УДК: 665.644.2+66.011

ОЦЕНКА ОПТИМАЛЬНОЙ МОЩНОСТИ УСТАНОВКИ ДЛЯ РЕАЛИЗАЦИИ КАТАЛИТИЧЕСКОГО КРЕКИНГА В ПСЕВДООЖИЖЕННОМ СЛОЕ НА НЕФТЕПЕРЕРАБАТЫВАЮЩЕМ ЗАВОДЕ С ПОМОЩЬЮ ТЕХНИКО-ЭКОНОМИЧЕСКОГО АНАЛИЗА

© 2021 г. Aregawi Beyene Hagos^{1,2}, F. A. Atiku³, Vahid Pirouzfar^{4,*}, Chia-Hung Su^{1,**}, Fu-Ming Wang²

¹ Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, 243303 Taiwan **E-mail: chsu@mail.mcut.edu.tw

² Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 106335 Taiwan

³ Energy Research Institute, School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK ⁴ Department of Chemical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, 14676-8683 Iran *E-mail:v.pirouzfar@iauctb.ac.ir

> Поступила в редакцию 13 сентября 2020 г. После доработки 13 декабря 2020 г. Принята к публикации 25 мая 2021 г.

Установка каталитического крекинга в псевдоожиженном слое (FCC) играет важную роль в процессе работы современных нефтеперерабатывающих заводов, поскольку она используется для производства ценных продуктов нефтепереработки. Для определения оптимальной производительности по сырью в установке FCC с учетом технических и экономических критериев проведено моделирование процесса с использованием программ Aspen HYSYS и Aspen Capital Cost Estimator (или ICARUS) с целью оценки эксплуатационных (OPEX) и капитальных (CAPEX) затрат. Показано, что точка безубыточности этой установки (BEP), т.е. равенство общих затрат и чистой прибыли, находится на уровне мощности 30 000 баррелей в сутки, выше которой установка рентабельна. На основе экономического анализа определены капитальные и эксплуатационные затраты в рамках мощности BEP, составляющие более 156 618 948 долларов США и 37 432 199 долларов США в год, соответственно.

Ключевые слова: каталитический крекинг, псевдоожиженный слой, технико-экономический анализ, оптимальная производительность

DOI: 10.31857/S0028242121040043

Технология FCC была разработана для производства легкого топлива и связанных с этим требованиям к бензиновому топливу во всем мире [1–3]. На установке каталитического крекинга в псевдоожиженном слое тяжелые углеводороды превращаются в более легкие и ценные продукты, которыми в основном являются бензин, легкие газы – метан, этан, олефины, кокс и сжиженный нефтяной газ (СНГ) [4–15]. В этом процессе тяжелые фракции превращаются в легкие продукты в присутствии катализатора [16–22]. Такая лицензированная технология доступна только некоторым компаниям, таким как UOP, EXON, KBR и Stone & Webster, каждая из которых имеет свои собственные пакеты проектирования процессов и спецификации. Действительно, они приводят к повышению эффективности, надежности и гибкости установки FCC [23, 24].

Каталитический крекинг считается одним из важных процессов нефтепереработки в нефтяной промышленности. За последние несколько лет каталитические процессы были значительно усовершенствованы, что привело к значительному инженерному прогрессу в проектировании реакторов. Так, например, в реакторе с псевдоожиженным слоем происходит превращение стабильного каталитического слоя в псевдоожиженный [18-20]. На каталитических установках с псевдоожиженным слоем проводят гидрокрекинг, при котором тяжелая нефть с более высокой температурой кипения превращается в более легкие продукты. Например, получаются продукты с более низкими температурами кипения и более низкой молекулярной массой, такие как бензин [21]. Недавние исследования показали, что процесс каталитического крекинга может обеспечивать от 30 до 50% производства бензина на нефтеперерабатывающих заводах [22-24]. Ранее на заводах применялся термический крекинг; процесс каталитического крекинга стал более популярным из-за более высокой эффективности и производства бензина с более высоким октановым числом. Легкие газы, полученные в результате этого процесса, содержат больше олефиновых соединений, чем при термическом креинге [25-27]. С 2006 г. установки FCC были установлены практически на 400 нефтеперерабатывающих заводах по всему миру. Примерно треть очищенной сырой нефти потребляется на установках FCC для производства бензина с высоким октановым числом [28-30].

Катализатор установки FCC включает комбинацию инертной матрицы, одной активной матрицы (оксид алюминия) и Y-цеолита [31–33]. Y-цеолит является наиболее активным и важным компонентом катализатора установки FCC, т.к. он имеет большую удельную поверхность с активными в реакции крекинга центрами [34, 35]. В дальнейшем он рассматривается как ключевой компонент, контролирующий активность и селективность катализатора [36–38].

Моделирование установки FCC было выполнено с использованием каталиазаторов с содержанием цеолита 24 и 38 мас. % в двух типах реакторов с восходящим потоком [39]. Каталитические реакции можно разделить на два обширных раздела: первичный крекинг молекул и вторичная регенерация. Реакции крекинга происходят вследствие разрыва связи С–С [39]. Gillis и др. [40] тщательно исследовали технологические особенности конкретного процесса крекинга во псевдоожиженном слое. Они оценили его экономическую рентабельность и прикладные возможности и фактически пришли к выводу, что их процесс более гибкий, чем другие. Более того, данный процесс дает возможность максимально повысить эффективность производства, поэтому нефтеперерабатывающие заводы, использующие такое оборудование, могут значительно снизить капитальные затраты. Pradhan [41] смоделировал установку FCC для практических целей с учетом влияния различных параметров. Однако такое моделирование подходит только для установки FCC, но не решает проблему работы комплекса в целом [35]. Al-Khattaf [36] провел несколько исследований, чтобы минимизировать изменение остаточного вакуума, и рассмотрел гибкость процесса фирмы UOP, предложившей схему гидрокгрекинга с частичной конверсией сырья. Фирма "UOP" разработала три новые технологические схемы гидрокрекинга с частичной конверсией сырья при том же давлении. Качество дистиллятных топлив, которые получаются по этим новым схемам, значительно лучше — содержание серы менее 50 млн единиц, цетановый индекс выше 50 пунктов. Этот процесс был применен для максимального использования существующих предприятий и минимизации капитальных затрат [36, 37]. В другом исследовании было изучено более комплексное моделирование установки каталитического крекинга [38]. В установке FCC используются две части реактора с восходящим потоком, в которых почти прошла эндотермическая реакция крекинга и на катализаторе отложился кокс. Затем для сжигания накопившегося кокса используется реактор регенерации, для которого также необходим воздух [38, 39]. Регенератор представляет собой сложную систему, цель которой – активировать катализатор путем сжигания части кокса, осажденного на его поверхности. Восходящий реактор – одно из важных устройств в установке FCC. Моделирование реактора с восходящим потоком выполняется комплексно, поскольку реакции усложняются сопротивлением массовому переходу, тепловому переходу и дезактивацией. Полная модель реактора с восходящим потоком отражает все важные физические явления и точное протекание реакций [40-43]. Содержание серы в бензине, полученном при каталитическом крекинге, меньше, чем при термическом крекинге. Действительно, процесс в псевдоожиженном слое необычайно гибкий [44-47]. Мелкомасштабные установки FCC нерентабельны из-за слабой экономики процесса, поэтому многие существующие объекты либо остановлены, либо их диапазон не ограничивается крекингом. С годами с развитием технологий и растущим спросом на бензин большинство нефтепе-

Рис. 1. Моделирование процесса FCC для мощности 28 000 баррелей в день.

рерабатывающих заводов модернизировали установку FCC для увеличения мощности. Несколько установок FCC были модифицированы для обработки более 50 000 баррелей в сутки. Таким образом, определение оптимальной мощности установок FCC необходимо для повышения доступности, разумного потребления энергии, достижения надежности и различных экономических критериев.

Учитывая преимущества моделирования И экономического анализа, основная цель данного исследования - оценка разных установок FCC с различной производительностью для нефтеперерабатывающих заводов. В этом исследовании был подробно исследован процесс FCC и рассмотрены различные возможности подачи сырья в установку FCC. Предлагаемый высокорентабельный процесс используется на нефтеперерабатывающих заводах с высокой производительностью. Для внедрения инноваций в программе Aspen HYSYS смоделированы различные мощности по сырью, поступающему в установку FCC. Это было экономически проанализировано программным обеспечением ICARUS. Для вычисления алгоритма оптимальной производительности различные мощности аппаратов сравнивали друг с другом в расчетах по входящему сырью. Оптимальная производительность, в свою очередь, связана с точкой безубыточности, поскольку неэкономично использовать этот процесс ниже этой производительности, если его рентабельность выше этой мощности.

НЕФТЕХИМИЯ том 61 № 4 2021

МЕТОДОЛОГИЯ И ПРОЦЕДУРЫ МОДЕЛИРОВАНИЯ

Моделирование процессов. Aspen HYSYS V.10 применяется для проектирования и оценки технологического оборудования и работы агрегатов во всех химических отраслях промышленности. Этот комплекс способен выполнять все технологические расчеты от начала планирования до экономического обсуждения и даже повышения эффективности. Он также способен учитывать энергию, предотвращая ее потерю, и потребление воды, моделируя непрерывные и прерывистые процессы в установившемся и динамическом режимах. Таким образом, в данном исследовании рассматриваются различные мощности блока FCC, смоделированные с помощью программного обеспечения Aspen HYSYS. Наконец, экономический анализ проводится с помощью оценки капитальных затрат Aspen (или ICARUS), а оптимальная мощность указывается на основе технико-экономического анализа. На рис. 1 представлена схема моделирования FCC и его последующих этапов.

Описание процесса. Основное оборудование установки FCC – стояк, реактор, регенератор и т.д. В большинстве случаев стоимость установки FCC можно спрогнозировать достаточно точно. Учет скорости подачи сырья, катализатора, необходимого пара и мощности может способствовать правильной оценке затрат. В процессе FCC используются катализаторы, представляющие собой однородные частицы (средний размер частиц со-

	Бен	ЗИН	CI	ΗΓ	Ма		
Количество сырья (барр./сут.)	скорость потока, [(кг/д)×10 ³]	стоимость, [(долл. США/г)×10 ³]	скорость потока, [(кг/д)×10 ³]	стоимость, [(долл. США/г)×10 ³]	скорость потока, [(кг/д)×10 ³]	стоимость, [(долл. США/г)×10 ³]	Доход, [(долл. США/г)×10 ³]
9 054	121.895	89	65.810	24	146.625	41	13.500
11 442	157.082	115	81.714	30	189.762	53	18.800
13 937	194.630	143	97.194	36	236.809	67	23.400
17 955	232.481	170	114.859	43	297.173	84	28.000
21 422	276.464	203	129.530	49	361.158	102	33.000
25 019	314.164	230	151.508	57	412.845	117	37.000
26 824	351.864	258	156.814	59	463.295	131	42.000
30 693	389.563	286	183.062	69	513.438	145	47.000
33 053	427.263	313	194.343	73	563.458	160	52.000
34 551	464.963	341	197.182	74	613.297	174	57.000

Таблица 1. Количество сырья, а также стоимость сырья и продукции для установок FFC различной мощности

ставляет 70 мкм). Когда на них воздействует поток воздуха, частицы ведут себя как жидкость. Катализатор как бы превращается в жидкость и, циркулируя между реактором и проводником, действует как машина, которая получает тепло угля в проводнике и передает его для нагрева и очистки. Корпус реактора используется для производства пара и дезактивированного катализатора. Процесс крекинга происходит в вертикальном реакторе с восходящим потоком, в котором нагретый поток смешивается с катализатором. Выпаренная нефть превращается в более легкий продукт, который перемещается к стояку и уносит порошок катализатора. Кокс - вещество, в котором содержание углерода ниже, чем водорода, в результате чего он осаждается на катализаторе, что приводит к снижению активности катализатора. Дезактивированный катализатор и превращенные продукты отделяют друг от друга в емкости реактора. Полученные потоки передаются крекером на аналитическую, секционную и газоразделительную установки. Часть углеводородов, которые абсорбируются дезактивированным катализатором, отделяются паром от конца корпуса реактора. Использованный катализатор перемещается в отдельную емкость, где кокс сжигается для восстановления катализатора. Полученный катализатор «переносится» в конец передающей линии реактора для введения дополнительного количества необходимого тепла.

В настоящем исследовании предлагается рассмотреть различные объемы исходного сырья, поступающего в установку FCC, и выходящих потоков бензина и СНГ. Количество входящего сырья изменяется в определенном масштабе. По данным табл. 1 можно рассчитать сумму дохода (долларов в год).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Технический анализ. Факторы, влияющие на крекинг, риформинг и эффективность сочетания продуктов, включают: температуру в реакторе, отношение сырья реактора к свежему сырью, скорость циркуляции, время пребывания катализатора в потоке, давление в реакторе и качество катализатора. Кроме того, они рассматриваются как независимые операционные переменные. Наиболее важные зависимые переменные включают количество катализатора в циркуляции, температуру регенерации и конверсию. Другие факторы, такие как ограничение производительности установки, основной разделительной башни и газового компрессора, имеют дело с рабочим давлением. Однако давление, выходящее за установленные пределы, в наименьшей степени влияет на конверсию и

Рис. 2. Схемы крупномасштабной (а) и маломасштабной (б) установок FCC.

эффективность продуктов. Условия эксплуатации установки FCC различны. Фактически, это зависит от сырья, предполагаемых продуктов и механических ограничений.

Блок FCC изучали в двух масштабах производства - большом и малом. Было показано, что использовать установку FCC при низкой мощности входящего потока неэкономично На следующем этапе была достигнута оптимальная производительность между низкой и высокой производительностью по сырью. Блок FCC используется главным образом при больших количествах подаваемого сырья, входящего потока, а при небольших его количествах он нерентабелен. Благодаря настоящему исследованию возможно рассчитать оптимальную мощность установки FCC по входящему потоку, которая будет обсуждаться в разделе экономического анализа. Эксплуатационные расходы и капитальные затраты рассчитаны с помощью программного обеспечения ICARUS. Точка безубыточности рассчитывается на основе графика. На рис. 2 представлены схемы крупномасштабной и маломасштабной установок FCC. В табл. 2 представлено сравнение стоимости установок FCC в большом и малом масштабах.

Как показано в этой таблице, было установлено, что инвестиции в маломасштабную установку FCC могут составить 8 200 долларов за баррель для мощности 2,500 баррелей в день. А инвестиции в крупномасштабную установку (62 000 баррелей в день) могут быть снижены до 3 000 долларов за баррель. Хотя предложение нефти и спрос на продукцию ограничены, они стабильны. В целом, нефтяные компании ставят задачу технологическому подразделению крупного НПЗ оптимизировать его рентабельность, которая будет представлена в разделе экономического анализа.

В установках FCC остаток в колоннах сначала нагревается, а затем вводится в реактор. Одновременно вводится катализатор при высокой температуре. Крекинг происходит в восходящем реакторе и все продукты присутствуют в верхней части реактора в виде газа. Катализатор возвращается в регенератор, где восстанавливает свою активность.

Параметр	Ед. изм.	FFC (крупномасштабное производство)	FFC (маломасштабное производство)	
Расход сырья	BPSD	62 000	2 500	
Реактор	SMM	102.6	11	
Всего инвестиций	SMM	161.6	20.5	
Инвестиции на баррель	S/bbl	3 000	8 200	

Таблица 2. Сравнение установок FCC в крупно- и маломасштабном производствах

НЕФТЕХИМИЯ том 61 № 4 2021

Объект учета	Общее количество	Ед. изм.	Блок чел./час	Чел./ч	Ставка зар. платы	Трудо- затраты	Блок Материалы	Материалы	Bcero
(2) Оборудование	26.0	ШТ.	1.576.81	40 997	32.76	1 342 869	2 206 215.19	57 361 595	58 704 464
(3) Труба АG	2.946.6	М	119.62	352 461	32.61	11 494 227	3 672 91	10 822 657	22 316 885
(4) Бетон	1.935.2	м ³	10.68	20 676	25.64	530 178	281 95	545 633	1 075 811
(4) Цементный	11.5		127.29	1 469	24.59	36 12	3 935 53	45 416	81 536
раствор		м ³							
(5) Сталь	41.1	тонн	44.93	1 848	30.01	55 463	8 127 10	334 308	389 771
(6) Приборы	517.0	ШТ.	16.01	8 279	32.51	269 113	2 614 63	1 351 763	1 620 876
(7) АG Электрика	7.394.5	М	0.75	5 510	31.50	173 557	125 71	929 559	1 103 115
(7) UG Электрика	1.005.1	М	0.90	901	28.33	25 528	16 61	16 696	42 224
(8) Изоляция	7.511.8		3.87	29 063	24.23	704 249	70 16	527 05	1 231 299
оборудования		м ²							
(8) Изоляция труб	3.089.1	М	3.86	11 935	24.31	290 095	176 92	546 51	836 605
(9) Краска	20.197.1	м ²	0.48	9 649	24.00	231 583	5 73	115 721	347 305
Итого:				482 789		15 116 862		71 523 348	87 749 891

Таблица 3. Прямые затраты (USD) для установки FCC мощностью 23 400 баррелей в сутки

Осевший на нем кокс сжигается. Тепло газов сожжения, в основноми СО и СО₂, используют для производства пара. Регенерированный катализатор снова вводят в процесс. Это непрерывный цикл, при котором катализатор последовательно вводится в процесс и используется.

Экономический анализ был выполнен по программе ICARUS для различных мощностей установки FCC, результаты обобщены в табл. 3. Прямые и косвенные затраты представлены для мощности потребления 23 400 баррелей в сутки. Ставка заработной платы – базовое вознаграждение за время выполнения какой-либо нормы труда. Человек/час (чел./ч) – объем работы, который может быть выполнен одним человеком в течение проектного периода. Трудозатраты – сумма всей заработной платы, выплачиваемой работникам. Указанные в отчете капитальные затраты включают затраты на поставку, изготовление и строительные работы для оборудования, гражданского строительства, трубопроводов, стальных конструкций, инструментов, электричества, изоляции и окраски. Для вышеупомянутых пунктов были рассчитаны человеко-часы (чел./час), ставка заработной платы, стоимость рабочей силы и стоимость материалов, которые включают прямые затраты. Наконец, озвучена общая сумма прямых затрат. В табл. 4 указаны косвенные затраты, которые включают прямые и косвенные затраты, такие как налоги, инженерные работы, накладные расходы, надзор, услуги по закупкам, непредвиденные расходы и другие расходы по проекту.

На рис. За-в показаны затраты, связанные с общими, материальными и трудовыми издержками по различным позициям для установки FCC мощностью 23 400 баррелей в сутки.

Эти цифры помогаю оценить стоимость различных позиций проекта с точки зрения материалов и трудозатрат, таких как щтат сотрудников, оборудование, трубопроводы, штат, стальные конструкции, инструменты, электрические компоненты, изоляция, окраска и пр.

На рис. 4 показана стоимость оборудования различного типа и класса с учетом стоимости его покупки и наладки на установке FCC мощностью 24 300 баррелей в сутки. Видно, что самыми дорогостоящими являются дебутанизатор и основной реактор, а самым дешевым – главный теплообменник.

В табл. 5 представлены результаты операционных, капитальных и общих годовых затрат с выручкой различных мощностей для установки FCC. Кроме того, в ней представлены результаты, полученные при моделировании установки FCC, которые включают чистую прибыль (разницу между ценой на продукцию и сырье). Как показано в этой

Рис. 3. Затраты (USD) по различным позициям на установке FCC мощностью 28 000 баррелей в сутки: всего (а), материалов (б) и рабочей силы (в).

НЕФТЕХИМИЯ том 61 № 4 2021

AREGAWI BEYENE HAGOS и др.

Вид расходов	Код косвенных расходов	Наименование косвенных расходов	Bcero
(1) Пост. оборудование и косвенное	11	Доп. преимущества	3 182 101
(1) Пост. оборудование и косвенное	12	Нагрузка	3 636 701
(1) Пост. оборудование и косвенное	13	Расходные материалы, мелкий инструмент	454 6
(1) Пост. оборудование и косвенное	14	Разное (страхование и т.д.)	1 144 100
(1) Пост. оборудование и косвенное	15	Строительные леса	454 6
(1) Пост. оборудование и косвенное	16	Аренда оборудования	1 970 300
(1) Пост. оборудование и косвенное	18	Полевые службы	1 027 700
(1) Пост. оборудование и косвенное	19	Пост. температура, утилиты	224 1
(2) Пост. менеджмент, персонал, руководство	85	Пост. полевое руководство	5 793 001
(2) Пост. менеджмент, персонал, руководство	86	Запуск, ввод в эксплуатацию	905
(5) Инжиниринг	71	Базовое проектирование	1 490 500
(5) Инжиниринг	72	Детальное проектирование	2 393 401
(5) Инжиниринг	73	Материальные закупки	787 5
(6) Прочие расходы по проекту	81	Пост. поддержка головного офиса	1 264 000
(6) Прочие расходы по проекту	90	G и A накладные расходы	3 196 263
(6) Прочие расходы по проекту	91	Контрактные сборы	3 866 338
(7) Непредвиденные расходы	99	Непредвиденные обстоятельства	17 432 462
Итого:			46 397 772

Таблица 4. Косвенные затраты (USD) для установки FCC мощностью 23 400 баррелей в сутки

Мощность, барр./день	Эксплуатационные расходы, \$/год	Общая капитальная стоимость, \$	Капитальные за- траты×ККЗ (\$/г)	Общая годовая стоимость, \$/г	Прибыль (\$/г)× 1000
13 500	21 347 667	105 283 150	27 773 430	49 121 097	37 941 750
18 800	25 133 048	118 507 047	31 261 860	56 394 908	52 837 400
23 400	31 282 623	134 147 663	35 387 816	66 670 439	65 765 700
28 000	37 432 199	156 618 948	41 315 684	78 747 883	78 694 000
33 000	44 116 520	175 708 770	46 351 531	90 468 051	92 746 500
37 000	49 463 977	200 259 863	52 828 047	102 292 024	103 988 500
42 000	56 148 299	208 021 481	54 875 543	111 023 842	118 041 000
47 000	62 832 620	225 062 004	59 370 790	122 203 410	132 093 500
52 000	69 516 942	254 129 480	67 038 717	136 555 659	146 146 000
57 000	76 201 263	268 510 070	70 832 280	147 033 543	160 198 500

Таблица 5. Результаты операционных, капитальных и общих годовых затрат с выручкой для различных мощностей

таблице, с увеличением мощностей общая годовая стоимость увеличивается, и можно обнаружить, что выручка проекта может быть оптимизирована за счет специальной мощности. Кроме того, можно утверждать, что при максимальной мощности (выше 55 000 баррелей в сутки) годовая стоимость может быть значительно увеличена. Следовательно, минимальные мощности должны определяться на основе операционных, капитальных и общих годовых затрат с доходом для различных мощностей. Стоимость и выручка для установки FCC зависят от скорости и качества подачи сырья, постановки целей процесса, размера оборудования (например, компрессора, фракционирования, воздуходувки, реактора, регенератора и т.д.). ДляСС суммирования капитальных и эксплуатационных затрат и

Рис. 4. График стоимости (USD) оборудования в установке FCC мощностью 24 300 баррелей в сутки в зависимости от его класса и типа.

для того, чтобы сделать все блоки идентичными (\$/год), все капитальные затраты следует умножить на коэффициент капитальных затрат (ККЗ, 1/год). ККЗ рассчитывается по следующему уравнению:

 $\{i(1+i)n / [(1+i)n - 1]\} = \Phi$ актор годичности.

Окончательный анализ. На рис. 5 показаны затраты, чистые суммы продаж и соответствующая точка безубыточности. Как видно из графика, определены операционные, капитальные и общие затраты, а также чистые суммы продаж. Интерфейс двух графиков помогает найти точку безубыточности общих затрат и чистой прибыли для установки FCC. На данный момент при мощности 30 000 баррелей в день общая стоимость и чистая прибыль равны. По мере увеличения производительности размеры колонн, теплообменников, компрессоров, насосов и резервуаров, а также затраты на электроэнергию, коммунальные услуги и эксплуатационные расходы увеличиваются до такой степени, что стоимость конструкции превышает это равенство. Таким образом, мощность 30 000 баррелей в сутки – это минимальный размер, при котором установка становится экономически оправданной.

Таким образом, для определения оптимальной мощности установки FCC было проведено всестороннее сравнение. В этой работе для технико-экономического анализа были рассмотрены различные мощности установки FCC. Полученный результат показывает, что установка нерентабельна при

НЕФТЕХИМИЯ том 61 № 4 2021

низких мощностях. При увеличении мощности по сырью увеличивается общая стоимость из-за большего размера оборудования и помещений. Общие затраты и чистые суммы продаж пересекаются в точке, в которой затраты равны прибыли проекта. В этом исследовании точка безубыточности для установки FCC находится при объеме входящего сырья 30 000 баррелей в день. Эта мощность по сырью является оптимальной для установки FCC, т.е. нефтеперерабатывающий завод прибылен при мощности выше этой. В диапазоне от 28 000 до 32 000 баррелей в день размер убытков и рентабельность НПЗ невысокие. Кроме того, при увели-

Рис. 5. Точка безубыточности с учетом чистых сумм продаж и операционных, капитальных и общих затрат на установки FCC различной мощности.

чении мощности до 58 000 баррелей в сутки капитальные затраты этого блока резко увеличатся до 268 510 070 долларов США.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Atiku Abubakar Farooq, ORCID ID: http://orcid. org/0000-0001-5840-3783

Vahid Pirouzfar, ORCID ID: http://orcid.org/0000-0002-2862-008X

Chia-Hung Su, ORCID ID: http://orcid.org/0000-0002-4203-5143

Fu-Ming Wang, ORCID ID: http://orcid.org/0000-0003-4407-3554

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

СПИСОК ЛИТЕРАТУРЫ

- Daminev R.R., Chanyshev R.R., Latypova F.N., Vil'danov F.Sh., Karimof O.Kh. Specific features of microwave-assisted catalytic oligomerization of refinery and natural gas components // Petrol. Chem. 2015. V. 55. P. 683–685. https://doi.org/10.1134/S0965544115080034
- Chernysheva E.A., Piskunov I.V., Kapustin V.M. Enhancing the efficiency of refinery crude oil distillation process by optimized preliminary feedstock blending (Review) // Petrol. Chemistry. 2020. V. 60. № 1. P. 1–15. https://doi.org/10.1134/S0965544120010053
- Gorbunov D.N., Nenasheva M.V., Matsukevich R.P., Terenina M.V., Putilin F.N., Kardasheva Yu.S., Maksimov A.L., Karakhanov E.A. Ethylene hydroformylation in the presence of rhodium catalysts in hydrocarbon-rich media: The stage of combined conversion of refinery gases to oxygenates // Petrol. Chemistry. 2019. V. 59. P. 1009–1016. https://doi.org/10.1134/S0965544119090056
- Khadzhiev S.N., Gerzeliev I.M., Kapustin V.M., Kadiev Kh.M., Dement'ev K.I., Pakhmanova O.A. Catalytic cracking in today's deep-conversion refinery // Petrol. Chemistry. 2011. V. 51. № 1. P. 32–38. https://doi. org/10.1134/S0965544111010087
- Dehaghani A.H.S., Pirouzfar V. Investigation on the effect of microalgae Chlorella sp. and Spirulina on biodiesel production // Petrol. Chemistry. 2018. V. 58. № 8. P. 702–708. https://doi.org/10.1134/S0965544118080042
- Saleh S., Pirouzfar V., Alihosseini A. Performance analysis and development of a refrigeration cycle through various environmentally friendly refrigerants // J. Therm. Anal. Calorim. 2019. V. 136. № 4. P. 1817– 1830. https://doi.org/10.1007/s10973-018-7809-3
- 7. *Kianfar E., Salimi M., Pirouzfar V., Koohestani B.* Synthesis and modification of zeolite ZSM-5 catalyst with solutions of calcium carbonate (CaCO₃) and sodium carbonate (Na₂CO₃) for methanol to gasoline

conversion // Int. J. Chem. React. Eng. 2018. V. 16. № 7. P. 20170229. https://doi.org/10.1515/ijcre-2017-0229

- Kianfar E., Salimi M., Pirouzfar V., Koohestani B. Synthesis of modified catalyst and stabilization of CuO/NH₄-ZSM-5 for conversion of methanol to gasoline // Int. J. Appl. Ceram. Technol. 2018. V. 15. P. 734–741. https://doi.org/10.1111/ijac.12830
- Pirouzfar V., Omidkhah M. Mathematical modeling and optimization of gas transport through carbon molecular sieve membrane and determining the model parameters using genetic algorithm // Iran. Polym. J. 2016. V. 25. № 3. P. 203–212. https://doi.org/10.1007/s13726-016-0414-z
- Kianfar E., Pirouzfar V., Sakhaeinia H. An experimental study on absorption/stripping CO₂ using mono-ethanol amine hollow fiber membrane contactor // J. Taiwan Inst. Chem. Eng. 2017. V. 80. P. 954–962. https://doi. org/10.1016/j.jtice.2017.08.017
- Salimi M., Pirouzfar V., Kianfar E. Novel nanocomposite membranes prepared with PVC/ABS and silica nanoparticles for C₂H₆/CH₄ separation // Polym. Sci. Ser. A. 2017. V. 59. № 4. P. 566–574. https://doi.org/10.1134/ S0965545X17040071
- Soleymanipour S.F., Dehaghani A.H.S., Pirouzfar V., Alihosseini A. The morphology and gas-separation performance of membranes comprising multiwalled carbon nanotubes/polysulfone-Kapton // J. Appl. Polym. Sci. 2016. V. 133. № 34. Online Computer File. https:// doi.org/10.1002/app.43839
- 13. *Heydari S., Pirouzfar V.* The influence of synthesis parameters on the gas selectivity and permeability of carbon membranes: empirical modeling and process optimization using surface methodology // RSC Adv. 2016. V. 6. № 17. P. 14149–14163. https://doi. org/10.1039/C5RA27772H
- Pirouzfar V., Moghaddam A.Z., Mirza B. Physicochemical properties and combustion performance of gas oil-fuel additives // J. Energy Resour. Technol. 2012. V. 134. № 4. P. 041101/1-041101/6. https://doi. org/10.1115/1.4007483
- Zamankhan F., Pirouzfar V., Ommi F., Valihesari M. Investigating the effect of MgO and CeO₂ metal nanoparticle on the gasoline fuel properties: empirical modeling and process optimization by surface methodology // Environ. Sci. Pollut. Res. 2018. V. 25. P. 22889–22902. https://doi.org/10.1007/s11356-018-2066-3
- Valihesari M., Pirouzfar V., Ommi F., Zamankhan F. Investigating the effect of Fe₂O₃ and TiO₂ nanoparticle and engine variables on the gasoline engine performance through statistical analysis // Fuel. 2019. V. 254. P. 115618. https://doi.org/10.1016/j.fuel.2019.115618
- Hashemzehi M., Pirouzfar V., Nayebzadeh H., Alihosseini A. Effect of synthesizing conditions on the activity of zinccopper aluminate nanocatalyst prepared by microwave combustion method used in the esterification reaction // Fuel. 2020. V. 263. P. 116422. https://doi.org/10.1016/j. fuel.2019.116422
- Hashemzehi M., Pirouzfar V., Nayebzadeh H., Alihosseini A. Application of response surface methodology to optimize high active Cu-Zn-Al mixed metal oxide fabricated via

microwave-assisted solution combustion method // Adv. Powder Technol. 2020. V. 31. № 4. P. 1470–1479. https:// doi.org/10.1016/j.apt.2020.01.010

- Dehaghani A.H.S., Pirouzfar V. Preparation of highperformance membranes derived from poly(4-methyl-1-pentene)/zinc oxide particles // Chem. Eng. Technol. 2017. V. 40. P. 1693–1701. https://doi.org/10.1002/ ceat.201600693
- Luckenbach E.C., Worley A.C., Reichle A.D., Gladrow E.M. Petroleum Processing Handbook. J.J. McKetta (Ed.). New York: Marcel Dekker Inc., 1992. P. 349.
- 21. Sadeghbeigi R. Fluid catalytic cracking: design, operation, and troubleshooting of FCC Facilities. Houston, Gulf Publishing Company: TX, 1995.
- O'Connor P. Improve resid processing // Hydrocarbon Processing. Int. Ed. 1991. V. 70. № 11. P. 76–84. CODEN: IHPRBS
- Gary J.H., Handwerk G.E. Petroleum refining technology and economics (4th ed.). New York, Basel: Marcel Dekker, Inc. 2001.
- Nelson W.L. Petroleum refinery engineering (4th ed.). New York, McGraw: Hill Book Co, 1958. P. 759–810.
- Bradley S.A., Gattuso M.J., Bertolacini R.J. Characterization and catalyst development. Symposium Series, № 411. Am. Chemical Society. Washington: DC, 1989.
- Al-Khattaf S., de Lasa H.I. Catalytic cracking of cumene in a riser simulator: A catalyst activity decay model // Ind. Eng. Chem. Res. 2001. V. 40. P. 5398–5404. https:// doi.org/10.1021/ie001141c
- Germain J.E. Catalytic conversion of hydrocarbons, University of Lyon, France. New York: Academic Press, Inc., 1969.
- 28. Jones D.S.J., Pujado P.P. Handbook of Petroleum Processing (First ed.). Netherlands: Springer, 2006.
- 29. U.S. Downstream Processing of Fresh Feed Input by Catalytic Cracking Units. Energy Information Administration. U.S.:Dept. of Energy, 2012.
- Choudary N.V., Newalkar B.L. Use of zeolites in petroleum refining and petrochemical processes: recent advances // J. Porous Mater. 2011. V. 18. P. 685–692. https://doi.org/10.1007/s10934-010-9427-8
- Panariti N., Del Bianco A., Del Piero G., Marchionna M. Petroleum residue upgrading with dispersed catalysts: Part 1. Catalysts activity and selectivity // Appl. Catal. A-Gen. 2000. V. 204. P. 203–213. https://doi. org/10.1016/S0926-860X(00)00531-7
- Blazek J.J., Davidson C. Gas jets in fluidized beds // Hydrocarbon Processing. 1981. V. 63. P. 2–10.
- Gupta A., Subba R., Rao D. Effect of feed atomization on FCC performance: Simulation of entire unit // Chem. Eng. Sci. 2003. V. 58. P. 4567–4579. https://doi. org/10.1016/S0009-2509(03)00341-5
- Cerqueiraa H.S., Caeirob G., Costac L., Ramôa Ribeiro F. Deactivation of FCC catalysts // J. Mol. Catal. A.

НЕФТЕХИМИЯ том 61 № 4 2021

Chem. 2008. V. 292. P. 1–13. https://doi.org/10.1016/j. molcata.2008.06.014

- Magee J.S., Mitchell M.M. Fluid catalytic cracking: Science and technology, 1st ed. Elsevier, 1993. V. 76.
- Al-Khattaf S., de Lasa H.I. Activity and selectivity of fluidized catalytic cracking catalysts in a riser simulator: The role of Y-zeolite crystal size // Ind. Eng. Chem. Res. 1999. V. 38. P. 1350–1356. https://doi.org/10.1021/ ie980433z
- Al-Khattaf S., de Lasa H.I. Diffusion and reactivity of gas oil in FCC catalysts // Can. J. Chem. 2001. V. 79. P. 341–348. https://doi.org/10.1002/cjce.5450790306
- Al-Khattaf S. The influence of Y-zeolite unit cell size on the performance of FCC catalysts during gas oil catalytic cracking // Appl. Catal. A-Gen. 2002. V. 231. P. 293–306. https://doi.org/10.1016/S0926-860X(02)00071-6
- Ali H., Rohani S., Corriou J.P. Modeling and control of a riser-type fluid catalytic cracking (FCC) unit // Chem. Eng Res. Des. 1997. V. 75. P. 401–412. https://doi. org/10.1205/026387697523868
- 40. *Gillis D., Wees M.V., Zimmerman P.* Upgrading residues to maximize distillate yields. UOP LLC, A Honeywell Company. Des Plaines, Illinois, USA, 2007.
- 41. *Pradhan K*. Simulation of fluid catalytic cracker, department of chemical engineering, national institute of technology, BTech thesis. 2012.
- 42. Sahu J., Mahalik K., Nam H.K., Ling T.Y., Woon T.S., Rahman M.S.B.A., Mohanty Y., Jayakumar N., Jamuar S. Feasibility study for catalytic cracking of waste plastic to produce fuel oil with reference to Malaysia and simulation using ASPEN Plus // Environ. Prog. Sustain. Energy. 2014. V. 33. P. 298–307. https://doi.org/10.1002/ ep.11748
- Popa C. Four-lump kinetic model vs. three-lump kinetic model for the fluid catalytic cracking riser reactor // Procedia Eng. 2015. V. 100. P. 602–608. https://doi. org/10.1016/j.proeng.2015.01.410
- 44. Popa C. Application of plantwide control strategy to the catalytic cracking process // Procedia Eng. 2014. V. 89. P. 1469–1474. https://doi.org/10.1016/j. proeng.2014.03.143
- Gupta R.K., Kumar V., Srivastava V.K. A new generic approach for the modeling of fluid catalytic cracking (FCC) riser reactor // Chem. Eng. Sci. 2007. V. 62. P. 4510–4528. https://doi.org/10.1016/j.ces.2007.05.009
- Speight J.G. Upgrading heavy feedstocks // Ann. Rev. Energy. 1986. V. 11. P. 253–274. https://doi.org/10.1146/ annurev.eg.11.110186.001345
- 47. Gatte R.R., Harding R.H., Albro T.G., Chin D.S., Wormsbecher R.F. Influence of catalyst on sulfur distribution in FCC gasoline // ACS Preprints. 1992.
 V. 137. № 1. P. 33-40.