УДК 542.8

СВЯЗЬ ВАЛЕНТНЫХ КОЛЕБАНИЙ АЛИФАТИЧЕСКИХ ГРУПП СО СТРУКТУРНО-ГЕОХИМИЧЕСКИМИ ХАРАКТЕРИСТИКАМИ НЕФТЕЙ ЕДИНОГО ГЕНЕТИЧЕСКОГО ТИПА НА ПРИМЕРЕ МЕСТОРОЖДЕНИЯ ТУРИЯ-СЕВЕР (ПАННОНСКИЙ БАССЕЙН, СЕРБИЯ)

© 2021 г. Е. Стеванович^{1,2,*}, А. Р. Ракитин^{1,*}, К. Стоянович^{2,**}

¹ Научно-технологический центр НИС-Нафтагас, Лаборатория Upstream, Нови Сад, 21000 Сербия ² Университет в Белграде, Химический факультет, Белград, 11000 Сербия *E-mail: jelena.stevanovic@nis.eu; rakitin.ar@nis.eu **E-mail: ksenija@chem.bg.ac.rs; xenasyu@yahoo.com

> Поступила в редакцию 21 ноября 2020 г. После доработки 20 февраля 2021 г. Принята к публикации 4 июня 2021 г.

Проводилось изучение структурно-геохимических характеристик генетически сходных нефтей месторождения Турия-север, расположенного в юго-восточной части Паннонского бассейна на территории Сербии. Методами инфракрасной спектроскопии (ИК) и газо-жидкостной хроматографии (ГЖХ) были исследованы образцы из 56 скважин. Моделированием области ИК-спектра 2800-3000 см⁻¹ суммой функций Лоренца были выделены вклады валентных колебаний алифатических групп, на основании которых рассчитывалась степень разветвления алканов. Положение пиков поглощения групп СН₂ зависит от разветвленности алифатических цепей, смещаясь на 3-4 см⁻¹ в сторону высоких частот при переходе от минимальной к максимальной разветвленности для рассматриваемой коллекции нефтей, что связано с сопутствующим увеличением доли гош-конформаций в полиметиленовых фрагментах. Согласно данным ГЖХ, нефти месторождения Турия-север близки между собой по степени термической преобразованности, которая соответствует ранней стадии генерирования жидких углеводородов и характеризуется смешанным аквагенно-терригенным происхождением исходного органического вещества (ОВ), сформировавшегося в переходной восстановительно-слабоокислительной обстановке осадконакопления. Степень разветвления алканов показала значимую корреляцию с геохимическими параметрами, позволяя разделить образцы на две группы: нефти группы I с повышенным вкладом водорослей в исходном OB и сформировавшиеся в более восстановительных условиях по сравнению с группой II. Полученные результаты на практике демонстрируют преимущество сочетания методов ГЖХ и ИК-спектроскопии для выяснения структуры и геохимических особенностей осадочного OB.¹

Ключевые слова: месторождение Турия-север, инфракрасная спектроскопия, моделирование спектров, степень разветвления алифатических цепей, *н*-алканы, изопреноиды

DOI: 10.31857/S0028242121050051

В отличие от современных методов хроматографии, широко применяющихся в органической геохимии [1–3], инфракрасная (ИК) спектроскопия не обладает возможностью идентификации индивидуальных биомаркеров. Вместе с тем последний подход отличается, по крайней мере, одним весомым преимуществом – возможностью одновременно получать информацию о структурно-групповом составе всех компонентов органического вещества (OB) вне зависимости от их химической природы, молекулярной массы или агрегатного состояния OB. Это позволяет избежать трудоемких и не всегда совершенных процедур разделения исходного образца на групповые фракции [4], поскольку

¹ Дополнительные материалы для этой статьи доступны по doi 10.31857/S0028242121050051 для авторизованных пользователей.

ИК-пики поглощения алифатических, ароматических и основных функциональных групп практически не перекрываются между собой [5].

Первые примеры применения ИК-спектроскопии в органической геохимии относились к качественному анализу ОВ и описанию количественной корреляции между содержанием ОВ в осадочных породах и площадью области валентных колебаний алифатических CH_n-групп [6-10]. Значимая для своего времени работа Ганца и Калкрюта [11] открыла новое направление в классификации и оценке термической зрелости (преобразованности) керогена по типу Н/С-О/С-диаграмм Ван Кревелена на основании отношений пиков алифатических, ароматических и карбонильных групп [12–15]. При изучении ОВ в породах, как в исходном состоянии, так и после обработки кислотой для удаления неорганической части, существенную погрешность может внести пробоподготовка [8]. По мере совершенствования методов программируемого пиролиза объектом ИК-исследований стали нефти и связь их зрелости, происхождения, условий осадконакопления и степени биодеградации OB по данным хроматографии с различными спектральными коэффициентами [16-20], представляющими собой комбинации интенсивностей или площадей ИК-пиков. Наиболее часто используются коэффициенты, характеризующие разветвленность алканов, ароматичность, концентрацию нафтеновых соединений и функциональных групп с атомами кислорода и серы [20-22], однако число предложенных соотношений имеет тенденцию к увеличению. По результатам недавнего исследования нефтей Джунгарского бассейна в Китае [19] была установлена корреляция с фундаментальными геохимическими параметрами для 8 из 13 коэффициентов, определенных из ИК-спектров. Необходимо отметить, что коэффициенты, относящиеся к непредельным, ароматическим и кислородсодержащим группам в работе [19], рассчитывались из пиков малой величины с ярко выраженным наклоном базовой линии. Также, по крайней мере, половина из приведенных в работе [19] коэффициентов пропорциональны отношению содержаний метиленовых и метильных групп и представляют собой различные комбинации пиков валентных и деформационных колебаний этих фрагментов.

В российской практике мерой разветвленности алканов обычно служит отношение пиков симме-

НЕФТЕХИМИЯ том 61 № 5 2021

тричных деформационных колебаний связи С-Н метильных и метиленовых групп, поглощающих около 1380 и 1460 см⁻¹, соответственно, хотя деформационные колебания метиленовых фрагментов обнаруживают значительное перекрывание с антисимметричными деформационными колебаниями метильных групп при 1450 см⁻¹ [5, 23]. В то же время, в ИК-спектрах практически любого типа ОВ наибольшей интенсивностью обладают пики валентных колебаний метиленовой и метильной групп, расположенные в области спектра 2800-3000 см⁻¹, удаленной от полос поглощения деформационных и скелетных колебаний и с базовой линией, близкой к горизонтальной. Зенкер в ранней работе [24], посвященной алканам, спиртам, альдегидам и карбоновым кислотам нормального строения, использовал область спектра антисимметричных валентных колебаний метиленовой и метильной групп между 2875 и 3000 см⁻¹ в сочетании с методом спектральной компенсации, чтобы продемонстрировать линейную зависимость отношения коэффициентов пропускания CH₂/CH₃ от длины метиленовых фрагментов $(CH_2)_n$ при n > 5. В более позднем исследовании структуры углей [25] область спектра поглощения 2800-3000 см⁻¹ моделировалась суммой функций Гаусса и Лоренца, соответствующих пяти типам валентных колебаний: антисимметричные и симметричные групп CH₂ и СН₂, а также третичного атома углерода СН. При этом положение пиков поглощения определялось по второй производной спектра. Аналогичный подход с моделированием области валентных колебаний алифатических групп при помощи лоренцианов и гауссинанов успешно применялся и в других работах по ИК-спектроскопии углей [26-29].

Последующие исследования горючих сланцев [8, 30, 31] также основывались на отношении площадей пиков антисимметричных валентных колебаний групп CH_n, полученных с помощью теоретического моделирования. Сходный расчет разветвленности предельных УВ был применен к различным типам керогена [32] и углей [33] и продемонстрировал снижение отношения CH₂/CH₃ с увеличением зрелости OB, определяемой по отражательной способности витринита.

Данная работа направлена на расширение возможностей ИК-спектроскопии как надежного и доступного аналитического метода для изучения особенностей структуры и геохимического происхождения нефтей. В качестве объекта исследований выбрана достаточно многочисленная коллекция из 56 образцов нефти месторождения Турия-север, расположенного в юго-восточной части Паннонского бассейна на территории Сербии.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Физико-химические свойства нефти и подготовка образцов

Нефти месторождения Турия-север имеют плотность 870-910 кг/м³ (15°С) и при комнатной температуре представляют собой твердые вещества или высоковязкие жидкости с кислотным числом 0.1-0.4 мг КОН/г, содержанием парафинов 5-11% (BS EN 12606-1) и асфальтенов – порядка 1% (ASTM D6560, осаждение н-гептаном). Парафины, определяемые методом дистилляции BS EN 12606-1, кристаллизуются при температуре -20°С из эфирноэтанольной смеси 1:1 и являются преимущественно *н*-алканами состава С₁₅-С₅₇, а также изоалканами, циклоалканами и ароматическими соединениями, в том числе, С₅₇₊[34]. Температура начала дистилляции турийских нефтей находится в диапазоне от 60 до 110°С, с выходом фракции до 200°С 10-20 об. %, а до 300°С - 20-30 об. %. Подобный тип нефтей характерен для юго-восточной части Паннонского бассейна [35-37].

Для исследований использовались образцы обезвоженной нефти, полученные разделением на фазы нагреванием с обратным холодильником в течение 48 ч при 60°С проб добываемой жидкости из 56 скважин месторождения Турия-север.

Инфракрасная спектроскопия

Спектры поглощения нефтей относительно воздуха были получены с помощью программного пакета OMNIC при комнатной температуре на ИК-Фурье спектрометре Thermo Nicolet 380 с DTGS детектором и приставкой HIIBO Smart Orbit Diamond и усреднением по 1024 сканам в интервале 500–4000 см⁻¹ с разрешением 4 см⁻¹ без последующей коррекции и обработки. Консистенция и сильное поглощение образцов ограничивают запись спектров пропускания с применением жидкостных кювет и окон-подложек. Отмеченных недостатков лишен метод НПВО, обеспечивающий в нашем случае удобство измерений при хорошем отношении сигнал/шум для выбранных параметров съемки. Воспроизводимость проверялась двух- и трехкратными измерениями одного и того же образца нефти. Между измерениями поверхность кристалла тщательно очищали изопропиловым спиртом. Контроль испарения растворителя производили визуально и по отсутствию в спектре характеристических полос поглощения. На основе средних значений для трех параллельных измерений, проведенных на образцах Tus-010, Tus-088, Tus-144 и Tus-083 и охватывающих весь диапазон степени разветвления СН₂/СН₃, рассчитанное среднеквадратичное отклонение положения пиков не превышает 0.5 см⁻¹, что на порядок меньше различий, наблюдаемых между образцами.

Газо-жидкостная хроматография

ГЖХ нефтей проводили на газовом хроматографе Хроматэк Кристалл 9000 с неполярной капиллярной колонкой CP-Sil 5 CB (30 м \times 0.53 мм \times 1.5 мкм) и пламенно-ионизационным детектором. В качестве газа-носителя использовали гелий с расходом 17.2 см³/мин. Ввод пробы непосредственно в колонку производили с помощью автосамплера. Подготовку образцов до ввода в хроматограф осуществляли разбавлением образца нефти дисульфидом углерода в соотношении 1:10. Температуру ввода пробы изменяли от 40 до 310°С со скоростью 50°С/мин; температуру термостата – от 0°С (выдержка 2 мин) до 305°С (выдержка 57 мин) со скоростью 15°С/мин. Температура детектора составляла 350°С. Идентификацию пиков выполняли в программном пакете Хроматэк Аналитик по времени удерживания стандартной смеси углеводородов.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Общий вид ИК-спектров

На рис. 1 представлен типичный ИК-спектр нефти месторождения Турия-север, в котором преобладают пики валентных и деформационных колебаний, а также колебаний скелетного типа метильных и метиленовых групп алифатических молекул. Отнесение наиболее интенсивных полос поглощения не представляет трудностей [5]: 2951–2954/2917–2921 см⁻¹ и 2868–2871/2849–2852 см⁻¹ – валентные антисимметричные и сим-

Рис. 1. ИК-спектр нефти скважины Tus-111 месторождения Турия-север: (а) – полный ИК-спектр; (б) – полученная экспериментально (сплошная линия) и теоретически рассчитанная (пунктирные линии) области валентных колебаний.

метричные колебания групп CH_3/CH_2 ; 1462– 1463 см⁻¹ – симметричные деформационные колебания CH_2 ; 1456–1457 см⁻¹ и 1376–1377 см⁻¹ – антисимметричные и симметричные колебания $C-CH_3$; 740–745 и 720–729 см⁻¹ – скелетные колебания (CH_2)₃ и (CH_2)₄₊.

В отличие от других хорошо разрешенных пиков валентных колебаний групп CH₂ и CH₃, пик симметричных валентных колебаний метильной группы при 2868–2871 см⁻¹ в большинстве спектров проявляется в форме плато или плеча. Колебания связи СН третичного углерода поглощают при 2890-2900 см⁻¹ и присутствуют на спектре в виде слабо выраженного плеча с низкочастотной стороны пика поглощения антисимметричных валентных колебаний группы СН₂. Вследствие упомянутого выше перекрывания полос поглощения деформационных колебаний метильных и метиленовых фрагментов, визуальное определение положения и интенсивности соответствующих им пиков поглощения около 1460 см⁻¹ зачастую не представляется возможным. Измерение высоты пиков деформационных колебаний дополнительно осложняется заметно увеличенным по сравнению с областью валентных колебаний наклоном базовой линии. Согласно литературе, участок спектра 700-900 см⁻¹ содержит до восьми типов колебаний алифатического скелета [32], из которых в случае нефтей месторождения Турия-север наиболее интенсивным поглощением при 720-729 см⁻¹ обладают полиметиленовые фрагменты $(CH_2)_{4+}$.

НЕФТЕХИМИЯ том 61 № 5 2021

Оптическая плотность в области 3000–3100 см⁻¹ на уровне базовой линии в сочетании со значениями порядка 0.01 для пиков при 1600 и 810 см⁻¹, относящихся к валентным колебаниям связи C=C и внеплоскостным деформационным колебаниям связи CH ароматического кольца, соответственно, указывают на низкую концентрацию и высокую степень замещения ароматических колец в исследуемых нефтях. Также на плече пика ароматики при 1600 см⁻¹ со стороны высоких частот различимы слабые полосы поглощения около 1700 см⁻¹, предположительно соответствующие валентным колебаниям связи C=O.

Валентные колебания алифатических групп

Руководствуясь описанным выше подходом [25], область валентных колебаний алифатических групп между 2800 и 3000 см⁻¹ моделировалась суммой пяти функций Лоренца с линейной базовой линией в специально созданной программе, реализующей метод наименьших квадратов с использованием симплексного алгоритма. Положение максимумов функций Лоренца подбирали вручную с шагом 0.5 см⁻¹ путем визуального сопоставления общего вида модельного и экспериментального спектров. В нашем случае данный способ приводит к лучшим результатам по сравнению с двукратным численным дифференцированием исходного спектра, сопровождающимся значительным ростом отношения сигнал/шум. Оптимизируемыми параметрами в ходе минимизации суммы квадратичных отклонений между теоретическим расче-

Рис. 2. Положение пиков валентных колебаний в зависимости от степени разветвления CH₂/CH₃ для нефтей месторождения Турия-север: (а) антисимметричные и (б) симметричные валентные колебания метиленовой группы; (в) антисимметричные валентные колебания метиленовой группы.

том и экспериментом являлись высота и ширина пиков, а также коэффициенты линейной функции, представляющей базовую линию. Как следует из рис. 1б, наблюдается хорошее совпадение модельного и экспериментально полученного участков спектра со среднеквадратичным отклонением 0.002–0.004, что значительно ниже рекомендованного в таких случаях верхнего предела в 0.01 [38]. Успешное применение исключительно функций Лоренца для моделирования области валентных колебаний связей СН_{*n*} было также описано на примере нефтей шельфовых месторождений Норвегии [39].

Степень разветвления алифатических цепей выражали через отношение максимумов функций Лоренца (прямо пропорциональных площадям под кривыми), описывающих антисимметричные валентные колебания групп CH_2 и CH_3 , соответственно. Согласно рис. 2а, б, при увеличении соотношения CH_2/CH_3 для обеих полос поглощения метиленовой группы наблюдается сдвиг пиков в сторону низких волновых чисел, составляющий 3–4 см⁻¹ между нефтями с наиболее и наименее разветвленными алканами в своем составе, значимость которого доказана с использованием данных по тестовой статистике, приведенных в таблицах A и Б «Дополнительных материалов» к статье. При этом пик антисимметричных колебаний метильной группы на рис. 2в преимущественно располагается между 2952 и 2953 см⁻¹, не проявляя выраженной зависимости от степени разветвления.

Из ИК-спектроскопических исследований фосфолипидов клеточных мембран известно, что ва-

НЕФТЕХИМИЯ том 61 № 5 2021

Таблица 1. Значения геохимических параметров по данным ГЖХ и степени разветвления алканов CH₂/CH₃, рассчитанной из ИК-спектров^а

Группа	Параметр	Pr/Ph	$Pr/H-C_{17}$	Ph/ <i>H</i> -C ₁₈	$\Sigma_{\text{Heverthile}} / \Sigma_{\text{verthile}} (\mu - C_{10} - \mu - C_{40})$	СРІ	ACL
Ι	Мин.	0.76	0.83	0.97	1.01	1.10	20.61
	Макс.	0.92	1.08	1.26	1.07	1.19	22.15
	Среднее	0.87	0.94	1.09	1.05	1.14	21.42
	СКО	0.03	0.06	0.08	0.01	0.02	0.31
II	Мин.	0.94	0.43	0.37	1.01	1.08	20.82
	Макс.	1.39	0.79	0.84	1.06	1.17	21.93
	Среднее	1.08	0.64	0.64	1.04	1.14	21.55
	СКО	0.12	0.07	0.12	0.01	0.02	0.23
Группа	Параметр	TAR	LHCPI	$\Sigma(\mu-C_{13} - \mu-C_{20})/\Sigma(u-C_{13} - u-C_{20})$	$\frac{\Sigma(\mu-C_{10}-\mu-C_{40})}{\Sigma(\mu-C_{13}-\mu-C_{20})}$	СH ₂ /CH ₃ (ИК)	
Ι	Мин.	0.68	1.05	1.85	4.58	2.61	
Π	Макс.	1.05	1.56	2.50	6.28	3.15	
	Среднее	0.80	1.36	2.16	5.52	2.88	
	СКО	0.09	0.12	0.14	0.38	0.13	
	Мин.	0.79	0.86	2.74	7.70	3.06	
	Макс.	1.09	1.08	4.44	11.65	3.88	
	Среднее	0.99	0.94	3.34	9.25	3.46	
	СКО	0.07	0.06	0.40	1.09	0.23	3

^a Pr/Ph – отношение пристан/фитан [45]; CPI – коэффициент избыточности нечетных *н*-алканов по отношению к четным *н*-алканам (carbon preference index), CPI = 1/2 ($\Sigma_{\text{нечетные}} h-C_{25}-h-C_{33}/\Sigma_{\text{четные}} h-C_{24}-h-C_{32} + \Sigma_{\text{нечетные}} h-C_{25}-h-C_{33}/\Sigma_{\text{четные}} h-C_{26}-h-C_{34}$) [49]; ACL – средняя длина углеводородной цепи в диапазоне $h-C_{10}-h-C_{40}$ (average chain length) [44]; TAR – отношение углеводородов терригенного и аквагенного происхождения (terrigenous/aquatic ratio), TAR = $(h-C_{27} + h-C_{29} + h-C_{31})/(h-C_{15} + h-C_{17} + h-C_{19})$ [43]; LHCPI – коэффициент избыточности коротких *н*-алканов по отношению к длинным *н*-алканам (low vs. high carbon preference index), LHCPI = $(h-C_{17}+h-C_{18}+h-C_{19})/(h-C_{27}+h-C_{28}+h-C_{29})$ [42]; CKO – стандартное квадратичное отклонение; h – алкан нормального строения, u – регулярный изопреноидный алкан; ИК – инфракрасная спектроскопия. С целью исключения влияния испарения и растворимости в воде легких углеводородов в процессе разделения на фазы скважиной жидкости, соединения легче $h-C_{10}$ не учитывались.

лентные колебания групп CH₂ чувствительны к соотношению транс- и гош-конформаций гидрофобных хвостов фосфолипидных молекул. Фазовый переход из геля в жидкокристаллическое состояние сопровождается сходным с вышеописанным сдвигом соответствующих пиков поглощения на 3-4 см⁻¹ к более высоким частотам [40]. Это обстоятельство отражает увеличение подвижности и разупорядоченности, а также появление гошконформаций в изначально полностью транс-полиметиленовых фрагментах. В свою очередь, квантово-механические расчеты предсказывают существенное снижение энергетического барьера перехода между транс- и гош-конформациями линейных алканов при замещении метильными группами [41], что согласуется с поведением метиленовых пиков в спектрах нефтей месторождения Турия-север.

НЕФТЕХИМИЯ том 61 № 5 2021

Газовая хроматография

В образцах были идентифицированы н-алканы состава С1-С40 и ациклические изопреноиды С₁₃-С₂₀. Во всех случаях н-алканы явно преобладают, что указывает на отсутствие биодеградации. Типичный вид хроматограмм нефтей месторождения Турия-север приведен на рис. 3 в виде столбцовых диаграмм распределения алканов нормального строения. Бимодальное распределение н-алканов с максимумами при C₁₃-C₁₅ и C₂₉-C₃₁ (рис. 3) указывает на смешанное аквагенно-терригенное происхождение ОВ. Данное предположение дополнительно подтверждается рассчитанными из содержания алканов значениями геохимических параметров LHCPI (коэффициент избыточности короткоцепочечных по отношению к длинноцепочечным *н*-алканам; low vs. high carbon preference

Рис. 3. Типичные распределения *н*-алканов в хроматограммах нефтей месторождения Турия-север: (а) группа I, скважина Tus-120; (б) – группа II, скважина Tus-015/1.

index) [42], TAR (отношение углеводородов терригенного и аквагенного происхождения; terrigenous/ aquatic ratio) [43] и ACL (средняя длина углеводородной цепи; average chain length) [44] в диапазонах 0.86–1.56, 0.68–1.09 и 20.61–22.15, соответственно (табл. 1).

Хорошо известно, что отношение пристана к фитану (Pr/Ph) [45] не является специфичным показателем окислительно-восстановительных условий, поскольку зависит также от происхождения и степени преобразованности ОВ [46]. Однако, учитывая принадлежность нефтей месторождения Турия-север к единому генетическому типу и сходство по степени зрелости (см. ниже), параметр Pr/Ph можно использовать в оценке окислительно-восстановительных условий обстановки осадконакопления OB. Значения Pr/Ph в пределах 0.76– 1.39 характерны для обстановки переходного типа. С данным выводом согласуется и корреляционная

Рис. 4. Диаграмма в координатах $Pr/H-C_{17}$, $Ph/H-C_{18}$ для исследованных нефтей. I – алгальное происхождение (кероген тип I), бескислородная среда; II – смешанное алгально-терригенное происхождение (кероген тип II), преимущественно бескислородная среда; III – смешанное аквагенно-терригенное происхождение (кероген тип II), среда переходного типа (пониженное содержание кислорода); IV – происхождение торфяно-угольного типа (кероген тип III); V – терригенное растительное происхождение (кероген тип III растительный), окислительные условия [47]; • – группа I; **▲** – группа II.

диаграмма в координатах Pr/*н*-C₁₇, Ph/*н*-C₁₈ [47, 48] (рис. 4), типичная для смешанного аквагенно-терригенного происхождения исходного OB (кероген тип II), осадконакопление которого протекало в меняющихся окислительно-восстановительных условиях.

Значения СРІ (индекс нечетности углеводородов; carbon preference index) [49] лежат в достаточно узком диапазоне от 1.08 до 1.19 (таблица). Поскольку параметр СРІ указывает и на преобразованость ОВ, со значениями свыше 1.2 относящимися к низкой степени зрелости, исследуемые нефти предположительно образованы на начальной стадии генерирования жидких углеводородов, отражательной соответствующей способности витринита 0.60-0.65%. Это согласуется с предварительными исследованиями возможных (потенциальных) нефтематеринских пород, характерных для рассматриваемой области Паннонского бассейна [50, 51].

Корреляция между результатами ИК-спектроскопии и ГЖХ

На рис. 5 приведена зависимость отношения суммарных концентраций *н*-алканов и регулярных изопреноидов по данным ГЖХ от степени разветвления алканов CH_2/CH_3 , рассчитанной из ИК-спектров. Нетрудно заметить, что точки на графике разделяются на две группы: группа I с отношением *н*-алканы/изопреноиды 4.58–6.28 ($CH_2/CH_3 = 2.61-3.15$) и группа II – 7.77–11.64 ($CH_2/CH_3 = 3.06-3.88$) (здесь и далее см. таблицу).

Для нефтей первой, «более разветвленной» группы среднее значение LHCPI составляет 1.35 (1.05–1.56), в то время как для второй группы, с меньшей разветвленностью алифатических цепей, LHCPI в среднем равен 0.94 (0.86–1.08). Дальнейшие различия между двумя группами в распределении *н*-алканов проявляются в средних значениях TAR и Pr/Ph: 0.80 (0.68–1.05) и 0.87 (0.76–0.92) для первой и 0.99 (0.79–1.09) и 1.08 (0.94–1.39) для второй, соответственно. Наконец, параметры Pr/*н*-C₁₇ и Ph/*н*-C₁₈ для группы I в среднем выше, чем для группы II: 0.94 и 1.09 по сравнению с 0.64 и 0.64, соответственно.

Существование указанных групп может быть обусловлено вариацией вкладов аквагенных и терригенных источников при формировании ОВ и/или степени зрелости последнего. Однако сравнительно однородные значения СРІ, а также соотношения четных к нечетным *н*-алканам и параметра ACL в исследуемых образцах прежде всего указывают на различия в исходном ОВ и условиях его осадконакопления, а не на разную степень термической преобразованности ОВ. Более высокие значения параметров Pr/н-C₁₇, Ph/н-C₁₈ и LHCPI совместно с пониженными величинами отношений Pr/Ph и ТАК для нефтей группы I по сравнению с группой II говорят об увеличенном вкладе OB аквагенного алгального происхождения, сформировавшегося в более восстановительных условиях. Восстановительные условия (повышенный уровень воды) способствовали сохранению алгального материала в исходном ОВ нефтей первой группы. Несмотря на то, что повышенные значения степени разветвления обычно указывают на низкую зрелость ОВ [32, 33, 53], причиной более высоких величин СН₂/СН₃ для группы II в условиях одинаковой с

НЕФТЕХИМИЯ том 61 № 5 2021

Рис. 5. Зависимость отношения *н*-алканов к регулярным изопреноидам по данным ГЖХ от степени разветвления CH₂/CH₃ (ИК) для нефтей месторождения Турия-север: • – группа I; ▲ – группа II; пунктиром обозначены линейные уравнения; *r* – коэффициент корреляции; Граничные значения *r* для доверительной вероятности (*P*) 99.9% и 99% составляют 0.14 и 0.83, соответственно [52].

нефтями первой группы степени зрелости является увеличение вклада терригенного OB, представленного длинноцепочечными *н*-алканами, источниками которых служат липиды наземных растений. Таким образом, полученные в данной работе результаты указывают на чувствительность валентных колебаний алифатических молекул к незначительным различиям в исходном OB нефтей единого генетического типа и условиям его осадконакопления.

Помимо разделения нефтей на две группы из рис. 5 очевидна значительно более слабая корреляция между рассчитанными по данным ИК-спектроскопии и ГЖХ параметрами разветвленности алифатических углеводородов для группы I (r = 0.14) по сравнению с группой II (r = 0.83). Это наблюдение согласуется с повышеннным вкладом аквагенного материала в исходном ОВ нефтей первой группы так как, в отличие от биомассы растений наземного происхождения, аквагенное ОВ обогащено метил- и диметилзамещенными алканами, основным источником которых являются цианобактерии и зеленые водоросли *Botryococcus braunii* (расы A) [46]. Поскольку отношение *н*-алканов к регулярным изопреноидам по данным ГЖХ не

включает в себя другие метилизамещенные алканы, в отличие от ИК-спектров, которые учитывают все метильные заместители, определенная спектроскопическим методом степень разветвления для нефтей первой группы изменяется в заметно более широком диапазоне. Нефти группы II сформированы из ОВ с существенным вкладом наземной растительной биомассы, осажденного в более окислительных условиях, которые способствовали деградации аквагенного ОВ. В этих нефтях метильные заместители главным образом присутствуют в изопреноидах, что повышает степень корреляции между ИК-спектроскопическим параметром СН₂/СН₃ и отношением *н*-алканов к изопреноидам, рассчитанным по результатам ГЖХ (рис. 5). Следовательно, корреляция этих двух параметров может служить мерой соотношения аквагенного и терригенного вкладов в осадочном ОВ.

ЗАКЛЮЧЕНИЕ

Методами инфракрасной спектроскопии и газовой хроматографии были исследованы образцы нефти из 56 скважин месторождения Турия-север юго-восточной части Паннонского бассейна (Сербия). Моделирование области валентных колебаний алифатических молекул указывает на сдвиг пиков поглощения метиленовых групп на 3-4 см⁻¹ в сторону высоких частот между нефтями с наименее и наиболее разветвленными алканами. При этом положение пика антисимметричных колебаний метильных групп не подчиняется подобной зависимости, отклоняясь от среднего значения не более чем на ± 1 см⁻¹. Данное наблюдение можно объяснить увеличением доли гош-конформаций в полиметиленовых фрагментах, происходящим под влиянием метильного замешения. Рассчитанные по результатам ГЖХ геохимические параметры нефтей указывают на их смешанное аквагенно-терригенное происхождение, а также сходный генетический тип и одинаковую степень термической преобразованности, соответствующую начальной стадии генерирования жидких углеводородов. Подробное изучение распределения алканов нормального строения и ациклических изопреноидов позволило выявить некоторые различия во вкладе биомассы альгального и терригенного происхождения в исходном OB, а также в условиях его осадконакопления. Определенная по данным ИК-спектроскопии степень разветвления алканов CH₂/CH₃ продемонстрировала чувствительность к незначительным изменениям в исходном OB и условиям его осадконакопления для нефтей единого генетического типа. Кроме того, установлено, что корреляция между спектроскопическим и хроматографическим параметрами разветвленности алифатических углеводородов может служить мерой соотношения аквагенного и терригенного вкладов в осадочном OB.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Стеванович Елена, магистр хим. наук, ORCID: http://orcid.org/0000-0003-1812-1866

Ракитин Антон Рудольфович, к.х.н., ORCID: http://orcid.org/0000-0002-2947-2277

Стоянович Ксения, д.х.н., профессор, ORCID: http://orcid.org/0000-0002-5566-2648

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа проведена при поддержке Министерства образования, науки и технологического развития Республики Сербия (контракт 451-03-9/2021-14/200168).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

СПИСОК ЛИТЕРАТУРЫ

- Medeiros P.M., Simoneit B.R.T. Gas chromatography coupled to mass spectrometry for analyses of organic compounds and biomarkers as tracers for geological, environmental, and forensic research // J. Sep. Sci. 2007. V. 30. № 10. P. 1516–1536. https://doi.org/10.1002/ jssc.200600399
- Arapova O.V., Chistyakov A.V., Palankoev, T.A. Bondarenko, G.N, Tsodikov M.V. Microwave-assisted lignin conversion to liquid products in the presence of iron and nickel // Petrol. Chemistry. 2020. V. 60. № 9. P. 1019–1025. https://doi.org/10.1134/S0965544120090029
- Oliveira C.R., Ferreira A.A., Oliveira C.J.F., Azevedo D.A., Santos Neto E.V., Neto F.R.A. Biomarkers in crude oil revealed by comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry: Depositional paleoenvironment proxies // Org. Geochem.

2012. V. 46. P. 154–164. https://doi.org/10.1016/j. orggeochem.2012.03.002

- 4. Bastow T.P., G.K. van Aarssen B., Lang D. Rapid small-scale separation of saturate, aromatic and polar components in petroleum // Org. Geochem. 2007. V. 38. № 8. P. 1235–1250. https://doi.org/10.1016/j. orggeochem.2007.03.004
- Smith B.C. Infrared Spectral Interpretation. A Systematic Approach, First Ed. CRC Press, 1998. 304 p.
- Tissot B., Deroo G., Hood A. Geochemical study of the Uinta Basin: formation of petroleum from the Green River formation // Geochim. Cosmochim. Acta. 1978. V. 42. № 10. P. 1469–1485. https://doi.org/10.1016/0016-7037(78)90018-2
- 7. Solomon P.R., Miknis F.P. Use of Fourier ransform infrared spectroscopy for determining oil shale properties // Fuel. 1980. V. 59. № 12. P. 893–896. https://doi. org/10.1016/0016-2361(80)90040-X
- Snyder R.W., Painter P.C., Cronauer D.C. Development of FT-i.r. procedures for the characterization of oil shale // Fuel. 1983. V. 62. № 10. P. 1205–1214. https://doi. org/10.1016/0016-2361(83)90065-0
- 9. Глебовская Е.А. Применение инфракрасной спектрометрии в нефтяной геохимии. Недра, Ленинград, 1971. 140 с.
- Schenk H.J., Witte E.G., Müller P.J., Schwochau K. Infrared estimates of aliphatic kerogen carbon in sedimentary rocks // Org. Geochem. 1986. V. 10. № 4-6. P. 1099-1104. https://doi.org/10.1016/S0146-6380(86)80050-X
- Ganz H., Kalkreuth W. Application of infrared spectroscopy to the classification of kerogen types and the evaluation of source rock and oil shale potentials // Fuel. 1987. V. 66, № 5. P. 708–711. https://doi. org/10.1016/0016-2361(87)90285-7
- Kister J., Guiliano M., Largeau C., Derenne S., Casadevall. E. Characterization of chemical structure, degree of maturation and oil potential of Torbanites (type I kerogens) by quantitative FT-i.r. spectroscopy // Fuel. 1990. V. 69. № 11. P. 1356–1361. https://doi. org/10.1016/0016-2361(90)90115-7
- Ganz H., Kalkreuth W. IR classification of kerogen type, thermal maturation, hydrocarbon potential and lithological characteristics // Southeast Asian Earth Sci. 1991. V. 5. № 1-4. P. 19-28. https://doi. org/10.1016/0743-9547(91)90007-K
- Ballice L., Yüksel M., Saglam M., Schulz H., Hanoglu C. Application of infrared spectroscopy to the classification of kerogen types and the thermogravimetrically derived pyrolysis kinetics of oil shales // Fuel. 1995. V. 74. № 11. P. 1618–1623. https://doi.org/10.1016/0016-2361(95)00093-K

- Dutta S., Hartkopf-Fröder C., Witte K., Brocke R., Mann U. Molecular characterization of fossil palynomorphs by transmission micro-FTIR spectroscopy: Implications for hydrocarbon source evaluation // Int. J. of Coal Geol. 2013. V. 115. P. 13–23. https://doi.org/10.1016/j. coal.2013.04.003
- Permanyer A., Douifi L., Lahcini A., Lamontagne J., Kister J. FTIR and SUVF spectroscopy applied to reservoir compartmentalization: a comparative study with gas chromatography fingerprints results // Fuel. 2002. V. 81. № 7. P. 861–866. https://doi.org/10.1016/ S0016-2361(01)00211-3
- Permanyer A., Azevedo D.A., Rebufa C., Kister J., Gonçalves F.T.T. Characterization of Brazilian oils by FTIR and SUVF spectroscopy // Geogaceta. 2005. V. 38. P. 139–141.
- 18. Abbas Q., Dupuy N., Rebufa C., Vrielynck L., Kister J., Permanyer A. Prediction of source rock origin by chemometric analysis of Fourier transform infrared-attenuated total reflectance spectra of oil petroleum: evaluation of aliphatic and aromatic fractions by self-modeling mixture analysis // Appl. Spectrosc. 2006. V. 60. № 3. P. 304–314. https://doi. org/10.1366/000370206776342508
- Zhang J., Cao J., Xiang B., Zhou N., Ma W., Li E. Fourier-transform infrared proxies for oil Source and maturity: insights from the early Permian alkaline lacustrine system, Junggar Basin (NW China) // Energy Fuels. 2019. V. 33. № 11. P. 10704–10717. https://doi. org/10.1021/acs.energyfuels.9b02586
- Стрельникова Е.Б., Серебренникова О.В., Рябова Н.В. Типизация нефтей юры юго-востока Западной Сибири по данным ИК-спектрометрии // Нефтехимия. 2008. Т. 48. № 6. С. 418–425 [Pet. Chem. 2008, V. 48. P. 420-427]. https://doi.org/10.1134/ S0965544108060030
- Абдрафикова И.М., Каюкова Г.П., Петров С.М., Рамазанова А.И., Мусин Р.З., Морозов В.И. Конверсия сверхтяжелой Ашальчинской нефти в гидротермально-каталитической системе // Нефтехимия. 2015. Т. 55. № 2. С. 110–118 [Petrol. Chemistry. 2015. V. 55. P. 104–111]. https://doi.org/10.1134/S0965544115020024
- 22. Коваленко Е.Ю., Голушкова Е.В., Сагаченко Т.А. Исследование состава нефтей и структуры их компонентов в процессе предварительного облагораживания нефтяного сырья металлическими порошками // Нефтехимия. 2016. Т. 56. № 2. С. 120–127 [Petrol. Chemistry. 2016. V. 56. Р. 101–108]. https://doi. org/10.1134/S0965544116010047
- Беллами Л.Дж. Инфракрасные спектры сложных молекул. Пер. с англ. Под ред. Ю.А. Пентина. М.: Изд-во Иностранной литературы, 1963. 592 с.

НЕФТЕХИМИЯ том 61 № 5 2021

- 24. Zenker W. Infrared study of methylene group absorptivities in polar straight chain aliphatic compounds // Anal. Chem. 1972. V. 44. P. 1235–1239. https://doi. org/10.1021/ac60315a027
- 25. Painter P.C., Snyder R.W., Starsinic M., Coleman M.M., Kuehn D.W., Davis A. Concerning the application of FT-IR to the study of coal: a critical assessment of band assignments and the application of spectral analysis programs // Appl. Spectrosc. 1981. V. 35. № 5. P. 475– 485. https://doi.org/10.1366/0003702814732256
- 26. Fuller Jr. E.L., Smyrl N.R. Chemistry and structure of coals: hydrogen bonding structures evaluated by diffuse reflectance infrared spectroscopy // Appl. Spectrosc. 1990. V. 44. № 3. P. 451–461. https://doi. org/10.1366/0003702904086056
- 27. Sobkowiak M., Painter P. Determination of the aliphatic and aromatic CH contents of coals by FT-i.r.: studies of coal extracts // Fuel. 1992. V. 71. № 10. P. 1105–1125. https://doi.org/10.1016/0016-2361(92)90092-3
- Ibarra J.V., Moliner R., Bonet A.J. FT-i.r. investigation on char formation during the early stages of coal pyrolysis // Fuel. 1994. V. 73(6). P. 918–924. https://doi. org/10.1016/0016-2361(94)90287-9
- Ibarra J.V., Muñoz E., Moliner R. FTIR study of the evolution of coal structure during the coalification process // Org. Geochem. 1996. V. 24. № 6–7. P. 725– 735. https://doi.org/10.1016/0146-6380(96)00063-0
- 30. *Lin R., Ritz G.P.* Reflectance FT-IR microspectroscopy of fossil algae contained in organic-rich shales // Appl. Spectrosc. 1993. V. 47. № 3. P. 265–271. https://doi. org/10.1366/0003702934066794
- Lin R., Ritz G.P. Studying individual macerals using i.r. microspectrometry, and implications on oil versus gas/ condensate proneness and "low-rank" generation // Org. Geochem. 1993. V. 20. № 6. P. 695–706. https://doi. org/10.1016/0146-6380(93)90055-G
- 32. Lis G.P., Mastalerz, M., Schimmelmann A., Lewan M.D., Stankiewicz B.A. FTIR absorption indices for thermal maturity in comparison with vitrinite reflectance Ro in type-II kerogens from Devonian black shales // Org. Geochem. 2005. V. 36. № 11. P. 1533–1552. https://doi. org/10.1016/j.orggeochem.2005.07.001
- 33. *Yao S., Zhang K., Jiao K., Hu W.* Evolution of coal structures: FTIR analyses of experimental simulations and naturally matured coals in the Ordos Basin, China // Energy, Explor. Exploit. 2011. V. 29. № 1. P. 1–19 https://doi.org/10.1260/0144-5987.29.1.1
- 34. Lu X., Redelius P. Compositional and structural characterization of waxes isolated from bitumens // Energy Fuels. 2006. V. 20. № 2. P. 653–660. https://doi. org/10.1021/ef0503414
- 35. Šaban M., Jovančićević B.S., Saračević S., Hollerbach A., Vitorović D. Correlative geochemical study of crude oils

from southeastern and southern parts of the Pannonian Basin // Org. Geochem. 1988. V. 13. № 1–3. P. 325–333. https://doi.org/10.1016/0146-6380(88)90052-6

- 36. Šaban M.M., Jovančićević B.S., Glumičić T., Saračević S. Organic geochemical study of the "W" oil-gas field in the Yugoslav part of the Pannonian Basin // Org. Geochem. 1990. V. 16(1-3). P. 477–488. https://doi. org/10.1016/0146-6380(90)90063-6
- 37. *Barić G., Mesić I., Jungwirth M.* Petroleum geochemistry of the deep part of the Drava Depression, Croatia // Org. Geochem. 1998. V. 29. № 1–3. P. 571–582. https://doi. org/10.1016/S0146-6380(98)00096-5
- 38. *Maddams W.F.* The scope and limitations of curve fitting // Appl. Spectrosc. 1980. V. 34. № 3. P. 245–267. https:// doi.org/10.1366/0003702804730312
- Genov G., Nodland E., Barman Skaar B. Barth T. Comparison of biodegradation level and gas hydrate plugging potential of crude oils using FT-IR spectroscopy and multi-component analysis // Org. Geochem. 2008.
 V. 39. № 8. P. 1229–1234. https://doi.org/10.1016/j. orggeochem.2008.04.006
- 40. Mantsch H.H., McElhaney R.N. Phospholipid phase transitions in model and biological membranes as studied by infrared spectroscopy // Chem. Phys. Lipids. 1991. V. 57. № 2–3. P. 213–226. https://doi.org/10.1016/0009-3084(91)90077-O
- Wiberg K.B., Murcko M.A. Rotational barriers. 2. Energies of alkane rotamers. An examination of gauche interactions // J. Am. Chem. Soc. 1988. V. 110. № 24. P. 8029–8038. https://doi.org/10.1021/ja00232a012
- 42. *Littke R., Lückge A., Wilkes H.* Organic matter in neogene sediments of the Southern Canary channel, Canary Island (Sites 955 and 956). In Proceedings of the Ocean Drilling Program, Scientific Results 157. College Station. USA: Texas, 1998. 361–372 p.
- 43. Bourbonniere R.A., Meyers P.A. Sedimentary geolipid records of historical changes in the watersheds and productivities of Lakes Ontario and Erie // Limnol. Oceanogr. 1996. V. 41. № 2. P. 352–359. https://doi. org/10.4319/lo.1996.41.2.0352
- 44. *Poynter J.* Molecular stratigraphy: the recognition of paleoclimate signals in organic geochemical data. PhD Thesis. University of Bristol. 1989. 324 pp.
- Didyk B.M., Simoneit B.R.T., Brassell S.C., Eglinton G. Organic geochemical indicators of palaeoenvironmental conditions of sedimentation // Nature. 1978. V. 272. P. 216–222. https://doi.org/10.1038/272216a0
- 46. *Peters K.E., Walters C.C., Moldowan J.M.* The Biomarker Guide, Volume 2: Biomarkers and Isotopes in the Petroleum Exploration and Earth History. Cambridge University Press, Cambridge, UK, 2005. 680 p.
- 47. *Shanmugam G.* Significance of coniferous rain forests and related oil, Gippsland Basin, Australia // Am.

НЕФТЕХИМИЯ том 61 № 5 2021

Assoc. Pet. Geol. Bull. 1985. V. 69. № 8. P. 1241– 1254. https://doi.org/10.1306/AD462BC3-16F7-11D7-8645000102C1865D

- 48. *Tissot B.P., Welte D.H.* Petroleum Formation and Occurrence: A New Approach to Oil and Gas Exploration. Springer-Verlag, Berlin, Heidelberg, New York, 1978. 538 p.
- 49. Bray E.E., Evans E.D. Distribution of *n*-paraffins as a clue to recognition of source beds //Geochim. Cosmochim. Acta. 1961. V. 22. № 1. P. 2–15. https:// doi.org/10.1016/0016-7037(61)90069-2
- 50. Kostić A. Thermal evolution of organic matter and petroleum generation modelling in the Pannonian Basin (Serbia). University of Belgrade, Faculty of Mining & Geology. "Planeta print", Belgrade, 2010. 150 p. (in Serbian with summary in English).

- Stojanović K., Kostić A., Mrkić S. Assessment of quality and geological evolution of possible source rocks from the Srbobran local depression – organic-geochemical approach // Tehnika. 2012. V. 63. P. 213.
- Davis J. Statistics and Data Analysis in Geology, 3rd Edition. John Wiley & Sons, Inc., New York, 2002. 638 p.
- 53. Lee H., Oncel N., Liu B., Kukay A., Altincicek F., Varma R.S., Shokouhimehr M., Ostadhassan M. Structural evolution of organic matter in deep shales by spectroscopy (¹H and ¹³C nuclear magnetic resonance, X-ray photoelectron spectroscopy, and Fourier transform infrared) analysis // Energy Fuels. 2020.
 V. 34. № 3. P. 2807–2815. https://doi.org/10.1021/acs. energyfuels.9b03851