадии DSO процессов DSO-M и M-DSO^a

^а Стадия Pre-DSO: Стадия DSO в процессе DSO-M; Стадия Post-DSO: Стадия DSO в процессе M-DSO.

Анализ данных табл. 3 показывает, что:

1. У констант скорости реакции значения k'_1 , k'_2 , k'_3 и k'_8 (превращение олефина в нафтен) намного больше, чем у других констант на стадии DSO, что указывает на то, что насыщение олефина и изомеризация *н*-парафина являются основными реакциями, влияющими на стадию DSO. Между тем, некоторые олефины насыщаются до *н*-алканов с самым низким октановым числом, что вызывает потерю октанового числа.

2. Стадия pre-DSO (стадия DSO в процессе DSO-M) имеет гораздо меньшую константу скорости реакции превращения олефина в ароматические углеводороды и гораздо более высокую константу скорости реакции превращения ароматических углеводородов в нафтен, чем стадия post-DSO (стадия DSO в процессе M-DSO), что ускоряет расход ароматических углеводородов с высоким октановым числом, в то же время стадия pre-DSO имеет гораздо меньшую энергию активации превращения олефина в изопарафин, чем стадия post-DSO. В целом, процесс DSO-M ведет к потере октанового числа бензина FCC. 3. Для энергии активации реакций: $E_a^2 < E_a^1 < E_a^3 < E_a^4 < E_a^7 < E_a^6 < E_a^5 < E_a^8 < E_a^{10} < E_a^9$. Можно видеть, что реакция превращения олефинов в ароматические соединения является наиболее трудной.

4. Стадия pre-DSO имеет немного большую константу скорости насыщения олефина гидрированием $(k'_1+k'_2+k'_8)$, чем стадия post-DSO. Это указывает на то, что ее воздействие на уменьшение содержания олефина немного сильнее, чем у стадии pre-DSO. Однако константы скорости насыщения олефинов на стадии pre-M намного больше, чем на стадии post-M. Таким образом, процесс M-DSO сильнее влияет на снижение содержания олефинов в бензине FCC.

В целом, сравнивая кинетические параметры стадий М и DSO, можно видеть, что необходимо иметь высокое содержание олефинов в сырье для изомеризации олефинов на стадии М. Для стадии post-M олефины в сырье будут сильно насыщены после стадии DSO, что не позволяет очистить бензин FCC на стадии М и повысить октановое число бензина. Между тем, для стадии pre-M содержание олефинов уменьшилось, так что процесс M-DSO

ДИСКРЕТНАЯ КИНЕТИЧЕСКАЯ МОДЕЛЬ

		10#			11#		12#			
	Фактическое значение, мас. %	Расчетное значение, мас. %	Относительная погрешность, %	Фактическое значение, мас. %	Расчетное значение, мас. %	Относительная погрешность, %	Фактическое значение, мас. %	Расчетное значение, мас. %	Относительная погрешность, %	
А	34.13	34.00	-0.37	34.60	34.04	-1.61	34.61	34.26	-1.01	
Ο	12.81	12.22	-4.60	10.11	10.31	1.95	8.19	7.85	-4.15	
Ν	17.31	17.54	1.36	18.10	17.99	-0.60	19.12	18.48	-3.34	
iP	28.88	29.3	1.46	30.06	30.52	1.54	31.05	32.07	3.29	
nP	6.88	6.94	0.88	7.13	7.14	0.20	7.03	7.35	4.49	

Таблица 4. Сравнение фактических и расчетных значений для процесса M-DSO

Таблица 5. Сравнение фактических значений и расчетных значений для процесса DSO-M

		16#			17#		23#			
	Фактическое значение, мас. %	Расчетное значение, мас. %	Относительная погрешность, %	Фактическое значение, мас. %	Расчетное значение, мас. %	Относительная погрешность, %	Фактическое значение, мас. %	Расчетное значение, мас. %	Относительная погрешность, %	
А	33.11	32.88	-0.69	33.24	32.81	-1.31	32.94	32.44	-1.50	
0	12.43	12.84	3.30	12.15	12.38	1.89	9.31	8.97	-3.67	
Ν	17.39	17.23	-0.95	17.27	17.21	-0.36	18.53	18.17	-1.93	
iP	29.84	29.93	0.32	29.80	30.29	1.66	31.51	32.61	3.48	
nP	7.23	7.12	-1.56	7.54	7.31	-3.00	7.71	7.80	1.14	

в целом превосходит процесс DSO-M в этом отношении. Кроме того, по сравнению с процессом DSO-M, в процессе M-DSO образуется больше ароматических углеводородов и повышается октановое число бензина.

ПРОВЕРКА МОДЕЛИ

С использованием полученных выше кинетических параметров была проведена проверка моделей процессов M-DSO (табл. 1, 10#, 11#, 12#) и DSO-M (табл. 1, 16#, 17#, 23#). Результаты проверок представлены в табл. 4 и 5. Относительные погрешности между расчетным и фактическим значениями для моделей находятся в пределах 5%, что указывает на превосходную экстраполяцию и надежность моделей. Кроме того, эти модели позволяют дать дополнительные рекомендации по моделированию и оптимизации процесса гидроочистки бензина FCC.

НЕФТЕХИМИЯ том 61 № 3 2021

выводы

1. На основе механизма гидрирования нефти и характеристик процессов M-DSO и DSO-M были разработаны 5-компонентные реакционные схемы стадии M и стадии DSO, соответственно.

2. Кинетические параметры стадий М и DSO в процессах M-DSO и DSO-M были рассчитаны, соответственно, по экспериментальным данным с тяжелой фракцией бензина FCC в микрореакторе с неподвижным слоем. Показано, что процесс M-DSO лучше, чем DSO-M в плане уменьшения содержания олефинов и повышения октанового числа с точки зрения динамики.

3. Оценка параметров моделей показывает, что относительные погрешности между расчетным и фактическим значениями составляют менее 5%. Это говорит о том, что дискретные кинетические модели, установленные для процессов M-DSO и

DSO-M, имеют хорошую экстраполяцию и надежность и позволяют давать рекомендации по моделированию и оптимизации процессов M-DSO и DSO-M.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Ying Xiang, ORCID: http://orcid.org/0000-0002-5619-9720

Jiaying Shen, ORCID: http://orcid.org/0000-0002-6906-6484

Fusheng Ouyang, ORCID: http://orcid.org/0000-0001-7523-6673

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

СПИСОК ЛИТЕРАТУРЫ

- Lappas A.A., Valla J.A., Vasalos I.A., Kuehler C., Francis J., O'Connor P., Gudde N.J. The effect of catalyst properties on the in situ reduction of sulfur in FCC gasoline // Appl. Catal. A. 2004.V. 262. P. 31–41. https://doi.org/10.1016/j. apcata.2003.11.014
- Dong H.M., Qu Y., Sun L.L. Application of Prime-G+ technology in FCC naphtha hydrodesulfurization unit // China Pet. Process. Petrochem. Technol. 2012. V. 43. P. 27–30. https://doi.org/10.3969/j. issn.1005-2399.2012.11.006
- Ghosh P., Andrews A.T., Quann R.J., Halbert T.R. Detailed kinetic model for the hydro-desulfurization of FCC Naphtha // Energy Fuels. 2009. V. 23. P. 5743– 5759. https://doi.org/10.1021/ef900632v
- Yang Q.J., Pan D., Zhang N.N. Industrial application of catalytic gasoline M-DSO combined with solvent extraction and desulfurization // Petrochem. Technol. Appl. 2018. V. 36. P. 343–346. https://doi.org/10.3969/j. issn.1009-0045.2018.05.016

- Wang B.C., Huo D.L., Cui D.Q., Cui J.W., Liu Y.L., Zhang X.J. Industrial regeneration of hydro-upgrading catalyst TM2-DSO process // Mod. Chem. Ind. 2010.
 V. 30. P. 59–61. https://doi.org/10.16606/j.cnki. issn0253-4320.2010.08.012
- Lan L., Ju Y.N. Development and commercial trial of DSO technology for FCC gasoline hydro desulfurization // China Pet. Process. Petrochem. Technol. 2010. V. 41. P. 53–56. https://doi.org/10.3969/j. issn.1005-2399.2010.11.010
- Ouyang F.S., Ling Q., Yu Z.K. Reaction kinetic model for flexible dual-riser catalytic cracking process // J. Chem. Eng. Chin. Univ. 2015. V. 29. P. 1106–1113. https://doi. org/10.3969/j.issn.1003-9015.2015.00.025
- Weekman V.W.J., Nace D.M. Kinetics of catalytic cracking selectivity in fixed, moving, and fluid bed reactors // AIChE J. 1970. V. 16. P. 397–404. https://doi. org/10.1002/aic.690160316
- 9. Zhu B.C., Weng H.X., Zhu Z.B. Catalytic reaction engineering. Ixueshu, Beijing, 1999. ISBN: 9787800438547.
- Jiang H., Huang S. Eight-Lump reaction kinetic model for the maximizing isoparaffin process for cleaning gasoline and enhancing propylene yield // Energy Fuels. 2016. V. 30. P. 10770–10776. https://doi.org/10.1021/acs. energyfuels.6b02208
- Fusheng O., Yongqian W., Qiao L. A lumped kinetic model for heavy oil catalytic cracking FDFCC process // Pet. Sci. Technol. 2016. V. 34, P. 335–342. https://doi.org/ 10.1080/10916466.2015.1132236
- Zong G., Ning H., Jiang H., Ouyang F.S. The lumping kinetic model for the heavy oil catalytic cracking MIP process // Pet. Sci. Technol. 2010. V. 28. P. 1778–1787. https://doi.org/10.1080/10916460903261749
- Ge J.K., Qiu Y.H., Wu C.M., Pu G.L. Summary of genetic algorithms research // Appl. Res. Comput. 2008. V. 25. P. 2911–2916. https://doi.org/10.3969/j. issn.1001-3695.2008.10.008