УДК 544.261

МОДЕЛИРОВАНИЕ ДЕФЕКТОВ В СТРУКТУРЕ КАРБИДА КРЕМНИЯ

© 2019 г. Е. В. Соколенко^{1,} *, Г. В. Слюсарев¹

¹Северо-Кавказский федеральный университет, Россия, 355009 Ставрополь, ул. Пушкина, 1 *e-mail: sokolenko-ev-svis@rambler.ru Поступила в редакцию 25.04.2018 г.

Методом DFT рассчитаны электронные плотности чистых и дефектных кластеров карбида кремния. Установлено, что локальные уровни, возникающие в энергетической щели после легирования, преимущественно определяются собственными состояниями кремния и углерода.

Ключевые слова: электронная плотность, локальные уровни, нанокластеры, вакансии, примесные дефекты

DOI: 10.1134/S0002337X19010159

введение

Созлание приборов с высокой тепловой и ралиационной стойкостью, излучающих в видимой области спектра, возможно на основе карбида кремния, однако его использование в силовых приборах ограничивает высокая плотность дефектов [1, 2]. Наблюдаемая в экспериментах по катодолюминесценции карбида кремния полоса [3] предположительно соответствует дефекту, имеющему локальную электронную плотность состояний в пределах запрещенной зоны (33). Примеси азота и алюминия создают мелкие уровни в 33, алюминий дает еще и глубокие $-E_v + 0.28$ эВ [4]. Бор создает в 3*C*-SiC два акцепторных уровня $-E_v + 0.35$ и $E_v +$ +0.58 эВ. Эффективность высокотемпературной люминесценции SiC определяется [5] содержанием в образцах комплексов $B_{Si} - V_C$ (*D*-центров), создающих глубокие центры бора, которые термически стабильны до ≈1500°С. Подобные кластеры содержат кристаллы, выращенные в избытке кремния или облученные высокоэнергетическими частицами. Полосы в спектре коэффициента поглощения α с максимумами 1.33, 1.39, 2.02, 2.85 и 2.98 эВ кристаллов 6*H*-SiC *n*-типа проводимости, легированных в процессе роста азотом, связываются с азотом [6]. После компенсации азота примесью алюминия исчезает полоса в спектре поглощения с максимумом 1.33 эВ.

Для уточнения моделей активных центров несомненный интерес представляет расчет электронной структуры нанокластеров карбида кремния, включающих собственные и примесные дефекты [7–11], поскольку механизмы влияния таких дефектов на образование локальных уровней в 33 пока недостаточно исследованы.

МЕТОДИКА РАСЧЕТОВ

Для изучения влияния примесных дефектов на электронную структуру нанокластеров карбида кремния применялся метод, основанный на теории функционала плотности (DFT) [12]. Такой подход является плодотворным для моделирования зонной структуры [13] и спектров излучения [14].

В данной работе с помощью метода DFT с обменно-корреляционным потенциалом B3LYP рассчитаны равновесная кристаллическая структура, зонная и электронная структура чистых и легированных акцепторно-донорными примесями нанокластеров, а также кластеров с вакансиями углерода и кремния. Вычисления выполнялись программой Q-chem, которая поддерживает расчет возбужденных состояний молекулы в геометрии основного состояния, подходящей для абсорбционной спектроскопии.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Все рассмотренные кластеры построены на основе структуры алмаза с промежуточной оптимизацией [15]. Исследование кластера $Si_{34}C_{34}H_{56}$ позволяет выявить локальный уровень вблизи дна зоны проводимости (Lumo) $E_c - 0.75$ эВ при ширине 33 $\Delta E_g = 6.39$ эВ (рис. 1а, табл. 1). Возможно, появление этого уровня связано с малыми размерами кластера и влиянием поверхности. Модель кластера $Si_{70}C_{70}H_{90}$ дает очень близкие результаты: наблюдается локальный уровень вблизи дна зоны проводимости $E_c - 0.78$ зВ при ширине 33 $\Delta E_g = 5.89$ зВ. Основной вклад создают орбитали *s*-С (49%) и *p*-Si (34%). В образование локальных уровней поверхностные и внут-

Рис. 1. Полная и парциальные плотности состояний (ПС) кластеров $Si_{34}C_{34}H_{56}$ (а) и $Si_{70}C_{70}H_{90}$ (б).

МОДЕЛИРОВАНИЕ ДЕФЕКТОВ В СТРУКТУРЕ КАРБИДА КРЕМНИЯ

Кластер	Ширина щели, эВ	Особенности в энергетической щели, эВ	Структура полос в щели Homo-Lumo (вклад полос, %)					
Si ₃₄ C ₃₄ H ₅₆	6.39	$E_{c} - 0.75$	s-C (49)	<i>p</i> -Si (37)	s-Si (12)	<i>p</i> -C (2)		
Si ₇₀ C ₇₀ H ₉₀	5.91	$E_{c} - 0.78$	s-C (49)	<i>p</i> -Si (34)	s-Si (15)	<i>p</i> -C (2)		
Si ₃₃ AlNC ₃₃ H ₅₆	6.2	$E_{c} - 0.95$	s-N (50)	s-Al (25)	<i>p</i> -C (25)			
		$E_{c} - 0.68$	s-C (40)	<i>p</i> -Si (38)	s-Si (16)	<i>p</i> -Al (7)		
Si ₆₉ AINC ₆₉ H ₉₀	5.56	$E_{c} - 0.85$	s-C (44)	<i>p</i> -Si (35)	s-Si (15)			
		$E_{c} - 0.65$	s-N (4)	<i>p</i> -C (2)	<i>p</i> -Al (1)			
Si ₃₃ BeOC ₃₃ H ₅₆	6.56	$E_v + 0.75$	<i>p</i> -C (67)	<i>p</i> -Si (15)	s-C (8)	<i>p</i> -Be (6)	s-Si (3)	
		$E_{c} - 1.58$	<i>p</i> -Si (32)	s-C (16)	s-O (12)	s-Si (7)	<i>p</i> -C (2)	
		$E_{c} - 0.59$	s-C (48)	<i>p</i> -Si (40)	<i>s</i> -Si (10)	<i>p</i> -C (2)		
Si ₆₉ BeOC ₆₉ H ₉₀	5.74	$E_v + 1.20$	<i>p</i> -Si (30)	s-Si (25)	<i>p</i> -C (15)	s-C (5)	<i>p</i> -O (5)	
		$E_v + 1.96$	<i>p</i> -C (40)	<i>p</i> -Si (25)	s-C (15)	s-C (12)	s-O (3)	
		$E_v + 3.24$	<i>p</i> -Si (45)	s-Si (26)	<i>p</i> -C (10)	s-C (10)	<i>p</i> -Be (5)	
		$E_{c} - 0.97$	<i>p</i> -Si (33)	s-C (29)	<i>p</i> -C (17)	s-O (8)	s-Si (8)	s-Be(4)
		$E_{c} - 0.55$	s-C (42)	<i>p</i> -Si (38)	<i>s</i> -Si (9)	<i>s</i> -Be (5)	<i>p</i> -C (4)	<i>p</i> -Be(4)
Si ₆₉ BPC ₆₉ H ₉₀	5.52	$E_{c} - 0.79$	s-P (14)					
		$E_{c} - 0.5$	s-C (46)	<i>p</i> -Si (38)	s-Si (13)	s-B (2)		
Si ₆₉ BNC ₆₉ H ₉₀	5.80	$E_{c} - 0.95$	s-N (2)					
		$E_{c} - 0.57$	s-C (49)	<i>p</i> -Si (37)	s-Si (12)	<i>p</i> -C (2)		
Si ₇₁ C ₆₉ H ₉₀	5.85	$E_{c} - 0.52$	s-C (40)	<i>p</i> -Si (33)				
		$E_{c} - 0.80$	s-Si (27)	<i>p</i> -C (2)				
$Si_{34}C_{33}H_{56} - V_C$	6.63	E_v + 1.14	<i>p</i> -Si (46)	<i>p</i> -C (29)	s-Si (23)	s-C (11)		
		$E_{c} - 1.24$	<i>p</i> -Si (39)	s-Si (28)	s-C (28)	<i>p</i> -C (4)		
		$E_{c} - 0.59$	s-C (46)	<i>p</i> -Si (35)	s-Si (16)	<i>p</i> -C (5)		
$Si_{70}C_{69}H_{90}(V_C)$	5.87	$E_v + 1.44$	<i>p</i> -Si (42)	s-Si (26)	<i>p</i> -C (26)	s-C (8)		
		$E_{c} - 0.78$	<i>p</i> -Si (47)	s-Si (31)	<i>p</i> -C (14)	s-C (8)		
		$E_{c} - 0.6$	s-C (50)	<i>p</i> -Si (34)	s-Si (14)	<i>p</i> -C (2)		
$\mathrm{Si}_{69}\mathrm{AINC}_{68}\mathrm{H}_{90}(V_{\mathrm{C}})$	5.75	$E_v + 1.58$	<i>p</i> -Si (36)	s-Si (26)	<i>p</i> -C (21)	s-C (8)	<i>p</i> -Al (5)	
		$E_{c} - 0.75$	s-C (36)	<i>p</i> -Si (34)	s-Si (18)	<i>p</i> -Al (5)	s-N (3)	
Si ₆₉ BNC ₆₈ H ₉₀ (V _C)	5.77	$E_v + 2.61$	<i>p</i> -Si (41)	<i>p</i> -C (33)	s-Si (28)	s-C (13)		
		$E_{c} - 1.42$	<i>p</i> -Si (31)	s-C (29)	s-Si (20)	<i>p</i> -C(12)	<i>p</i> -B (10)	
		$E_{c} - 0.93$	s-N (9)					
		$E_{c} - 0.63$	s-C (39)	<i>p</i> -Si (39)	s-Si (14)	<i>p</i> -C (9)		
Si ₆₈ B ₂ C ₆₉ H ₉₀ (V _C)	5.71	$E_c - 1.12$	<i>p</i> -B (20)	s-C (80)			1	
		$E_{c} - 0.92$	<i>p</i> -Si (45)	s-Si (24)	s-C (18)	<i>p</i> -C (9)	<i>p</i> -B (3)	
		$E_{c} - 0.40$	s-C (39)	<i>p</i> -Si (36)	s-Si (12)	<i>p</i> -C (6)	<i>p</i> -B (6)	

Таблица 1. Особенности в энергетической щели кластеров чистого и дефектного карбида кремния

СОКОЛЕНКО, СЛЮСАРЕВ

		,		(/
Si ₇₀ C ₇₀	λ, нм	291.3	280.8	277.3	271.0	
	10 <i>I</i>	4	3.4	0.66	0.67	
Si ₃₄ C ₃₄	λ, нм	394.0	332.7	319.0	315.8	314.2
	0.2 <i>I</i>	4.496	0.0174	0.111	0.003	0.0202
Si ₆₉ AlNC ₆₉	λ, нм	357.6	328.3	324.9	310.3	289.3
	20 <i>I</i>	0.4	2.4	2.6	0.46	0.8
Si ₃₃ AlNC ₃₃	λ, нм	339.07	299.76	293.38	278.25	258.00
	Ι	0.45	1.21	2.58	0.52	0.029
Si ₆₉ BNC ₆₉	λ, нм	367.2	306.4	305.7	301.9	301.5
	51	4	0.035	0.025	0.045	0.46
Si ₆₉ BeOC ₆₉	λ, нм	977.2	577.2	571.9	559.0	
	0.3 <i>I</i>	3.699	0.924	0.414	0.27	
Si ₃₃ BeOC ₃₃	λ, нм	2298.15	738.69	530.34	512.81	492.46
	21	2.98	0.1	0.052	1.2	0.44
$Si_{70}C_{69} + V_C$	λ, нм	1723.6	977.2	596.6	577.2	530.3
	1.5 <i>I</i>	2.505	0.465	0.0375	4.005	0.147
Si ₃₄ C ₃₃ - Vc	λ, нм	685.6	510.7	498.4	454.6	
	Ι	2.72	0.37	1.11	0.022	
$Si_{68}BNC_{69} - V_C$	λ, нм	283.3	306.4	305.7	301.9	301.5
	51	4	0.035	0.025	0.045	0.46
Si ₆₈ B ₂ C ₆₉	λ, нм	381.8	376.1	344.7	337.2	334.5
	0.1 <i>I</i>	0.896	3.888	0.961	0.014	0.025
$Si_{32}B_2C_{33} - V_C$	λ, нм	372.1	355.6	332.7	325.7	323.2
	0.1 <i>I</i>	3.028	2.348	0.106	0.185	0.792
Si ₇₁ C ₆₉ – HF	λ, нм	412.3	251.2	250.2	238.2	237.3
	0.2 <i>I</i>	3.162	0.044	0.028	0.112	0.068
Si ₇₁ C ₆₉	λ, нм	468.3	380.7	377.2	357.6	356.6
	Ι	4.58	0.002	0.01	0.05	0.12
				•		

Таблица 2. Положение максимумов поглощения и интенсивности линий (*I* – сила осциллятора)

ренние атомы дают вклад примерно с одинаковой вероятностью.

Для построения дефектных структур первоначально получен кластер $Si_{70}C_{70}H_{90}$, длина связи Si-C составляет 0.1874 нм. На рис. 16 приведены полная и парциальные ПС кластера $Si_{70}C_{70}H_{90}$. В спектрах адсорбции кластера $Si_{70}C_{70}H_{90}$ понижение интенсивности компонентов относительно кластера $Si_{34}C_{34}H_{56}$ может быть связано с изменением вероятности переходов.

В кластере $Si_{70}C_{70}H_{90}$ линии расположены в коротковолновой области 270–291 нм с низкой интенсивностью переходов, а легирование Al и N ($Si_{69}Al_{Si}N_CC_{69}H_{90}$) сдвигает линии в длинноволновую область (табл. 2). При этом интенсивность

переходов снижается, как и в случае легирования этими примесями кластера $Si_{34}C_{34}H_{56}$. Примеси бора и азота (кластер $Si_{69}B_{Si}N_CC_{69}H_{90}$) также приводят к сдвигу полос в длинноволновую область (табл. 2)). Использование оксида бериллия ($Si_{69}Be_{Si}O_CC_{69}H_{90}$) приводит к существенному повышению интенсивности (более 10 раз) и появлению полос в длинноволновой области спектра (рис. 2б). При этом отмечается понижение интенсивности полос поглощения с ростом энергии перехода. При легировании карбида кремния примесями В и Р эта тенденция сохраняется, но в кластере $Si_{69}B_{Si}P_CC_{69}H_{90}$ заметен рост интенсивности около 400 нм. Все эти структуры, кроме $Si_{69}Be_{Si}O_CC_{69}H_{90}$, объединяет снижение

2019

интенсивности полос в спектре поглощения после введения дефектов.

Структура валентной зоны и зоны проводимости кластера $Si_{69}Al_{Si}N_{C}C_{69}H_{90}$ (рис. 3б) полностью идентична кластерам Si₆₉B_{Si}N_CC₆₉H₉₀ и Si₆₉B_{Si}P_CC₆₉H₉₀, при этом заметен вклад *s*-орбитали азота. Все кластеры получены при соседнем расположении примесных атомов. Длина связи $d_{\rm B-N} = 0.1698$ нм (меньше на 9.5% d_{Si-C}). Для кластера Si₆₉B_{Si}N_CC₆₉H₉₀ (рис. 4а) спектр ПС аналогичен $Si_{70}C_{70}H_{90}$, но отмечается акцепторный уровень на основе s-орбитали азота *E_c* – 0.95 (табл. 1). У дна зоны проводимости кластера Si₆₉B_{Si}P_CC₆₉H₉₀ (рис. 4б) наблюдается сложный локальный уровень, в который вносят вклад орбитали s-P. Кластеры, легированные бором в случае его зарядовой компенсации фосфором или азотом, не создают акцепторных уровней, но подобные уровни возникают вследствие образования вакансий углерода V_C. Эти результаты совпадают с выводами работы [5] об участии вакансий углерода в образовании центра высокотемпературной люминесценции. В спектре поглощения доминирует один переход, в котором участвует донорный уровень азота.

Введение акцепторно-донорных примесей Ве и O (кластер Si₃₃Be_{Si}O_CC₃₃H₅₆) приводит к появлению уровня у потолка валентной зоны E_v + 0.75 эВ. Вклад бериллия примерно соответствует его атомной доле, поэтому можно предположить участие всех атомов, окружающих примесный дефект в формировании локального уровня. Изменение ПС в 33 приводит к существенному изменению в спектре возбуждения кластера Si₃₃BeOC₃₃H₅₆ (рис. 26): основные линии сдвинуты в длинноволновую область примерно до 2300 нм.

В кластере $Si_{69}Be_{Si}O_CC_{69}H_{90}$ также возникают дополнительные глубокие акцепторные и донорные уровни, связанные с Ве и О. Спектр возбуждения люминесценции сдвинут в длинноволновую область, при этом наблюдается высокая вероятность переходов. В энергетической щели $Si_{69}Be_{Si}O_CC_{69}H_{90}$ (рис. 5б) возникают подзоны с участием орбиталей примесных атомов (табл. 1).

Вероятно, такой же сильный вклад в перестройку ПС в 33 будут оказывать собственные дефекты: вакансии углерода и кремния. Действительно, вакансия углерода кластера $Si_{34}C_{33}H_{56} - V_C$ образует акцепторный уровень E_v + 1.44 эВ. Подобные уровни у потолка валентной зоны возникают в кластерах $Si_{70}C_{69}H_{90}$ (V_C), $Si_{69}AINC_{68}H_{90}$ (V_C), $Si_{69}BNC_{68}H_{90}$ (V_C), но таких уровней нет у кластеров $Si_{69}BPC_{69}H_{90}$ (бор на месте углерода, фосфор – кремния) и $Si_{69}BNC_{69}H_{90}$. Нет акцепторного уровня и в кластере $Si_{68}B_2C_{69}H_{90}$ (V_C) (бор на месте кремния). Появление длинноволновых полос в кластерах $Si_{69}Be_{Si}O_CC_{69}H_{90}$ и $Si_{69}B_{Si}N_CC_{69}H_{90}$ можно связать с конкурирующими переходами внутри дефектного центра. Дефект, представляющий комбинацию B_{Si} с вакансией углерода ($Si_{68}B_2C_{69}H_{90}$), также проявляет эту тенденцию, мощный пик около 376 нм подтверждает предположение о конкуренции поглощения дефектных центров. Конкуренция проявляется в образовании длинноволновых полос поглощения кластеров, включающих V_C ($Si_{70}C_{69}H_{90}$ и $Si_{69}B_{Si}N_CC_{68}H_{90}$) (рис. 4а).

Вакансия углерода получена в результате удаления атома из исходного кластера $Si_{70}C_{70}H_{90}$, оборванные связи замкнуты между собой. Изменение расстояния d_{Si-C} в пределах первой координационной сферы составляет 2%. Полная и парциальная электронная плотность $Si_{70}C_{69}H_{90}$ в области валентной зоны и зоны проводимости (рис. 6б) совпадает с бездефектным кластером, но в энергетической щели возникают два локальных уровня (E_v + + 1.44 эB, $E_c - 0.58$ эB) (табл. 1).

Кластер Si₆₉B_{Si}N_CC₆₈H₉₀ (рис. 7а) включает V_C рядом с B_{Si}N_C, в его энергетической щели наблюдается уровень E_v + 3.39 эВ, в который вносят вклад *p*-Si, *s*-Si, *p*-C. У дна зоны проводимости отмечена дополнительная локальная плотность состояний, связанная с искажениями структуры вблизи дефектов ($d_{Si-C} = 0.1844$ нм). Электронные состояния примесных орбиталей *p*-B, *p*-N, *s*-B, *s*-N распределены внутри валентной зоны и зоны проводимости.

Появление длинноволновых полос в спектре адсорбции кластера, легированного Ве и О, связано с процессом поглощения энергии на локальных уровнях. Анализ спектров люминесценции в SiC $\langle B \rangle$, проведенный в работе [16], позволил установить, что высокотемпературная люминесценция (ВТЛ) обусловлена излучательными переходами в донорно-акцепторных парах и из зоны проводимости на акцептор с энергией ионизации ≈0.7эВ. Оказалось, что мелкий акцепторный центр создает атом бора, замещающий кремний в регулярном узле решетки [17], а за глубокий центр ответственен примесно-дефектный комплекс, состоящий из атома бора и углеродной вакансии $(B_{Si} - V_C)$, ориентированный вдоль оси *C* кристалла [18]. Изолированные вакансии в SiC(B) отжигаются при 150°С, поэтому ответственными за центры люминесценции авторы считают кластеры вакансий (микропоры) или ассоциат вакансий с примесными атомами, которые, с другой стороны, по мнению самих же авторов, не влияют на концентрацию изолированных дефектов и полупроводниковые свойства. Возникает противоречие: с одной стороны, центр ВТЛ включает вакансию углерода, но эти дефекты ожигаются при 150°С, с другой – микропоры (ассоциации вакансий) только увеличивают площадь поверхности и не создают дополнительных уровней в 33 SiC.

Рис. 2. Спектры возбуждения люминесценции кластеров $Si_{70}C_{70}H_{90}$, $Si_{34}C_{34}H_{56}$, $Si_{69}Al_{Si}N_CC_{69}H_{90}$ и $Si_{69}B_{Si}N_CC_{69}H_{90}$ (a); $Si_{34}C_{33}H_{56} - V_C$, $Si_{33}Be_{Si}O_CC_{33}H_{56}$, $Si_{69}BeOC_{69}H_{90}$ (б).

Рис. 3. Полная и парциальные ПС кластеров $Si_{33}AINC_{33}H_{56}$ (а) и $Si_{69}Al_{Si}N_CC_{69}H_{90}$ (б).

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 55 № 1 2019

Рис. 4. Полная и парциальные ПС кластеров $Si_{69}B_{Si}N_CC_{69}H_{90}$ (а) и $Si_{69}B_{Si}P_CC_{69}H_{90}$ (б).

Рис. 5. Полная и парциальные ПС кластеров $Si_{33}Be_{Si}O_CC_{33}H_{56}$ (а) и $Si_{69}Be_{Si}O_CC_{69}H_{90}$ (б).

Рис. 6. Полная и парциальные ПС кластеров $Si_{34}C_{33}H_{56} - V_C$ (а) и $Si_{70}C_{69}H_{90} - V_C$ (б).

Рис. 7. Полная и парциальные ПС кластеров $Si_{69}BNC_{68}H_{90} - V_C$ (а) и $Si_{69}AINC_{68}H_{90} - V_C$ (б).

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 55 № 1 2019

Рис. 8. Полная и парциальные ПС кластера $Si_{68}B_2C_{69}H_{90} - V_C$.

Автор [4] предположил участие собственных дефектов в образовании узких полос у потолка валентной зоны (в 33). Исходя из полученных результатов (рис. 2) $V_{\rm C}$ могут играть самостоятельную роль в процессах поглощения и излучения света, так как создают дополнительные уровни в энергетической щели. К такому же эффекту приводит ряд примесей, которые вносят значительный вклад в нарушение электронной структуры (например, Ве и О, рис. 5б), при этом поглощение света существенно повышается.

Высокотемпературная обработка наряду с уменьшением эффективности ВТЛ приводит к резкому снижению количества *D*-центров (260 K), так что их концентрация после отжига становится меньше концентрации центров "мелкого" бора – В-центров [5]. Жесткая взаимосвязь между эффективностью ВТЛ и концентрацией *D*-центров, являющихся комплексами $B_{Si}-V_C$, позволяет предположить, что именно они являются активаторами высокотемпературной борной люминесценции в SiC. При этом диффузия бора приводит к возникновению эффективной ВТЛ лишь в образцах с концентрацией азота $N_d > 1 \times 10^{18}$ см⁻³. Образцы с меньшим содержанием азота не люминесцируют при комнатной температуре [5]. Дефекты, полученные без компенсации бора азотом

(кластеры Si₆₈B₂C₆₉H₉₂ и Si₆₈B₂C₆₉H₉₀), создают донорные центры, но эффективность поглощения невысокая (табл. 2). Компенсация азотом в кластере Si₆₉B_{Si}N_CC₆₈H₉₀ приводит к возникновению более глубоких центров E_v + 2.39 эВ, но сила осциллятора всех переходов еще ниже. Низкоэнергетические полосы могут быть связаны с глубокими центрами, например, вакансиями углерода (рис. 6б). Эффективные переходы в длинноволновой области сильно подавляют коротковолновые переходы, поэтому кластеры, включающие вакансии углерода, могут быть неэффективны для люминесценции в области коротких волн. Для получения люминесценции в длинноволновой области представляет интерес кластер Si₆₈B₂C₆₉H₉₀ (табл. 2).

Кристаллы, выращенные в условиях сильного обогащения паровой фазы кремнием, изначально имеют повышенное содержание углеродных вакансий [18]. Данное обстоятельство в сочетании с более низкой температурой роста увеличивает вероятность образования *D*-центров во время синтеза SiC. Выводы сделаны на основе связи концентрации *D*-центров с интенсивностью ВТЛ. Природа такого центра не очень понятна, например, бор на месте кремния с обязательной избыточной концентрацией азота взаимно компенсируют заряды, но не вполне ясно, какую роль играют и какое положение занимают вакансии углерода.

В случае компенсации заряда бора азотом образуется кластер $Si_{69}B_{Si}N_CC_{68}H_{90}$, который включает $B_{Si} + N_C + V_C$; две разорванные связи на вакансии соединили Si—Si, а одну соединили длинной связью B_{Si} —Si. Это вариант структуры дефекта *D*. После оптимизации структуры атом бора сместился в сторону вакансии (связь удлинилась), атом кремния на другом конце связи занимает при этом примерно регулярное положение. В пределах энергетической щели наблюдаются четыре энергетических уровня.

Кластеры, легированные только бором, компенсируются вакансиями углерода. При этом возникает дефект $2B_{Si} + V_C$, который может образовать замкнутую электронную оболочку путем соединения оборванных связей между собой в кластере $Si_{68}B_2C_{69}H_{90}$ (рис. 8). У кластера наблюдаются локальные уровни, образованные орбиталями кремния и углерода (табл. 1).

Предложенная авторами [19] структура дефекта, включающего вакансию кремния, требует дополнительного исследования.

ЗАКЛЮЧЕНИЕ

Расчет электронной структуры нанокластеров карбида кремния, включающих собственные и примесные дефекты, позволяет сделать заключение, что вакансии углерода принимают участие в образовании центра ВТЛ, но при этом именно они приводят к образованию локальных уровней в энергетической щели, а примесные атомы бора и азота стабилизируют собственные дефекты.

Результаты могут быть использованы для качественной интерпретации процессов влияния примесей на спектр адсорбции и ПС в окрестности 33.

СПИСОК ЛИТЕРАТУРЫ

- Лебедев А.А., Челноков В.Е. Широкозонные полупроводники для силовой электроники // ФТП. 1999. Т. 33. Вып. 9. С. 1096–1099.
- Соболев Н.А. Инженерия дефектов в имплантационной технологии кремниевых светоизлучающих структур с дислокационной люминесценцией. Обзор // ФТП. 2010. Т. 44. № 1. С. 3–25.
- 3. *Hamasaki F., Tsuruta K.* Structures and Local Electronic States of Dislocation Loop in 4H-SiC via a Linear-Scaling Tight-Binding Study// Mater. Trans. JIM. 2011. V. 52. № 4. P. 672–676. doi 10.2320/matertrans. MBW201024
- Лебедев А.А. Центры с глубокими уровнями в карбиде кремния // ФТП. 1999. Т. 33. № 2. С. 129–156.
- Балландович В.С., Мохов Е.Н. Отжиг глубоких центров бора в карбиде кремния // ФТП. 2002. Т. 36. № 2. С. 167–173.

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 55 № 1 2019

- Горбань И.С., Крохмаль А.П. Примесное оптическое поглощение и структура зоны проводимости в 6H-SiC // ФТП. 2001. Т. 35. № 11. С. 1299–1305.
- Alfieri1 G., Kimoto T. Engineering the Band Gap of SiC Nanotubes with a Transverse Electric Field // Appl. Phys. Lett. 2010. V. 97. P. 043108. doi/abs/10.1063/1.3469944
- Wu X.L., Fan J.Y., Qiu T., Yang X., Siu G.G., Chu P.K. Experimental Evidence for the Quantum Confinement Effect in 3C-SiC Nanocrystallites // Phys. Rev. Lett. 2005. V. 94. 026102. doi.org/10.1103
- 9. *Knaup J.M., Deák P., Frauenheim T.* Theoretical Study of the Mechanism of Dry Oxidation of 4*H*-SiC // Phys. Rev. B. 2005. V. 71. P. 235321. doi.org/10.1103
- Patrick A.D., Dong X., Allison T.C., Blaisten-Barojas E. Silicon Carbide Nanostructures: A Tight Binding Approach // J. Chem. Phys. 2009. V. 130. P. 244704. doi.org.10.1063/1.3157282
- Chen C.W., Lee M.-H., Chen L.C., Chend K.H. Structural and Electronic Pro-Perties of Wide Band Gap Silicon Carbon Nitride Materials a First-Principles Study // Diamond Relat. Mater. 2004. V. 13. P. 1158–1165. doi.org/ doi 10.1016/j.diamond.2003.11.084
- Hohenberg P., Kohn W. Inhomogeneous Electron Gas // Phys. Rev. 1964. V. 136. № 3. P. B864–B871. doi.org/ 10.1103
- Arabshahi H., Rezaee Rokn Abadi M., Ghorbani E. First Principles Studies of Band Structure Calculations of 6H–SiC and 4C–SiC Using Pseudopotential Approches// Int. J. Phys. Sci. 2011. V. 6(4). P. 897–900.
- Zhang Y., Nishitani-Gamo M., Xiao C., Ando T. Synthesis of 3C-SiC Nanowhiskers and Emission of Visible Photoluminescence // J. Appl. Phys. 2002. V. 91. № 9. P. 6066–6070. doi.org/10.1063/1.1468278
- 15. Соколенко Е.В. Моделирование ИК-спектров поглощения примесных дефектов нанокристаллов алмаза // Неорган. матер. 2014. Т. 50. № 3. С. 268– 274. doi 10.7868/S0002337X14030129
- 16. *Evarestov R.A.* Quantum Chemistry of Solids Lead Treatment of Crystals and Nanostructures. Second Ed. Berlin–Heidelberg: Springer-Verlag, 2012. 734 p.
- Kuwabara H., Yamada S. Free-to-Bound Transition in β-SiC Doped with Boron // Phys. Status Solidi A. 1975. V. 30. P. 739–746. doi.org/10.1002/pssa.2210300234
- Гирка А.И., Мохов Е.Н. Вакансионные дефекты в карбиде кремния // ФТТ. 1995. Т. 37. № 11. С. 3374–3381.
- Кукушкин С.А., Нусупов К.Х., Осипов А.В., Бейсенханов Н.Б., Бакранова Д.И. Рентгеновская рефлектометрия и моделирование параметров эпитаксиальных пленок SiC на Si(111), выращенных методом замещения атомов // ФТТ. Т. 59. № 5. С. 986– 998. doi 10.21883/FTT.2017.05.44391.379