УДК 546.776

# СИНТЕЗ ЛЮМИНОФОРА КРАСНОГО СВЕЧЕНИЯ НА ОСНОВЕ LiZnSc(MoO<sub>4</sub>)<sub>3</sub>:Eu<sup>3+</sup>

© 2019 г. Н. М. Кожевникова<sup>1, \*</sup>, С. Ю. Батуева<sup>1</sup>

<sup>1</sup>Байкальский институт природопользования Сибирского отделения Российской академии наук, Россия, 670047 Улан-Удэ, ул. Сахьяновой, 6 \*e-mail: nicas@binm.ru

Поступила в редакцию 04.04.2018 г.

Методами рентгенографического и дифференциального термического анализа изучено фазообразование в системе  $Li_2MoO_4$ — $ZnMoO_4$ — $Sc_2(MoO_4)_3$ . Синтезирован тройной молибдат  $LiZnSc(MoO_4)_3$ , кристаллизующийся в триклинной сингонии (пр. гр.  $P\overline{1}$ ). Установлено образование непрерывного твердого раствора на разрезе  $Li_2Zn_2(MoO_4)_3$ — $Li_3Sc(MoO_4)_3$  с ромбической сингонией (пр. гр. Pnma). Методом твердофазного синтеза получен люминесцентный материал на основе тройного молибдат ta  $LiZnSc(MoO_4)_3$ : $Eu^{3+}$ , легированного ионами европия. Измерены спектры фотолюминесценции (возбуждения и излучения) полученного материала.

Ключевые слова: триангуляция, система  $Li_2MoO_4$ – $ZnMoO_4$ – $Sc_2(MoO_4)_3$ , твердофазный синтез, LiZnSc(MoO<sub>4</sub>)<sub>3</sub>:Eu<sup>3+</sup>, люминесценция **DOI:** 10.1134/S0002337X19010068

### введение

Исследования, выполненные в последние три десятилетия в области химии и кристаллохимии тройных молибдатов и вольфраматов, выявили ряд перспективных материалов, которые нашли применение в квантовой электронике, нелинейной оптике, акустооптике, в качестве твердых электролитов [1–5].

Реализация структур с большим объемом пустот и наличие не заселенных катионами центров зависят от природы катионов, их сочетания, размещения по структурным позициям, от заселенности этих позиций [1–7]. Близость размеров Li<sup>+</sup> и многих других двух- и трехзарядных катионов, а также способность Li<sup>+</sup> занимать малые структурные пустоты позволяют ему выполнять важную стабилизирующую роль в формировании сложных соединений [3]. В работе [1] выявлено воспроизведение структуры исходного двойного молибдата BaNd<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub> по схеме:

$$\label{eq:Ln} \begin{split} &Ln^{3+}+2\Box \ \rightarrow 3Li^{+},\\ &Li_{3}Ba_{2}Ln_{3}\left(MoO_{4}\right)_{8} \ \left(Ln=La-Lu,Y\right), \end{split}$$

хотя состав получаемых соединений существенно изменяется. Объяснением подобных проявлений иона Li<sup>+</sup> может служить малый заряд ионов Li<sup>+</sup>, что позволяет за счет их распределения в структуре устранять дисбалансы в зарядах катионов и размерах их координационных полиэдров, а также заполнять имеющиеся вакансии, что и приводит к существенному стабилизационному эффекту.

Цель настоящей работы — изучить фазообразование в системе  $Li_2MoO_4$ — $ZnMoO_4$ — $Sc_2(MoO_4)_3$  в интервале температур 400—800°С, определить условия синтеза тройного молибдата  $LiZnSc(MoO_4)_3$ , область гомогенности, кристаллографические характеристики, термическую стабильность, изучить спектрально-люминесцентные свойства люминофора  $LiZnSc(MoO_4)_3$ : $Eu^{3+}$ .

## МЕТОДИКА И РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА

Исходными компонентами для изучения фазообразования в системе  $Li_2MoO_4$ - $ZnMoO_4$ - $Sc_2(MoO_4)_3$  служили предварительно синтезированные твердофазным способом  $Li_2MoO_4$ ,  $ZnMoO_4$ ,  $Sc_2(MoO_4)_3$  из  $Li_2CO_3$ , ZnO,  $Sc_2O_3$  и  $MoO_3$ . Исследование взаимодействия в системе  $Li_2MoO_4$ - $ZnMoO_4$ - $Sc_2(MoO_4)_3$  выполняли в два этапа. Первоначально изучали фазовый состав точек пересечения разрезов, исходящих из средних и двойных молибдатов, образующихся в ограняющих двойных системах  $Li_2MoO_4$ - $Sc_2(MoO_4)_3$  и  $ZnMoO_4$ - $Sc_2(MoO_4)_3$ ,  $Li_2MoO_4$ - $ZnMoO_4$ . На втором этапе изучали выявленные квазибинарные разрезы,



**Рис. 1.** Фазовые отношения в системе  $Li_2MoO_4$ - $ZnMoO_4$ - $Sc_2(MoO_4)_3$  при 650°С.

что позволило провести триангуляцию системы (рис. 1).

Наиболее подробно (через 1-2 мол. %) изучено взаимодействие на разрезе ZnMoO<sub>4</sub>-Li<sub>3</sub>Sc(MoO<sub>4</sub>)<sub>3</sub>, где установлено образование тройного молибдата LiZnSc(MoO<sub>4</sub>)<sub>3</sub> при  $680-700^{\circ}$ C. На разрезе Li<sub>2</sub>Zn<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>-Li<sub>3</sub>Sc(MoO<sub>4</sub>)<sub>3</sub> зафиксировано образование непрерывного твердого раствора. Образцы отжигали при 400, 500, 550, 600, 650°C с многократными промежуточными перетираниями через каждые 20–30 ч. Время термообработки при каждой температуре составляло 100–120 ч. После обжига образцы медленно охлаждали вместе с печью. Неравновесные образцы отжигали дополнительно, равновесие считали достигнутым, если фазовый состав образцов оставался неизменным при двух последовательных отжигах.

Продукты синтеза идентифицировали методами рентгенофазового анализа на дифрактометре D8 Advance фирмы Bruker (Cu $K_{\alpha}$ -излучение, графитовый монохроматор;  $2\theta = 10^{\circ}-60^{\circ}$ , пошаговый режим с шагом  $0.02^{\circ}$ ). Расчет рентгенограмм проводили с использованием программы "Рентген". Дифференциальный термический анализ проводили на дериватографе ОД-103 фирмы МОМ (Венгрия), скорость подъема температуры  $10^{\circ}$ С/мин, навеска 0.3-0.4 г.

Для введения различных концентраций активатора оксид скандия эквимолярно заменялся на оксид европия в LiZnSc(MoO<sub>4</sub>)<sub>3</sub>. Таким способом были получены образцы люминофора с концентрациями 1–6 мол. % Eu<sub>2</sub>O<sub>3</sub>.

Спектрально-люминесцентные характеристики образцов оценивали по спектрам возбуждения фотолюминесценции и спектрам фотолюминесценции на спектрофлуориметре CM 2203 (Solar, Беларусь). Погрешность измерения составляла ±2 нм. Исследуемые порошкообразные образцы помещали между оптически прозрачными (кварцевыми) стеклами. Возбуждающий свет источника излучения (ксеноновая дуговая лампа высокого давления ДКсШ 150-1М) падал на образец перпендикулярно его поверхности, а стационарная фотолюминесценция (ФЛ) регистрировалась под углом 45°. Спектры возбуждения регистрировали в максимуме ФЛ (616 нм). Для возбуждения фотолюминесценции использовали фиолетовое и синее излучение, так как синтезированные соединения используются в качестве красных люминофоров в светодиодной технике.

В системе  $Li_2MoO_4$ -ZnMoO<sub>4</sub>-Sc<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub> квазибинарными являются разрезы: Li<sub>2</sub>Zn<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>- $ZnMoO_4 - Li_3ZnSc(MoO_4)_3$ ,  $Li_3Sc(MoO_4)_3$ ,  $LiZnSc(MoO_4)_3 - Li_3Sc(MoO_4)_3$ ,  $LiZnSc(MoO_4)_3 - LiZnSc(MoO_4)_3$  $Sc_2(MoO_4)_3$ . Paspes  $Li_2Zn_2(MoO_4)_3 - Li_3Sc(MoO_4)_3$ характеризуется неограниченной растворимостью исходных компонентов (рис. 1). Согласно [4], исходные компоненты разреза являются изоструктурными соединениями, поэтому следовало ожидать образования твердого раствора. Данные ДТА и РФА свидетельствуют о неограниченной растворимости этих двойных молибдатов. На рис. 2 приведена *t*--*x*-диаграмма разреза  $Li_2Zn_2(MoO_4)_3 - Li_3Sc(MoO_4)_3$  и показано изменение объема и параметров элементарной ячейки по разрезу от состава. Взаимосвязь структур может быть объяснена протеканием гетеровалентного замешения

$$\operatorname{Li}_{2}\operatorname{Zn}_{2}(\operatorname{MoO}_{4})_{3} \rightarrow$$
  
$$\rightarrow \operatorname{Li}_{2}(\operatorname{LiSc})(\operatorname{MoO}_{4})_{3} = \operatorname{Li}_{3}\operatorname{Sc}(\operatorname{MoO}_{4})_{3}.$$

Исследование разреза  $Li_2Zn_2(MoO_4)_3$ —Sc<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub> методами ДТА и РФА показало, что при соотношении исходных компонентов 1 : 1 образуется новое соединение LiZnSc(MoO<sub>4</sub>)<sub>3</sub>, которое как однофазный продукт получено при 650—680°C в течение 100—150 ч. Плавится LiZnSc(MoO<sub>4</sub>)<sub>3</sub> инконгруентно при 940°C, не претерпевая полиморфных превращений.

По данным рентгенографического анализа, тройной молибдат LiZnSc(MoO<sub>4</sub>)<sub>3</sub> кристаллизуется в триклинной сингонии (пр. гр.  $P\overline{1}, Z = 2$ ), изоструктурен LiMgIn $(MoO_4)_3$  [1], структура которого решена методом тяжелого атома. Анализ кислородного окружения в структуре  $LiMgIn(MoO_4)_3$ показал, что три кристаллографически независимых атома молибдена находятся в тетраэдрической координации со средним расстоянием Мо-О 1.756-1.779 Å. Атом Li помещается в искаженную тригональную бипирамиду со средним расстоянием Li–O 2.083 Å. В двух октаэдрических катионных позициях M(1) и M(2) статистически размещаются атомы In и Mg, степень заселенности позиций составила 0.47 для атомов In и 0.53 для атомов Mg. Слегка искаженные октаэдры M(1)



**Рис. 2.** *t*-*x*-диаграмма разреза Li<sub>2</sub>Zn<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>-Li<sub>3</sub>Sc(MoO<sub>4</sub>)<sub>3</sub>.

и M(2) образуют два слоя, они связаны центром симметрии, формируя группировку [In(Mg)<sub>2</sub>O<sub>10</sub>]. Объединение слоев в каркас осуществляется через кислородные вершины всех трех сортов Мо-тетраэдров таким образом, что в трехмерном каркасе образуются каналы, в большем из которых располагаются атомы Li. Параметры элементарной ячейки LiZnSc(MoO<sub>4</sub>)<sub>3</sub>: a = 6.962(1), b = 8.515(3), c == 9.736(2) Å,  $\alpha = 96.66(1)^\circ$ ,  $\beta = 106.88(3)^\circ$ ,  $\gamma =$  $= 101.89(2)^\circ$ , V/Z = 264.8 Å<sup>3</sup>. Результаты индицирования рентгенограммы LiZnSc(MoO<sub>4</sub>)<sub>3</sub> приведены в табл. 1.

Для образцов люминофора LiZnSc(MoO<sub>4</sub>)<sub>3</sub>:Eu<sup>3+</sup>, полученного на основе тройного молибдата LiZnSc(MoO<sub>4</sub>)<sub>3</sub>, легированного ионами Eu<sup>3+</sup>, были измерены спектры возбуждения  $\Phi$ Л и спектры  $\Phi$ Л (рис. 3).

Спектры возбуждения люминесценции LiZnSc(MoO<sub>4</sub>)<sub>3</sub>:Eu<sup>3+</sup> (рис. 3а) состоят из интенсивной широкой коротковолновой полосы, природу которой авторы работ [8–12] объясняют переходами с переносом заряда от иона O<sup>2–</sup> к иону Eu<sup>3+</sup> (O2 $p \rightarrow$  Eu5d). Кроме того, в спектрах возбуждения в области 350–500 нм наблюдается ряд



**Рис. 3.** Спектр возбуждения (а) и спектры  $\Phi \Pi$  (б, в) ионов  $Eu^{3+}$  в люминофоре LiZnSc(MoO<sub>4</sub>)<sub>3</sub>:Eu<sup>3+</sup>.

узких полос слабой интенсивности, относящихся к внутриконфигурационным 4f-4f-переходам иона европия  ${}^7F_0-{}^5D_4$ ,  ${}^7F_0-{}^5G_2$ ,  ${}^7F_0-{}^5L_6$ ,  ${}^7F_0-{}^5D_3$  и  ${}^7F_0-{}^5D_2$  на длинах волн 362, 382, 396, 412 и 466 нм соответственно [13, 14]. Спектры люминесценции LiZnSc(MoO<sub>4</sub>)<sub>3</sub>:Eu<sup>3+</sup> при возбуждении фиолетовым и синим излучением с длиной волны возбуждения 288 и 466 нм соответственно имеют вид, характерный для иона Eu<sup>3+</sup> (рис. 36, 3в). В

|    | -                 | -             | -    |                             |               |            |
|----|-------------------|---------------|------|-----------------------------|---------------|------------|
| N⁰ | $d_{ m эксп}$ , Å | $Q_{ m эксп}$ | I, % | h k l                       | $Q_{ m pacy}$ | $\Delta Q$ |
| 1  | 8.112             | 152.03        | 5    | 010                         | 151.25        | 0.78       |
| 2  | 5.824             | 294.61        | 5    | 110                         | 295.85        | -1.22      |
| 3  | 4.678             | 466.92        | 5    | 101                         | 465.88        | 1.04       |
| 4  | 4.539             | 485.44        | 5    | 110                         | 485.68        | -0.24      |
| 5  | 4.360             | 526.05        | 5    | $01\overline{2}$            | 528.42        | -2.37      |
| 6  | 3.983             | 628.34        | 5    | $02\overline{1}$            | 627.76        | 0.58       |
| 7  | 3.918             | 651.40        | 10   | $\overline{1}\overline{1}2$ | 653.32        | -1.88      |
| 8  | 3.718             | 723.65        | 20   | 012                         | 723.91        | -0.26      |
| 9  | 3.625             | 761.24        | 50   | 111                         | 760.80        | 0.46       |
| 10 | 3.491             | 820.6         | 10   | 021                         | 821.1         | -0.59      |
| 11 | 3.407             | 861.40        | 41   | $\overline{2}01$            | 862.45        | -1.05      |
| 12 | 3.362             | 884.11        | 100  | $00\overline{2}$            | 884.72        | -0.60      |
| 13 | 3.298             | 919.65        | 10   | $\overline{2}10$            | 919.44        | 0.21       |
| 14 | 3.231             | 957.92        | 5    | 200                         | 958.25        | -0.33      |
| 15 | 3.072             | 1060.05       | 5    | $\overline{2}12$            | 1062.74       | -2.69      |
| 16 | 3.053             | 1073.81       | 5    | 003                         | 1072.65       | 1.16       |
| 17 | 3.030             | 1089.27       | 5    | 113                         | 1085.13       | 4.14       |
| 18 | 3.010             | 1103.15       | 28   | $\overline{1}\overline{2}2$ | 1103.59       | -0.44      |
| 19 | 2.882             | 1203.96       | 8    | $2\overline{1}1$            | 1206.70       | -2.74      |
| 20 | 2.714             | 1358.72       | 5    | 121                         | 1358.01       | 0.70       |
| 21 | 2.705             | 1364.37       | 14   | 121                         | 1363.05       | 1.32       |
|    |                   |               |      | 030                         | 1366.44       | -2.07      |
| 22 | 2.691             | 1380.65       | 5    | 203                         | 1381.32       | -0.67      |
| 23 | 2.654             | 1417.03       | 5    | 222                         | 1419.34       | -2.31      |
| 24 | 2.518             | 1576.78       | 20   | 213                         | 1576.00       | 0.78       |
| 25 | 2.420             | 1706.98       | 5    | $10\overline{4}$            | 1709.01       | -2.03      |
| 26 | 2.389             | 1752.28       | 8    | $\overline{2}\overline{2}1$ | 1754.17       | -1.89      |
| 27 | 2.225             | 2022.78       | 5    | 113                         | 2023.56       | -0.78      |
| 28 | 2.111             | 2244.03       | 5    | 014                         | 2246.25       | -2.22      |
| 29 | 2.038             | 2480.36       | 5    | 311                         | 2478.73       | 1.63       |
| 30 | 1.964             | 2595.41       | 19   | 310                         | 2596.56       | -1.16      |
| 31 | 1.942             | 2652.93       | 8    | 232                         | 2650.78       | 2.15       |
| 32 | 1.899             | 2770.96       | 8    | 304                         | 2768.28       | 2.68       |
| 33 | 1.809             | 3053.42       | 9    | 222                         | 3052.14       | 1.28       |
|    |                   |               |      | 140                         | 3052.41       | 1.01       |
| 34 | 1.644             | 3684.70       | 10   | 125                         | 3686.08       | -1.37      |
| 35 | 1.632             | 3756.32       | 10   | 1058                        | 3757.15       | 0.17       |

Таблица 1. Результаты индицирования рентгенограммы LiZnSc(MoO<sub>4</sub>)<sub>3</sub>

них регистрируются полосы, отвечающие переходам с резонансного уровня  ${}^{5}D_{0}$  на уровни основного мультиплета  ${}^{7}F_{J}$  иона Eu<sup>3+</sup>; наиболее интенсивной является полоса с максимумом при 616 нм, относящаяся к переходу  ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$  иона Eu<sup>3+</sup>.

## ЗАКЛЮЧЕНИЕ

Изучены фазовые равновесия в субсолидусной области системы  $Li_2MoO_4 - ZnMoO_4 - Sc_2(MoO_4)_3$ , проведена триангуляция системы при 650°С. Установлено образование тройного молибдата  $LiZnSc(MoO_4)_3$  на разрезе  $Li_2Zn_2(MoO_4)_3$ - $Sc_2(MoO_4)_3$ , принадлежащего к триклинной сингонии (пр. гр.  $P\overline{1}, Z = 2$ ), который изоструктурен LiMgIn(MoO<sub>4</sub>)<sub>3</sub> и LiMgSc(MoO<sub>4</sub>)<sub>3</sub>. Определены его кристаллографические характеристики и термическая устойчивость. На основе тройного молибдата, легированного ионами  $Eu^{3+}$  (5 мол. %), получен люминофор LiZnSc(MoO<sub>4</sub>)<sub>3</sub>:Eu<sup>3+</sup>, обладающий интенсивной люминесценцией при 616 нм, обусловленной переходом  ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$  иона Eu<sup>3+</sup>. Полученные спектрально-люминесцентные характеристики люминофора указывают на перспективность его использования в качестве узкополосного красного люминофора.

#### БЛАГОДАРНОСТЬ

Работа выполнена в рамках государственного задания БИП СО РАН (проект № 0339-2016-007).

#### СПИСОК ЛИТЕРАТУРЫ

- 1. Кожевникова Н.М., Мохосоев М.В. Тройные молибдаты. Улан-Удэ: Изд-во Бурятского госуниверситета, 2000. 297 с.
- Хажеева З.И., Мохосоев М.В., Смирнягина Н.Н. и др. Структура тройного молибдата LiMgIn(MoO<sub>4</sub>)<sub>3</sub> // Докл. Академии наук. 1985. Т. 284. № 1. С. 128–131.
- Хальбаева К.М., Солодовников С.Ф., Хайкина Е.Г. и др. Новый тройной молибдат LiRb<sub>2</sub>Fe(MoO<sub>4</sub>)<sub>3</sub> //

Вестн. Бурятского госуниверситета. Химия и физика. 2009. Вып. 3. С. 106–111.

- 4. Солодовников С.Ф., Хайкина Е.Г., Солодовникова З.А. и др. Новые семейства литийсодержащих тройных молибдатов и стабилизующая роль лития в их структурообразовании // Докл. РАН. 2007. Т. 416. № 1. С. 60-65.
- 5. Трунов В.К., Ефремов В.А., Великодный Ю.А. Кристаллохимия и свойства двойных молибдатов и вольфраматов. Л.: Наука, 1986. 173 с.
- 6. *Майер А.А., Грошенко Н.А., Балакирева Т.П. и др.* Двойные молибдаты BaLn<sub>2</sub>(MoO<sub>4</sub>)<sub>4</sub> // Кристалло-графия. 1979. Т. 24. № 6. С. 973–975.
- Лазоряк Б.И., Ефремов В.А. Фазы переменного состава Na<sub>2x</sub>M<sup>II</sup><sub>2</sub>Sc<sub>2</sub>(1 − x)(MoO<sub>4</sub>)<sub>3</sub> // Журн. неорган. химии. 1987. Т. 32. № 3. С. 652–656.
- Веткина С.Н., Золин В.Ф., Мурзаханова И.И., Кожевникова Н.М. Спектры и строение тройных молибдатов калия, бария и редкоземельных элементов, активированных неодимом или европием // Неорган. материалы. 1992. Т. 28. № 4. С. 829–834.
- 9. Соколов В.В., Усков Е.М. Яркий красный люминофор с высокой цветопередачей на основе соединения NaY<sub>1-x</sub>Eu<sub>x</sub>(MoO<sub>4</sub>)<sub>3</sub> // Химия в интересах устойчивого развития. 2000. № 8. С. 281–284
- Tang A., Zhang D.F., Yang L. Photoluminescence Characterization of a Novel Red-Emitting Phosphor In<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>:Eu<sup>3+</sup> for White Light Emitting Diodes // J. Luminescence. 2012. V. 132. P. 1489–1492.
- Кожевникова Н.М. Сложные оксиды, содержащие одно-, двух-, и трехзарядные катионы и тетраэдрический анион // Журн. неорган. химии. 1993. Т. 83. Вып. 5. С. 747–752.
- Кожевникова Н.М., Цыретарова С.Ю. Синтез и изучение фазообразования в системе Na<sub>2</sub>MoO<sub>4</sub>--MgMoO<sub>4</sub>-Sc<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub> // Журн. неорган. химии. 2015. Т. 60. № 4. С. 581-587.
- Liu Y., Liu G., Dong X., Wang J., Yu W., Dong Q. Surfactant-Assisted Hydrothermal Synthesis of Octahedral Structured NaGd(MoO<sub>4</sub>)<sub>2</sub>:Eu<sup>3+</sup>/Tb<sup>3+</sup> and Tunable Photoluminescent Properties // Opt. Mater. 2014. V. 36. P. 1865–1870.
- Раскина М.В., Морозов В.А., Павленко А.В. и др. Структура и люминесцентные свойства твердых растворов Sm<sub>2-x</sub>Eu<sub>x</sub>(MoO<sub>4</sub>)<sub>3</sub> // Журн. неорган. химии. 2015. Т. 60. № 1. С. 89–97.