УДК 544.228

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА ТВЕРДЫХ РАСТВОРОВ В СИСТЕМАХ Sm_2O_3 -CaO-MO и Ln_2O_3 -SrO-MO (Ln = Sm, Gd; M = Fe, Co)¹

© 2019 г. Л. В. Хвостова¹, А. П. Галайда¹, А. В. Маклакова¹, А. С. Батенькова¹, А. А. Старцева¹, Н. Е. Волкова^{1, *}, Л. Я. Гаврилова¹, В. А. Черепанов¹

¹Институт естественных наук и математики, Уральский федеральный университет им. первого Президента России Б.Н. Ельцина, пр. Ленина, 51, Екатеринбург, 620000, Россия *e-mail: nadezhda.volkova@urfu.ru

Поступила в редакцию 16.12.2018 г. После доработки 11.03.2019 г. Принята к публикации 08.04.2019 г.

Сложные оксиды в системах Sm_2O_3 —CaO—MO и Ln_2O_3 —SrO—MO (Ln = Sm, Gd; M = Fe, Co) получены по глицерин-нитратной технологии при 1100°C на воздухе. Определены границы существования твердых растворов: $\text{Sr}_{1-x}\text{Gd}_x\text{CoO}_{3-\delta}$ ($0.1 \le x \le 0.4$); $\text{Sr}_{2-y}\text{Gd}_y\text{CoO}_{4-\delta}$ ($0.8 \le y \le 1.2$), $\text{Sr}_{1-x}\text{Gd}_x\text{FeO}_{3-\delta}$ ($0.05 \le x \le 0.30$ и $0.80 \le x \le 1.0$); $\text{Ca}_{1-x}\text{Sm}_x\text{FeO}_{3-\delta}$ ($0.70 \le x \le 1.0$); $\text{Sr}_{2-y}\text{Sm}_y\text{FeO}_{4-\delta}$ ($0.7 \le y \le 0.8$); $\text{Sr}_{2-y}\text{Gd}_y\text{FeO}_{4-\delta}$ ($0.75 \le y \le 0.8$); $\text{Ca}_{2-y}\text{Sm}_y\text{FeO}_{4-\delta}$ (y = 0.90); $\text{Sr}_{3-z}\text{Sm}_z\text{Fe}_2\text{O}_{7-\delta}$ ($0 \le z \le 0.3$ и z = 1.8) и $\text{Sr}_{3-z}\text{Gd}_z\text{Fe}_2\text{O}_{7-\delta}$ ($0 \le z \le 0.3$ и z = 1.9). Для всех однофазных оксидов определена кристаллическая структура, рассчитаны параметры, объем элементарной ячейки и структурные параметры.

Ключевые слова: сложные оксиды, перовскиты, фазы Раддлесдена-Поппера, рентгенофазовый анализ, кристаллическая структура

DOI: 10.1134/S0002337X19080049

введение

Сложнооксидные материалы со смешанной электронной и ионной проводимостью находят широкое применение в качестве электродов топливных элементов [1-5], кислородных мембран [6-8], катализаторов дожигания выхлопных газов [9, 10] и пр. Особый интерес вызывают фазы Раддлесдена-Поппера с общей формулой $A_{n+1}B_nO_{3n+1}$, где позицию А занимает атом лантаноила и/или щелочноземельный элемент; позицию В — атомы 3d-металла (Mn. Fe. Co). Их структура построена путем чередования перовскитных слоев (АВО₃) со слоями типа каменной соли [11]. В этом случае перовскиты АВО₃ представляют собой предельный гомолог ряда при $n = \infty$. Физико-химические свойства этих оксидов существенно зависят от особенностей кристаллической структуры, поэтому ее подробное описание, так же как и сведения об условиях получения и границах областей гомогенности, необходимо для успешной эксплуатации подобных материалов.

Настоящая работа посвящена установлению влияния природы и концентрации атомов в А- и

В-подрешетках на область существования и кристаллическую структуру фаз, образующихся в системах Sm_2O_3 -CaO-MO и Ln_2O_3 -SrO-MO (Ln = Sm, Gd; M = Fe, Co).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Образцы для исследования были получены по глицерин-нитратной технологии. Для приготовления образцов использовали оксиды самария Sm₂O₃ (СмО-Л) и гадолиния Gd₂O₃ (ГдО-Л), карбонаты кальция СаСО₃ ("ч. д. а.") и стронция SrCO₃ ("ч. д. а."), оксалат железа $FeC_2O_4 \cdot 2H_2O$ ("ч. д. а."), а также металлический кобальт, азотную кислоту ("ос. ч.") и глицерин ("ч. д. а."). Металлический кобальт получали восстановлением оксида Co_3O_4 ("ос. ч.") при 600°С в токе водорода. Навески исходных компонентов растворяли в 4 М HNO₃ при нагревании, добавляли глицерин и выпаривали в фарфоровой чашке. После обезвоживания вязкий гель при нагревании превращался в коричневый порошок. Сухой остаток ступенчато нагревали до температуры 1100°С. Суммарное время отжигов при 1100°С на воздухе составило 120 ч. После заключительного отжига образцы медленно охлаждали до комнатной температуры (скорость охлаждения 100°С/ч).

¹ Работа была представлена на 16-й Международной конференции IUPAC по химии высокотемпературных материалов (HTMC-XVI), 2–6 июля 2018 г., Екатеринбург, Россия.

Рис. 1. Рентгенограмма сложного оксида Sr_{1.2}Gd_{0.8}CoO_{4 + δ}, обработанная по методу полнопрофильного анализа Ритвельда: точки – данные эксперимента; сплошная верхняя линяя – теоретический спектр; сплошная нижняя линия – разница между экспериментальными данными и теоретической кривой.

Фазовый состав определяли на дифрактометре Shimadzu XRD-7000 (Си K_{α} -излучение, 2 θ = $20^{\circ}-90^{\circ}$, шаг $0.01^{\circ}-0.04^{\circ}$, экспозиция 2–10 с) при комнатной температуре на воздухе. Идентификацию фаз осуществляли с использованием базы данных ICDD. Уточнение структуры проводили методом полнопрофильного анализа Ритвельда с помощью программы Fullprof 2008.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Системы Sm₂O₃–CaO–CoO и Ln₂O₃–SrO–CoO (Ln = Sm, Gd). По результатам рентгенофазового анализа установлено, что в системе Sm₂O₃– CaO–CoO образуется единственный ряд твердых растворов, со структурой типа K₂NiF₄ [12]. При замене кальция на больший по размеру стронций помимо Sr_{2-y}Ln_yCoO_{4-δ} происходит образование второго ряда твердых растворов со структурой перовскита Sr_{1-x}Ln_xCoO_{3-δ}.

Кристаллическая структура $M_{2-y}Ln_yCoO_{4-\delta}$ (M = Ca, Sr). Твердые растворы $Ca_{2-y}Sm_yCoO_{4-\delta}$ при 1100°С на воздухе образуются в интервале 1.0 $\leq y \leq$ 1.2 [12], а в Sr-содержащих системах отжиг при этих условиях приводит к формированию твердых растворов $Sr_{2-y}Ln_yCoO_{4-\delta}$ (Ln = Sm³⁺, Gd³⁺) с более широкими областями гомогенности: 0.9 $\leq y \leq$ 1.3 [13] и 0.8 $\leq y \leq$ 1.2 для Ln = Sm и Gd соответственно. Кристаллическая структура сложных оксидов $Ca_{2-y}Sm_yCoO_{4-\delta}$ существенно зависит от концентрации ионов самария. Рентгенограмма образца $CaSmCoO_{4-\delta}$ была описана в рамках тетрагональной ячейки (пр. гр. *I4/mmm*). Увеличение содержания Sm^{3+} в $Ca_{2-y}Sm_yCoO_{4-\delta}$ (y = 1.1-1.2) приводит к изменению кристаллической структуры до орторомбической (пр. гр. *Bmab*) [12].

Все однофазные твердые растворы $Sr_{2-y}Ln_yCoO_{4-\delta}$ кристаллизуются в тетрагональной ячейке, пр. гр. *I4/mmm*. На рис. 1 в качестве примера приведена рентгенограмма $Sr_{1.2}Gd_{0.8}CoO_{4+\delta}$, обработанная методом полнопрофильного анализа Ритвельда.

Для всех однофазных образцов из ренгенографических данных были рассчитаны структурные параметры. Увеличение концентрации ионов самария и гадолиния в $Sr_{2-y}Ln_yCoO_{4+\delta}$ приводит к монотонному уменьшению параметра *с* элементарной ячейки, тогда как параметр *а* изменяется незначительно. Подобную тенденцию можно объяснить с точки зрения размерных эффектов ($r_{Sm^{3+}} = 1.24$ Å, $r_{Sr^{2+}} = 1.44$ Å, $r_{Gd^{3+}} = 1.11$ Å [14]) (рис. 2).

Кристаллическая структура $Sr_{1-x}Ln_xCoO_{3-\delta}$. Ранее Джеймсом с соавторами [15] было показано, что кристаллическая структура $Sr_{1-x}Ln_xCoO_{3-\delta}$ существенно зависит от содержания и радиуса лантаноида. При введении ионов РЗЭ средних ради-

Рис. 2. Зависимости параметров элементарной ячейки от состава твердого раствора $Sr_{2-y}Gd_yCoO_{4-\delta}$ $(0.8 \le y \le 1.2).$

усов (таких, как самарий и гадолиний) упорядочение катионов Ln^{3+} и Sr^{2+} в А-подрешетке и кислородных вакансий приводит к формированию сверхструктуры $2a_p \times 2a_p \times 4a_p$ (где a_p – параметр элементарной ячейки кубического перовскита). Элементарная ячейка содержит три неэквивалентные А-позиции, которые заполняются последовательно при постепенном увеличении концентрации самария. При x < 0.25 ионы Sm³⁺ заполняют узлы А1, тогда как позиции А2 и А3 остаются полностью занятыми ионами Sr²⁺. Дальнейшее увеличение содержания самария приводит к замещению в А3-позициях, в то время как А1 и А2 полностью заняты ионами Sm³⁺ и Sr²⁺ соответственно.

По данным РФА установлено, что однофазные сложные оксиды $Sr_{1-x}Sm_xCoO_{3-\delta}$ образуются в интервале $0.05 \le x \le 0.50$ [13]. При переходе от $Sm^{3+} \kappa Gd^{3+}$ область гомогенности сужается ($0.1 \le x \le 0.4$), что можно объяснить увеличением разницы радиусов ионов стронция и лантаноидов ($r_{Sm^{3+}} = 1.24$ Å; $r_{Gd^{3+}} = 1.11$ Å; $r_{Sr^{2+}} = 1.58$ Å [14]).

Рентгенограммы однофазных образцов были описаны в рамках тетрагональной ячейки $2a_p \times 2a_p \times 4a_p$ пр. гр. *I4/mmm*, что согласуется с данными [13, 15, 16].

Концентрационная зависимость параметров элементарной ячейки для твердого раствора $Sr_{1-x}Gd_xCoO_{3-\delta}$, рассчитанных из рентгеновских данных, от содержания гадолиния представлена на рис. 3. При увеличении концентрации ионов лантаноида наблюдается уменьшение параметров и объема элементарной ячейки сложных оксидов $Sr_{1-x}Ln_xCoO_{3-\delta}$, что связано с меньшим радиусом ионов самария и гадолиния по

Рис. 3. Зависимости параметров элементарной ячейки от состава твердого раствора $Sr_{1-x}Gd_{x}CoO_{3-\delta}$ (0.1 $\leq x \leq 0.4$).

сравнению с ионом стронция ($r_{\text{Sm}^{3+}} = 1.24 \text{ Å}, r_{\text{Gd}^{3+}} = 1.11 \text{ Å}, r_{\text{Sr}^{2+}} = 1.58 \text{ Å} [14]$).

Системы Sm₂O₃–CaO–FeO и Ln₂O₃–SrO–FeO (Ln = Sm, Gd). В железосодержащих системах установлено образование трех типов перовскитоподобных твердых растворов $A_{n+1}B_nO_{3n+1}$ (n = 1, 2, ∞) с различной степенью замещения в А-подрешетке.

Кристаллическая структура $M_{1-x}Ln_xFeO_{3-\delta}$ (M = Ca, Sr). По данным РФА установлено, что однофазные сложные оксиды со структурой перовскита образуются в двух интервалах составов. Твердые растворы, обогащенные стронцием – Sr_{1-x}Sm_xFeO_{3-\delta} (0.05 $\leq x \leq 0.50$) [17], Sr_{1-x}Gd_xFeO_{3-\delta} (0.05 $\leq x \leq 0.30$), описываются в рамках кубической элементарной ячейки пр. гр. *Pm3m*. На рис. 4 в качестве примера представлена рентгенограмма образца Sr_{0.7}Gd_{0.3}FeO_{3-δ}, обработанная по методу Ритвельда.

Несколько бо́льшие элементарные ячейки ферритов РЗЭ LnFeO₃ по сравнению с кобальтитами LnCoO₃ [12] позволяют провести частичное замещение Ln³⁺ более крупными ионами щелочноземельных металлов Ca²⁺ и Sr²⁺. Твердые растворы с большим содержанием ионов лантаноидов Ca_{1-x}Sm_xFeO_{3-δ} (0.70 $\le x \le 1.0$), Sr_{1-x}Sm_xFeO_{3-δ} (0.85 $\le x \le 1.0$), Sr_{1-x}Gd_xFeO_{3-δ} (0.80 $\le x \le 1.0$) кристаллизуются в орторомбической ячейке (пр. гр. *Pbnm*) и являются изоструктурными ферритам самария и гадолиния LnFeO_{3-δ}.

Для всех однофазных образцов рассчитаны параметры и объемы элементарных ячеек, а также координаты атомов. В табл. 1 в качестве примера представлены данные для твердых растворов $Ca_{1-x}Sm_xFeO_{3-\delta}$.

Рис. 4. Рентгенограмма, обработанная по методу Ритвельда, сложного оксида $Sr_{0.7}Gd_{0.3}FeO_{3-\delta}$.

Концентрационные зависимости параметров и объема элементарных ячеек твердых растворов $Ca_{1-x}Sm_xFeO_{3-\delta}$ приведены на рис. 5. Уменьшение параметров элементарной ячейки связано с ростом средней степени окисления железа при увеличении концентрации кальция в образцах

 $(r_{\text{Fe}^{3+}} = 0.645 \text{ Å}, r_{\text{Fe}^{4+}} = 0.585 \text{ Å} [14])$. Аналогичные зависимости получены для $\text{Sr}_{1-x} \text{Ln}_x \text{FeO}_{3-\delta}$.

Кристаллическая структура $M_{2-y}Ln_yFeO_{4-\delta}$ (M = Ca, Sr). По данным РФА установлено, что однофазные сложные оксиды $Sr_{2-y}Sm_yFeO_{4-\delta}$ образуются при y = 0.7-0.8, а $Sr_{2-y}Gd_yFeO_{4-\delta}$ – при y = 0.75-0.80 и имеют тетрагональную структуру (пр. гр. I4/mmm). В ряду $Ca_{2-y}Sm_yFeO_{4-\delta}$ образуется единственный оксид при y = 0.90, обладающий орторомбической структурой (пр. гр. *Bmab*) (рис. 6). Необходимо отметить, что ферриты со структурой типа K_2NiF_4 имеют более узкую область гомогенности по сравнению с таковой для кобальтитов.

На рис. 6 представлена модель кристаллической структуры, построенная при помощи программного пакета Diamond 3.2, а также рентгенограмма оксида $Ca_{1.1}Sm_{0.9}FeO_{4-\delta}$, обработанная по методу полнопрофильного анализа Ритвельда.

Параметры элементарной ячейки для $Sr_{2-y}Ln_{y}FeO_{4-\delta}$, рассчитанные из рентгено-графических данных, приведены в табл. 2.

Кристаллографические параметры для оксида $Ca_{1,1}Sm_{0,9}FeO_{4-\delta}$, вычисленные методом Ритвельда из рентгеновских данных, представлены в табл. 1.

Образец			Co Sm EeO			
		x = 1.0	x = 0.9	x = 0.8	x = 0.7	$a_{1,1} \sin_{0,9} \cos_{4-\delta}$
<i>a</i> , Å		5.401(1)	5.399(1)	5.398(1)	5.399(1)	5.386(1)
b, Å		5.591(1)	5.567(1)	5.552(1)	5.544(1)	5.448(1)
<i>c</i> , Å		7.710(1)	7.696(1)	7.689(1)	7.686(1)	12.030(2)
$V, Å^3$		232.80(2)	231.34(2)	230.45(2)	230.08(2)	353.00(2)
R _{Br} , %		5.51	5.09	5.53	4.79	6.31
<i>R</i> _{<i>f</i>} , %		8.98	9.36	8.44	9.53	6.22
x		0.0131	0.0099	0.0089	0.0085	0.0000
у	Sm	-0.0557	-0.0526	-0.0510	-0.0503	-0.0123
z		0.2500	0.2500	0.2500	0.2500	0.3565
x		-0.0837	-0.0853	-0.0832	-0.0637	0.2500
у	01	0.5260	0.5264	0.5209	0.5130	0.2500
z		0.2500	0.2500	0.2500	0.2500	-0.0190
x		-0.2008	-0.2121	-0.2082	-0.2043	0.0000
у	02	0.2237	0.2271	0.2184	0.2054	0.0474
z.		0.0458	0.0460	0.0424	0.0530	0.7350

Таблица 1. Параметры элементарной ячейки и координаты атомов твердых растворов Ca_{1 – x}Sm_xFeO_{3 – δ} (пр. гр. *Pbnm*): Ca/Sm – (x, y, 0.25); Fe – (0.5, 0, 0); O1 – (x, y, 0.25); O2 – (x, y, z) и Ca_{1.1}Sm_{0.9}FeO_{4 – δ} (пр. гр. *Bmab*): Ca/Sm – (0, y, z); Fe – (0, 0, 0); O1 – (0.25, 0.25, z); O2 – (0, y, z)

Рис. 5. Концентрационные зависимости параметров (а) и объема (б) элементарной ячейки $Ca_{1-x}Sm_{x}FeO_{3-\delta}$.

Кристаллическая структура $Sr_{3-z}Ln_zFe_2O_{7-\delta}$. Для установления возможности образования замещенных ферритов $Sr_{3-z}Ln_zFe_2O_{7-\delta}$ были синтезированы образцы с z = 0.3-2.2.

Согласно рентгенографическим данным, сложные оксиды $Sr_{3-z}Sm_zFe_2O_{7-\delta}$ образуются

Рис. 6. Рентгенограмма Ca_{2 – y}Sm_yFeO_{4 – δ} (y = 1.1), обработанная по методу Ритвельда; на вставке – модель элементарной ячейки образца, полученная с помощью программы Diamond 3.2.

в интервале составов $0 \le z \le 0.3$ и при z = 1.8, а $\mathrm{Sr}_{3-z}\mathrm{Gd}_{z}\mathrm{Fe}_{2}\mathrm{O}_{7-\delta}$ при $0 \le z \le 0.3$ и z = 1.9. Дифрактограммы твердых растворов $\mathrm{Sr}_{3-z}\mathrm{Ln}_{z}\mathrm{Fe}_{2}\mathrm{O}_{7-\delta}$ (z = 0-0.3) подобно незамещенному ферриту $\mathrm{Sr}_{3}\mathrm{Fe}_{2}\mathrm{O}_{7-\delta}$ удовлетворительно описываются в рамках тетрагональной ячейки (пр. гр. I4/mmn). Структура образцов $\mathrm{Sr}_{1.2}\mathrm{Sm}_{1.8}\mathrm{Fe}_{2}\mathrm{O}_{7-\delta}$ [18] и $\mathrm{Sr}_{1.1}\mathrm{Gd}_{1.9}\mathrm{Fe}_{2}\mathrm{O}_{7-\delta}$ была описана в рамках тетрагональной сингонии (пр. гр. $P4_2/mnn$), что согласуется с данными [19], полученными для оксида $\mathrm{Nd}_{2}\mathrm{Sr}\mathrm{Fe}_{2}\mathrm{O}_{7-\delta}$.

На рис. 7 представлена рентгенограмма образца $Sr_{1.1}Gd_{1.9}Fe_2O_{7-\delta}$, обработанная по методу полнопрофильного анализа Ритвельда.

Параметры элементарной ячейки однофазных оксидов $Sr_{3-z}Ln_zFe_2O_{7-\delta}$, рассчитанные из рент-генографических данных, приведены в табл. 2.

Состав	Пр. гр.	<i>a</i> , Å	$c, \mathrm{\AA}$	<i>V</i> , Å ³	R _{Br} , %	$R_f, \%$
$Sr_{1.3}Sm_{0.7}FeO_{4-\delta}$	I4/mmm	3.825(1)	12.577(1)	184.05(2)	7.83	5.66
$Sr_{1.2}Sm_{0.8}FeO_{4-\delta}$	I4/mmm	3.816(1)	12.596(1)	183.38(2)	7.24	5.07
$Sr_{2.7}Sm_{0.3}Fe_{2}O_{7-\delta}$	I4/mmm	3.869(1)	20.08(1)	300.57(2)	0.952	1.23
$Sr_{1.2}Sm_{1.8}Fe_2O_{7-\delta}$	P4 ₂ /mnm	5.489(1)	20.014(1)	602.81(2)	7.54	7.85
$Sr_{1.25}Gd_{0.75}FeO_{4-\delta}$	I4/mmm	3.817(1)	12.547(1)	182.83(2)	4.25	3.68
$Sr_{1.2}Gd_{0.8}FeO_{4-\delta}$	I4/mmm	3.822(1)	12.524(1)	182.99(2)	4.35	3.84
$Sr_{2.7}Gd_{0.3}Fe_2O_{7-\delta}$	I4/mmm	3.870(1)	20.076(1)	300.74(2)	1.94	2.63
$Sr_{1.1}Gd_{1.9}Fe_2O_{7-\delta}$	P4 ₂ /mnm	5.493(1)	19.821(1)	598.06(2)	0.64	0.72

Таблица 2. Параметры и объем элементарной ячейки сложных оксидов $Sr_{2-y}Ln_yFeO_{4-\delta}$ и $Sr_{3-z}Ln_zFe_2O_{7-\delta}$

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 55 № 10 2019

Рис. 7. Рентгенограмма $Sr_{1.1}Gd_{1.9}Fe_2O_{7-\delta}$, обработанная по методу Ритвельда.

ЗАКЛЮЧЕНИЕ

Методом РФА в системах Sm_2O_3 —CaO—MO и Ln_2O_3 —SrO—MO (Ln = Sm, Gd; M = Fe, Co) установлено образование перовскитоподобных твердых растворов $A_{n+1}B_nO_{3n+1}$ трех типов ($n = 1, 2, \infty$) с различной степенью замещения в А-подрешетке. Для всех однофазных оксидов определена кристаллическая структура, рассчитаны параметры элементарной ячейки и координаты атомов. Показано, что при увеличении концентрации ионов лантаноида в твердых растворах наблюдается уменьшение параметров и объема элементарных ячеек.

БЛАГОДАРНОСТЬ

Работа выполнена в рамках государственного задания Министерства науки и высшего образования РФ (проект № 4.2288.2017/ПЧ).

СПИСОК ЛИТЕРАТУРЫ

- Tu H.Y., Takeda Y., Imanishi N., Yamamoto O. Ln_{1 - x}Sr_xCoO₃ (Ln = Sm, Dy) for the Electrode of Solid Oxide Fuel Cells // Solid Stare Ionics. 1997. V. 100. P. 283–288.
- Park I., Im J., Choi J., Ahn J., Shin D. Enhanced Performance of the Sm_{0.5}Sr_{0.5}CoO_{3 δ} Double Layer Porous Cathode for Solid Oxide Fuel Cells // Solid State Ionics. 2011. V. 184. P. 35–38.
- Dong F, Chen D., Ran R., Park H., Kwak C., Shao Z. A Comparative Study of Sm_{0.5}Sr_{0.5}MO_{3-δ} (M = Co and Mn) as Oxygen Reduction Electrodes for Solid Oxide Fuel Cells // Int. J. Hydrogen Energy. 2012. V. 37. № 4. P. 4377–4387.
- Fukunaga H., Koyama M., Takahashi N., Wen C., Yamada K. Reaction Model of Dense Sm_{0.5}Sr_{0.5}CoO₃ as SOFC Cathode // Solid State Ionics. 2000. V. 132. № 3–4. P. 279–285.
- 5. *Tsipis E.V., Kharton V.V.* Electrode Materials and Reaction Mechanisms in Solid Oxide Fuel Cells: a Brief Re-

view. III. Recent Trends and Selected Methodological Aspects // J. Solid State Electrochem. 2011. V. 15. № 5. P. 1007–1040.

- Petric A., Huang P., Tietz F. Evaluation of La–Sr–Co– Fe–O Perovskites for Solid Oxide Fuel Cells and Gas Separation Membranes // Solid State Ionics. 2000. V. 135. № 1–4. P. 719–725.
- Michel C.R., Delgado E., Santillan G., Martínez A.H., Chavez-Chavez A. An Alternative Gas Sensor Material: Synthesis and Electrical Characterization of SmCoO₃ // Mater. Res. Bull. 2007. V. 42. P. 84–93.
- Kovalevsky A.V., Kharton V.V., Tikhonovich V.N., Naumovich E.N., Tonoyan A.A., Reut O.P., Boginsky L.S. Oxygen Permeation through Sr(Ln)CoO_{3-δ} (Ln = La, Nd, Sm, Gd) Ceramic Membranes // Mater. Sci. Eng. B. 1998. V. 52. № 2–3. P. 105–116.
- Nitadori T., Ichiki T., Misono M. Catalytic Properties of Perovskite-Type Mixed Oxides (ABO₃) Consisting of Rare Earth and 3d Transition Metals. The Roles of the A- and B-Site Ions // Bull. Chem. Soc. Jpn. 1988. V. 61. P. 621–626.
- Arakawa T., Yoshida A., Shiokawa J. Catalytic Properties and Activity of Rare-Earth Orthoferrites in Oxidation of Methanol // Mater. Res. Bull. 1980. V. 15. № 2. P. 347–352.
- Skinner S.J. Characterisation of La₂NiO_{4 + δ} Using insitu High Temperature Neutron Powder Diffraction // Solid State Sci. 2003. V. 5. P. 419–426.
- Galayda A.P., Volkova N.E., Gavrilova L.Ya., Balymov K.G., Cherepanov V.A. Phase Equilibria, Structure and Properties of Intermediate Phases in the Sm₂O₃-Fe₂O₃-CoO and Sm₂O₃-CaO-CoO systems // J. Alloys Compd. 2017. V. 718. P. 288–297.
- Volkova N.E., Maklakova A.V., Gavrilova L.Ya., Cherepanov V.A. Phase Equilibria, Crystal Structure, and Properties of Intermediate Oxides in the Sm₂O₃-SrO-CoO System // Eur. J. Inorg. Chem. 2017. P. 3285– 3292.
- Shannon R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides // Acta. Crystallogr., Sect. A. 1976. V. 32. P. 751–767.
- 15. James M., Avdeev M., Barnes P., Morales L., Wallwork K., Withers R. Orthorhombic Superstructures within the Rare Earth Strontium-Doped Cobaltate Perovskites: $Ln_{1-x}Sr_xCoO_{3-\delta}$ (Ln = Y³⁺, Dy³⁺-Yb³⁺; 0.750 ≤ x ≤ ≤ 0.875) // J. Solid State Chem. 2007. V. 180. P. 2233– 2247.
- 16. Istomin S.Y., Drozhzhinb O.A., Svensson G. Synthesis and Characterization of $\text{Sr}_{1-x}\text{Ln}_x\text{CoO}_{3-\delta}$, Ln = Y, Sm–Tm, $0.1 \le x \le 0.5$ // J. Solid State Sci. 2004. V. 6. P. 539–546.
- Volkova N.E., Khvostova L.V., Gavrilova L.Ya., Cherepanov V.A. Role of Sm Content to the Crystal Structure and Properties of Sr_{1-x}Sm_xFeO_{3-δ} // J. Solid State Chem. 2018. V. 267. P. 113–118.
- Khvostova L.V., Volkova N.E., Gavrilova L.Ya., Cherepanov V.A. Crystal Structure, Oxygen Nonstoichiometry and Properties of Novel Ruddlesden-Popper Phase Sm_{1.8}Sr_{1.2}Fe₂O_{7-δ}// Mater. Lett. 2018. V. 213. P. 158– 161.
- Gurusinghe N., de la Figuera J., Marco J., Thomas M.F., Berry F.J., Greaves C. Synthesis and Characterisation of the n = 2 Ruddlesden-Popper Phases Ln₂Sr(Ba)Fe₂O₇ (Ln = La, Nd, Eu) // Mater. Res. Bull. 2013. V. 48. P. 3537–3544.