УДК 539.216.2:537.

# ОСОБЕННОСТИ СТРУКТУРЫ И ОПТИЧЕСКИХ СВОЙСТВ МоО<sub>3</sub>, ПОЛУЧЕННОГО В РАЗНЫХ ТЕХНОЛОГИЧЕСКИХ УСЛОВИЯХ ГАЗОТРАНСПОРТНОГО ОСАЖДЕНИЯ

## © 2019 г. Э. П. Домашевская<sup>1, \*</sup>, С. А. Ивков<sup>1</sup>, Аль Хайлани Хасан Исмаил Дамбос<sup>1</sup>, С. В. Рябцев<sup>1</sup>

<sup>1</sup>Воронежский государственный университет, Россия, 394006 Воронеж, Университетская пл., 1

\**e-mail: ftt@phys.vsu.ru* Поступила в редакцию 12.04.2018 г.

Образцы МоО<sub>3</sub> получали вариацией технологических условий газотранспортного осаждения при двух различных температурах горячей зоны трубчатой печи (800 и 1100°С) и с различными добавками к основному газу-носителю аргону: O<sub>2</sub>, паров H<sub>2</sub>O или газа N<sub>2</sub>O. Результаты рентгенографических, электронно-микроскопических и оптических исследований показали, что слоистая структура микрокристаллов и ширина запрещенной зоны МоО<sub>3</sub> оказываются чувствительными не только к технологическим условиям газотранспортного осаждения (температуре синтеза и составу газотраспортной среды), но и к механическому воздействию в виде растирания. Под действием паров воды в газотраспортной среде при температуре синтеза 800°С в результате искажения кристаллической решетки внедренными молекулами  $H_{2}O$  MoO<sub>3</sub> переходит из основной орторомбической  $\alpha$ -фазы (*Pbnm*) в моноклинную фазу ( $P2_1/n$ ) с уменьшением ширины запрещенной зоны от 2.85 до 2.68 эВ. При повышении температуры синтеза до 1100°С примеси водорода и кислорода из паров воды H<sub>2</sub>O или азота и кислорода из N<sub>2</sub>O не изменяют слоистую орторомбическую структуру микрокристаллов, но добавление N<sub>2</sub>O в газотранспортную среду уменьшает значение ширины запрещенной зоны до 2.51 эВ. При механическом воздействии в виде растирания в порошках из микрокристаллов МоО<sub>3</sub> синтезированных при высокой температуре 1100°С с добавлением паров воды или N<sub>2</sub>O к газу-носителю аргону, наряду с основной стабильной орторомбической фазой Pbnm появляется моноклинная фаза P2<sub>1</sub>/n. Микрокристаллы MoO<sub>3</sub> синтезированные при температуре 800°C, оказываются более устойчивыми к механическим воздействиям и после растирания содержат одну исходную фазу: орторомбическую *Pbnm* в случае синтеза кристаллов в аргон-кислородной газотранспортной среде или моноклинную P2<sub>1</sub>/n в случае добавления паров воды к основному газу-носителю аргону.

Ключевые слова: газотранспортное осаждение, триоксид молибдена, микрокристаллы, орторомбическая фаза, моноклинная фаза, ширина запрещенной зоны **DOI:** 10.1134/S0002337X19010032

#### **ВВЕДЕНИЕ**

Триоксид молибдена  $MoO_3 - \phi$ оточувствительный непрямозонный полупроводник *n*-типа [1, 2] с шириной запрещенной зоны от 2.9 до 3.15 эВ в монокристаллах [3, 4]. Его валентная полоса образуется 2*pz*-орбиталями кислорода [5, 6], тогда как зона проводимости образована перекрывающимся орбиталями Mo 4*d* и O 5*s* [6]. В стехиометрическом MoO<sub>3</sub> были зарегистрированы три экситонных перехода с энергиями 3.7, 4.3 и 4.5 эВ [7].

Основная модификация триоксида молибдена  $\alpha$ -MoO<sub>3</sub> имеет уникальную орторомбическую структуру, которая состоит из слоев молибденкислородных искаженных октаэдров MoO<sub>6</sub> (рис. 1): пр. гр. *Pbnm*, параметры элементарной ячейки – a = 3.697 Å, b = 13.864 Å и c = 3.963 Å) [7, 8].Область гомогенности фазы на основе MoO<sub>3</sub> составляет MoO<sub>2.95–3.00</sub>.

Благодаря своему уникальному кристаллическому строению и связанным с ним свойствам этот оксид обладает большими потенциальными возможностями использования в различных областях твердотельной электроники. Из-за слоистой структуры и благодаря наличию в ней не только ионов Мо<sup>6+</sup>, но и Мо<sup>5+</sup> данный оксид представляет интерес для использования в электрохимических устройствах и дисплеях. Наноразмерные слои оксида молибдена могут быть использованы при создании термодатчиков, сенсоров, информационных устройств с большим объемом памяти и др.

На основе электрохромного эффекта [9, 10] становится возможным создание устройств, которые, кроме визуализации электрических сигналов, могут быть использованы для управления интенсивностью световых потоков, для записи и регистрации информации светом или визуализа-



Рис. 1. Элементарная ячейка орторомбического α-MoO<sub>3</sub>.

ции инфракрасного, ультрафиолетового и рентгеновского излучений.

При этом следует учитывать, что координационные октаэдры кристаллической структуры триоксида молибдена могут испытывать существенные искажения в результате внешних воздействий и легирования. Например, авторы [11–13] показали, что искажение кристаллической решетки в гидрированном MoO<sub>3</sub>, вызванное легированием водородом, может приводить к значительному уменьшению ширины запрещенной зоны.

На сегодняшний день известно довольно много методов получения триоксида молибдена  $MoO_3$  с вариацией технологических режимов, среди которых метод химического осаждения из паровой фазы, золь—гель-метод, гидротермальный синтез, сольвотермальный синтез, термическое испарение и др. [14, 15]. Все вышеперечисленные технологии позволяют вырастить нано- и микрокристаллы оксидов молибдена разной морфологии. Однако основным методом получения различных наноструктур  $MoO_3$  является метод химического осаждения из паровой фазы (CVD) с конденсацией паров [16].

Таблица 1. Перечень образцов MoO<sub>3</sub>, полученных в разных технологических условиях газотранспортного осаждения (CVD)

| Образец | Добавка к газу-носителю Ar<br>и температура получения образцов, °C |  |
|---------|--------------------------------------------------------------------|--|
| 1       | O <sub>2</sub> , 800                                               |  |
| 2       | H <sub>2</sub> O, 800                                              |  |
| 3       | H <sub>2</sub> O, 1100                                             |  |
| 4       | N <sub>2</sub> O, 1100                                             |  |

## ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Химическое осаждение из паровой фазы (CVD) МоО<sub>3</sub>. Суть данного метода состоит в том, что конечный продукт образуется на подложке-мишени, находящейся в наименее нагретой зоне, в результате взаимодействия газообразных веществпрекурсоров в горячей зоне или термолиза пара вещества-прекурсора. Химическая чистота пролукта, осажденного из газовой фазы, существенно выше, чем при использовании других методов, в том числе и золь-гель-технологии. т.к. вещества. используемые в качестве прекурсоров, очищаются от примесей при переходе в газовую фазу. Обычно весь процесс протекает в кварцевой трубе, вставленной в трубчатую печь. Температура испарения источников, давление системы, используемые газы-носители, а также геометрия системы могут существенно влиять на свойства полученных наноструктур.

В процессе газотранспортного осаждения были получены 4 партии образцов в различных технологических условиях, а именно: с различными добавками ( $O_2$ , пары  $H_2O$  или газ  $N_2O$ ) к основному газу-носителю аргону (Aг) и при различных температурах горячей зоны трубчатой печи — 800 или 1100°С, в которую помещалась пластина металлического молибдена. Оксид молибдена, образующийся на пластине молибдена, испаряется в горячей зоне и переносится в холодную зону, где и осаждается на подложке и стенках кварцевой трубы по ходу газа-носителя. В нашем случае реакция получения триоксида молибдена описывается следующими уравнениями при нормальном атмосферном давлении:

$$Mo + Ar/O_2 \rightarrow MoO_3,$$
 (1)

$$Mo + Ar/N_2O$$
 или  $Ar/H_2O_{пары} \rightarrow$   
→  $MoO_3$  (допированный). (2)

Список исследованных образцов с обозначением условий их получения приведен в табл. 1.

Рентгенофазовый анализ (РФА) полученных образцов проводили на дифрактометре ДРОН-4 с Со $K_{\alpha}$ -излучением в режиме пошагового сканирования.

Морфологию поверхности образцов исследовали на сканирующем электронном микроскопе (СЭМ) JXA-840 ЦКП НО ВГУ.

Спектры диффузного отражения образцов получены на спектрофотометре SHIMADZU UV-210А в спектральном диапазоне 300—900 нм.

#### РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

РФА образцов МоО<sub>3</sub>, полученных газотранспортным осаждением в различных технологических условиях. На рис. 2 приведена дифрактограмма исходного образца *1*, полученного с добавлением



**Рис. 2.** Дифрактограммы образца *I* из табл. 1: верхняя дифрактограмма от исходного образца, нижняя — от того же растертого образца (*B* — Со*K*<sub>B</sub>-линии).

кислорода к газу-носителю аргону при температуре горячей зоны реактора  $800^{\circ}$ С. В табл. 2 представлены значения межплоскостных расстояний d (Å) и относительных интенсивностей дифракционных линий этого образца MoO<sub>3</sub> в сравнении с соответствующими значениями из Международной базы данных (**МБД**) (Card 2012 (00-005-0508)) [17] для орторомбического MoO<sub>3</sub> с параметрами элементарной ячейки a = 3.962 Å, b = 13.858 Å, c == 3.697 Å и пр. гр. *Pbnm*. Перераспределение интенсивностей дифракционных линий образца по сравнению с поликристаллическим образцом МБД свидетельствует о преимущественной ориентации его микрокристаллов в направлении [010].

На рис. 3 и в табл. 3 приведены дифрактограмма и данные РФА для образца 2, полученного с добавлением паров воды при температуре 800°С. Эти данные отличаются от предыдущих (рис. 2, табл. 2) появлением большого числа дополнительных менее интенсивных линий. Сравнение с данными Card 2012 (00-005-1513) [18] для моноклинной фазы триоксида молибдена MoO<sub>3</sub>(H<sub>2</sub>O), содержащей связанные молекулы воды ( $P2_1/n$ , параметры элементарной ячейки a = 10.606 Å, b == 13.822 Å, c = 10.606 Å,  $\alpha = \gamma = 90^\circ$ ,  $\beta = 91.62^\circ$ ), указывает на совпадение основных отражений. Из этого можно заключить, что встраивание молекул H<sub>2</sub>O из паров воды в кристаллическую решетку MoO<sub>3</sub> при температуре 800°С приводит к формированию моноклинной модификации триоксида молибдена [18].

Дифрактограмма образца MoO<sub>3</sub> полученного с добавками паров воды к газу-носителю аргону при 1100°С (образец 3), приведена на рис. 4. В табл. 4 представлены значения межплоскостных расстояний d (Å) и относительных интенсивностей дифракционных линий полученного образца в сравнении с данными МБД [17], в соответствии с которыми он имеет орторомбическую структуру с пр. гр. *Рbnm*, которую мы наблюдали в образце 1. Из этого факта следует, что при температуре синтеза 1100°С исчезают условия, необходимые для связывания молекул Н<sub>2</sub>О со слоистой кристаллической структурой триоксида молибдена и влияние ионов водорода и кислорода малого размера, источником которых служат пары воды, не приводит к заметным искажениям основной орторомбической модификации кристаллической решетки α-МоО<sub>3</sub>.

Подобные результаты мы получили и при добавлении  $N_2O$  к газу-носителю аргону. На дифрактограмме образца 4, полученного при той же высокой температуре 1100°С, но с добавками газа  $N_2O$  вместо паров воды, приведенной на рис. 5, как и в табл. 5, появляются все те же дифракционные линии орторомбической модификации с пр. гр. *Pbnm*, что и в образце 3, полученном при той же температуре 1100°С с парами воды в газе-носителе. Это свидетельствует о том, что наличие  $N_2O$ 

| 20, град  | d, Å   | <i>I</i> , % | <i>d</i> , Å       | I, %                         | h k l              |
|-----------|--------|--------------|--------------------|------------------------------|--------------------|
| образец 1 |        |              | орторомбический Мо | O <sub>3</sub> PDF Card 2012 | (00-005-0508) [17] |
| 13.350    | 7.7007 | 0.72         | _                  | _                            | _                  |
| 14.700    | 6.9968 | 38.22        | 6.9300             | 34                           | 020                |
| 26.950    | 3.8413 | 2.11         | 3.8100             | 82                           | 110                |
| 29.850    | 3.4754 | 100.00       | 3.4630             | 61                           | 040                |
|           |        |              | 3.2600             | 100                          | 021                |
| 40.950    | 2.5589 | 1.67         | 2.5270             | 12                           | 041                |
| 45.550    | 2.3123 | 99.90        | 2.3090             | 31                           | 060                |
| 53.600    | 1.9853 | 0.59         | 1.9820             | 13                           | 200                |
| 62.150    | 1.7342 | 3.87         | 1.7330             | 17                           | 211                |
| 71.500    | 1.5321 | 0.62         | 1.5040             | 5                            | 260                |
| 80.450    | 1.3861 | 36.43        | 1.3860             | 5                            | 0 10 0             |
| 101.500   | 1.1559 | 2.32         | -                  | —                            | —                  |

**Таблица 2.** Межплоскостные расстояния d и относительные интенсивности дифракционных линий образца МоО<sub>3</sub>, полученного с добавлением кислорода к газу-носителю аргону при температуре 800°C

в газотранспортной среде при высокой температуре также не приводит к существенным искажениям основной орторомбической модификации кристаллической решетки α-MoO<sub>3</sub>.

Морфология образцов MoO<sub>3</sub> по данным СЭМ и устойчивость к растиранию микрокристаллов, полученных в различных технологических условиях газотранспортного синтеза. На рис. 6 представлены СЭМ-изображения образцов MoO<sub>3</sub>, полученных в различных технологических условиях газотранспортного синтеза.

Полученные результаты показывают, что самые мелкие вытянутые линейчатые кристаллы наблюдаются у образца 1, т.е. в случае добавления  $O_2$  к газу-носителю аргону при температуре 800°С. В то время как добавление в газовую среду паров воды



Рис. 3. Дифрактограммы образца 2 из табл. 1 (см. подпись к рис. 2).

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 55 № 1 2019

#### ДОМАШЕВСКАЯ и др.

**Таблица 3.** Межплоскостные расстояния *d* и относительные интенсивности дифракционных линий образца  $MoO_3 + H_2O$ , полученного с добавлением паров воды  $H_2O$  к газу-носителю аргону при температуре 800° С, и моноклинного  $MoO_3\langle H_2O\rangle$  [18]

| 20, град  | <i>d</i> , Å | I, %                                                                             | d, Å   | <i>I</i> , отн. ед. | h k l              |
|-----------|--------------|----------------------------------------------------------------------------------|--------|---------------------|--------------------|
| образец 2 |              | моноклинный МоО <sub>3</sub> (H <sub>2</sub> O) PDF Card 2012 (01-007-1513) [18] |        |                     |                    |
| 12.300    | 8.3552       | 0.26                                                                             | 8.3468 | 1                   | 1 1 0              |
| 12.600    | 8.1570       | 0.27                                                                             | _      | _                   | _                  |
| 13.350    | 7.7007       | 0.77                                                                             | 7.5578 | 67                  | $\overline{1} 0 1$ |
| 14.100    | 7.2930       | 0.33                                                                             | 7.3470 | 59                  | 101                |
| 14.750    | 6.9732       | 30.78                                                                            | 6.9110 | 999                 | 020                |
| 15.800    | 6.5125       | 0.69                                                                             | 6.6312 | 157                 | $\overline{1}$ 1 1 |
| 17.350    | 5.9345       | 0.74                                                                             | 5.7895 | 3                   | 021                |
| 18.550    | 5.5537       | 0.96                                                                             | 5.7680 | 3                   | 120                |
| 19.250    | 5.3535       | 1.09                                                                             | 5.3008 | 1                   | 0 0 2              |
| 20.150    | 5.1167       | 1.23                                                                             | 5.1001 | 46                  | $\overline{1}$ 2 1 |
| 20.750    | 4.9703       | 1.37                                                                             | 5.0339 | 45                  | 121                |
| 21.050    | 4.9003       | 1.35                                                                             | —      | —                   | —                  |
| 21.300    | 4.8434       | 1.34                                                                             | 4.8963 | 199                 | 210                |
| 22.550    | 4.5781       | 1.16                                                                             | 4.5211 | 1                   | 112                |
| 23.750    | 4.3499       | 0.85                                                                             | 4.4298 | 1                   | 112                |
| 27.000    | 3.8343       | 2.08                                                                             | 3.8730 | 3                   | 122                |
| 29.850    | 3.4754       | 100.00                                                                           | 3.4555 | т                   | 230                |
| 31.900    | 3.2573       | 0.11                                                                             | 3.2809 | т                   | $\overline{1}$ 1 3 |
| 34.550    | 3.0142       | 0.08                                                                             | 3.0099 | 72                  | $\overline{3}$ 2 1 |
| 38.500    | 2.7150       | 0.08                                                                             | 2.7162 | 5                   | 322                |
| 39.900    | 2.6234       | 0.08                                                                             | 2.6179 | 70                  | 400                |
| 41.000    | 2.5559       | 1.46                                                                             | 2.5500 | 1                   | $\overline{2}$ 4 2 |
| 45.550    | 2.3123       | 92.53                                                                            | 2.3036 | 86 <i>m</i>         | 060                |
| 51.050    | 2.0773       | 0.08                                                                             | 2.0867 | m                   | 440                |
| 53.600    | 1.9853       | 0.21                                                                             | 1.9801 | 16 <i>m</i>         | 125                |
| 54.300    | 1.9616       | 0.22                                                                             | 1.9669 | т                   | $\overline{2}$ 6 2 |
| 58.900    | 1.8206       | 0.31                                                                             | 1.8225 | т                   | <del>4</del> 2 4   |
| 62.150    | 1.7342       | 1.87                                                                             | 1.7387 | т                   | <u>1</u> 16        |
| 80.450    | 1.3861       | 13.26                                                                            | —      | _                   | —                  |
| 101.550   | 1.1555       | 0.70                                                                             | —      | _                   | —                  |
| 108.500   | 1.1029       | 0.57                                                                             | —      | —                   | —                  |

 $H_2O$  и газа  $N_2O$  приводит к увеличению микрокристаллов, растущих в виде фанерообразных листов с ярко выраженной слоистостью, которая проявляется в виде террас и ступенек роста, хорошо видных при больших увеличениях (рис. 6, образцы 2–4).

После выявления морфологических особенностей синтезированных микрокристаллов мы подвергли их механическому воздействию в виде растирания в керамической ступке с последующим РФА полученных порошков (рис. 2–5, нижние дифрограммы). Сравнение данных РФА, полученных до и после растирания образцов, выявило различную степень устойчивости слоистой кристаллической структуры к механическим воздействиям. Самым устойчивым к механическим



Рис. 4. Дифрактограммы образца З из табл. 1 (см. подпись к рис. 2).

воздействиям оказался образец *1*, полученный при 800°С с добавлением кислорода к газу-носителю аргону (рис. 2). На дифрактограмме порошка *1* проявились все линии, характерные для исходного образца и образца из МБД [17]. Сохранение исходной моноклинной модификации наблюдается при растирании образца 2, полученного при той же температуре 800°С в присутствии паров воды (рис. 3). В порошке 2 почти все основные линии совпадают с отражениями

**Таблица 4.** Межплоскостные расстояния d и относительные интенсивности дифракционных линий образца MoO<sub>3</sub>, полученного с добавлением паров воды H<sub>2</sub>O к газу-носителю аргону при температуре 1100°C, и орторомбического MoO<sub>3</sub> [17]

| 20, град | $d, \mathrm{\AA}$ | I, %   | <i>d</i> , Å | I, %                                                              | h k l  |  |
|----------|-------------------|--------|--------------|-------------------------------------------------------------------|--------|--|
|          | образец З         |        |              | орторомбический MoO <sub>3</sub> PDF Card 2012 (00-005-0508) [17] |        |  |
| 13.350   | 7.7007            | 0.61   | _            | _                                                                 | -      |  |
| 14.800   | 6.9498            | 31.32  | 6.9300       | 34                                                                | 020    |  |
| 21.100   | 4.8888            | 0.97   | _            | _                                                                 | _      |  |
| 27.000   | 3.8343            | 1.73   | 3.8100       | 82                                                                | 110    |  |
| 29.900   | 3.4697            | 100.00 | 3.4630       | 61                                                                | 040    |  |
|          |                   |        | 3.2600       | 100                                                               | 021    |  |
| 41.000   | 2.5559            | 1.79   | 2.5270       | 12                                                                | 041    |  |
| 45.550   | 2.3123            | 98.44  | 2.3090       | 31                                                                | 060    |  |
| 62.150   | 1.7342            | 1.97   | 1.7330       | 17                                                                | 211    |  |
| 69.550   | 1.5694            | 0.22   | 1.5690       | 16                                                                | 081    |  |
| 71.500   | 1.5321            | 0.51   | 1.5040       | 5                                                                 | 260    |  |
| 77.000   | 1.4379            | 0.26   | 1.4350       | 12                                                                | 190    |  |
| 80.450   | 1.3861            | 24.23  | 1.3860       | 5                                                                 | 0 10 0 |  |
| 101.500  | 1.1559            | 1.16   | _            | _                                                                 | -      |  |
| 107.550  | 1.1096            | 0.20   | -            | _                                                                 | _      |  |



Рис. 5. Дифрактограммы образца 4 из табл. 1 (см. подпись к рис. 2).

исходного образца моноклинной сингонии, приведенными в табл. 3.

Другая ситуация наблюдается в порошке 3, полученном с добавлением паров воды к газу-носителю при температуре 1100°С. Сравнение с исходным образцом показывает появление многих дополнительных отражений и совпадение межплоскостных расстояний лишь пяти основных линий с исходным образцом орторомбической сингонии. Большую часть остальные слабых отражений можно отнести к моноклинной фазе MoO<sub>3</sub>, появляющейся в растертом образце под влиянием механических воздействий.

Похожая ситуация наблюдается при растирании образца 4, полученного при  $1100^{\circ}$ C с добавлением N<sub>2</sub>O, который при разложении является источником активного кислорода и менее активного азота. Здесь с исходным образцом орторомбической сингонии совпадает 8 линий. Большинство остальных более слабых отражений можно так же, как и в предыдущем случае, отнести к моноклинной фазе MoO<sub>3</sub>.

Оптические свойства образцов MoO<sub>3</sub>. На рис. 7 приведены результаты оптических исследований всех полученных образцов MoO<sub>3</sub>. Спектры диффузного отражения образцов (рис. 7а) описаны в рамках уравнения Кубелка–Мунка [19]  $F(R) = (1 - R)^2/2R \sim \alpha$ , где R – коэффициент диффузного отражения,  $\alpha$  – коэффициент поглощения (см<sup>-1</sup>).

Оценка ширины запрещенной зоны образцов  $MoO_3$  проведена в рамках известного формализма для зависимости коэффициента поглощения от энергии тестирующего излучения в области фундаментального края:  $\alpha \sim (h\nu - E_g)^n/h\nu$ , где  $h\nu$  – энергия фотонов (эВ),  $E_g$  – ширина запрещенной зоны.

Представленные на рис. 7а спектры диффузного отражения образцов MoO<sub>3</sub> были преобразованы в зависимость (F(R) hv)<sup>0.5</sup> от *E* для определения ширины запрещенной зоны, которая была графически рассчитана по методу Тауца [20, 21] из предположения о непрямозонном характере оптических переходов в MoO<sub>3</sub> (рис. 76). Линейная экстраполяция главного края поглощения дает различные величины ширины запрещенной зоны для 4 образцов MoO<sub>3</sub> в интервале энергий  $E_g = 2.85 - 2.51$  эВ (табл. 5).

Таблица 5. Ширина запрещенной зоны в образцах MoO<sub>3</sub>, полученных в различных технологических условиях газотранспортного осаждения

| Образец | $E_g$ , $\Im \mathbf{B}$ |
|---------|--------------------------|
| 1       | 2.85                     |
| 2       | 2.68                     |
| 3       | 2.68                     |
| 4       | 2.51                     |



**Рис. 6.** СЭМ-изображения образцов MoO<sub>3</sub>, *1*–4 (слева направо) из табл. 1; сверху вниз изменяется масштаб снимков от 500 мкм (увеличение в 50 раз) в верхнем ряду до 1 мкм (увеличение в 10000 раз) в нижнем ряду.

При этом значение  $E_g = 2.85$  эВ для образца 1 близко к известному интервалу значений 2.90– 3.3.15 эВ [22–24]. Уменьшение этой величины до  $E_g = 2.68$  эВ в образце 2 (табл. 5) можно объяснить разными кристаллическими структурами (орторомбическая  $\alpha$ -MoO<sub>3</sub> и моноклинная MoO<sub>3</sub>(H<sub>2</sub>O)) образцов, полученных при одинаковой температуре 800°С, но в различной газо/паровой среде (O<sub>2</sub> и H<sub>2</sub>O соответственно).

Уменьшение  $E_g$  до такой же величины происходит и под влиянием примесей в виде ионов водорода и кислорода в результате разложения паров воды или до  $E_g = 2.51$  эВ под влиянием ионов азота и кислорода из N<sub>2</sub>O при высокой температуре синтеза 1100°C. Все эти изменения могут быть обусловлены значительными отклонениями состава образцов от стехиометрии орторомбической фазы  $\alpha$ -MoO<sub>3</sub> в условиях высокотемпературного синтеза с добавлением пара H<sub>2</sub>O или газа N<sub>2</sub>O в газотранспортную среду.

#### ЗАКЛЮЧЕНИЕ

Подводя итоги полученным результатам о влиянии технологических параметров синтеза на некоторые свойства триоксида молибдена, следует заключить, что структура, внешняя форма микрокристаллов и ширина запрещенной зоны MoO<sub>3</sub> оказываются очень чувствительными к технологическим условиям газотранспортного осаждения: температуре синтеза и составу газотраспортной среды.

При температуре синтеза 800°С под действием паров воды в газотраспортной среде  $MoO_3$  переходит из основной орторомбической фазы *Pbnm* в моноклинную  $P2_1/n$  с уменьшением ширины запрещенной зоны от 2.85 до 2.68 эВ.

При максимально высокой температуре синтеза  $1100^{\circ}$  С примеси водорода и кислорода из паров воды  $H_2O$  или азота и кислорода из  $N_2O$  не изменяют слоистую орторомбическую структуру



**Рис. 7.** Экспериментальные спектры диффузного рассеяния (а) и графическое определение ширины запрещенной зоны методом Тауца путем линейной экстраполяции краев поглощения (б) образцов MoO<sub>3</sub>; номера спектров соответствуют номерам образцов в табл. 1.

микрокристаллов, но уменьшают ширину запрещенной зоны до 2.68 и 2.51 эВ соответственно.

При механическом воздействии в виде растирания в порошках из микрокристаллов  $MoO_3$ , синтезированных при 1100°С с добавлением паров воды или  $N_2O$  к газу-носителю аргону, вдобавок к основной орторомбической фазе *Pbnm* появляется моноклинная фаза  $P2_1/n$ .

Микрокристаллы MoO<sub>3</sub>, синтезированные при температуре 800°С, более устойчивы к механическим воздействиям и после растирания содержат одну исходную фазу: орторомбическую *Pbnm* в случае синтеза в аргон-кислородной газотранспортной среде или моноклинную  $P2_1/n$  в случае синтеза с добавлением паров воды к основному газу-носителю аргону.

## БЛАГОДАРНОСТЬ

Работа выполнена при поддержке Минобрнауки России в рамках государственного задания ВУЗам в сфере научной деятельности на 2017—2019 годы. Проекты № 3.6263.2017/ВУ и № 16.8158.2017/8.9.

### СПИСОК ЛИТЕРАТУРЫ

- Goodenough J.B. Chemistry and Uses of Molybdenum // Proc. Climax 4th Int. Conf. Eds. Barry H.F., Mitchell P.C. Ann Arbor: Climax Molybdenum Corp., 1982. V. 1. P. 1.
- Pichat P., Mozzanega M.N., Hoang-Van C. Room Temperature Photoassisted Formation of Hydrogen Molybdenum Bronzes with Alcohol as Hydrogen Source // Phys. Chem. 1988. V. 92. P. 464–467.
- Erre R., Legay M.H., Fripiat J.J. Reaction of Molecular Hydrogen with the 100 Face of MoO II // Surf. Sci. 1983. V. 127. P. 69–75.
- Deb S., Khoc R. Physical Properties of a Transition Metal Oxide: Optical and Photoelectric Properties of Single Crystal and Thin Film Molybdenum Trioxide // Proc. R. SOC. Lond. A. 1968. V. 304. P. 211–231. doi 10.1098/rspa
- Goodenough J.B. Progress in Solid State Chemistry / Ed. Reiss H. London: Pergamon, 1971. V. 5. 145 p.
- 6. *Halevi P.* Electromagnetic Waves. V. 1. Spatial Dispersion in Solids and Plasmas / Ed. Halevi P., Amsterdam: Elsevier, 1992. 339 p.
- Andersson G., Magneli A. On the Crystal Structure of Molybdenum Trioxide // Acta Chem. Scand. 1950. V. 4. P. 793–797. 10.3891
- 8. Negishi H., Negishi S., Kuroiwa Y., Sato N., Aoyagi S. Anisotropic Thermal Expansion of Layered MoO<sub>3</sub>

Crystals // Phys. Rev. B. 2004. V. 69. P. 64–111. Cross Ref Google Scholar. doi 10.1103/PhysRevB.69.064111

- Yao J., Hashimoto K., Fujishima A. Photochromism Induced in an Electrolytically Pretreated MoO<sub>3</sub> Thin Film by Visible Light // Nature. 1992. V. 355. P. 624– 626. doi 10.1038/ 355624a0 Cross Ref ADS.
- Bechinger C., Ferrere S., Zaban A., Sprague J. B., Gregg A. Photoelectrochromic Windows and Displays // Nature. 1996. V. 383. P. 608–613.
- Hu X.K., Qian Y.T., Song Z.T., Huang J.R., Cao R., Xiao J.Q. Comparative Study on MoO<sub>3</sub> and H<sub>x</sub>MoO<sub>3</sub> Nanobelts // Chem. Mater. 2008. V. 20. P. 1527–1533.
- Balendhran S., Walia S., Nili H., Kalantar-zadeh K. Advances Tn. Two-dimensional Molybdenum Trioxide and Dichalcogenides // Funct. Mater. 2013. V. 23. P. 3952–3970.
- Huang P.R., He Y., Cao C., Lu Z.H. Impact of Lattice Distortion and Electron Doping on α-MoO<sub>3</sub> Electronic Structure // Sci. Rep. 2014. V. 4. P. 7131. doi 10.1038/ srep07131
- Гусев А.И. Нанокристаллические материалы, методы получения и свойства. Екатеринбург: УрО РАН, 1998. 115 с.
- Ремпель А.А., Валеева А.А. Материалы и методы нанотехнологий. Уч. Пособие. Екатеринбург: Изд-во Урал. ун-та, 2015. 136 с.

- 16. Коцарева К.В. Синтез и морфология гибридных наносистем на основе графена и оксидов Ni, Co, Mo, W и Si: Дис. ... канд. хим. наук. Москва. 2017. 210 с.
- 17. CPDS International Center for Diffraction Data. PDF Card 2012 (00-005-0508).
- 18. CPDS International Center for Diffraction Data. PDF Card 2012 (00-005-1513).
- 19. *Kortum G.* Reflectance Spectroscopy. N.Y.: Springer-Verlag, 1969. 361 p.
- Tauc J., Grigorovici R., Vancu A. Optical Properties and Electronic Structure of Amorphous Germanium // Phys. Status Solidi. 1966. V. 15. P. 627–637. doi 10.1002/ pssb.19660150224
- Tauc J. Optical Properties and Electronic Structure of Amorphous Ge and Si // Mater. Res. Bull. 1968. V. 3. P. 37–46.
- Lu J., Sun Ch., Zheng M., Wang Y., Nripan M., van Kan J.A., Mhaisalkar S.G., Sow C.H. Bandgap Engineering of Phosphorene by Laser Oxidation toward Functional 2D Materials // J. Phys. Chem. C. 2012. V. 116. P. 22015–22020.
- Mestl G.N., Verbruggen F.D., Knozinger H. Mechanically Activated MoO<sub>3</sub>. Characterization of Defect Structures // Langmuir. 1995. V. 11. P. 3035-41.
- 24. Суровой Э.П., Еремеева Г.О. Термостимулированные превращения в наноразмерных пленках оксида молибдена(VI) // Ползуновский вестник. 2011. Т. 4-1. С. 142–146.