УДК 537.622.6

ИССЛЕДОВАНИЕ ОСОБЕННОСТЕЙ СТРУКТУРЫ И МАГНИТНЫХ СВОЙСТВ ЗАМЕЩЕННОГО ГЕКСАГОНАЛЬНОГО ФЕРРИТА BaFe_{12 – x}Sc_xO₁₉

© 2019 г. В. В. Коровушкин¹, М. Н. Шипко², В. Г. Костишин¹, И. М. Исаев¹, А. Ю. Миронович¹, С. В. Труханов^{3, *}, А. В. Труханов^{1, 3}

¹Национальный исследовательский технологический университет "МИСиС", Ленинский пр., 4, Москва, 119991 Россия ²Ивановский государственный энергетический университет им. В.И. Ленина, ул. Рабфаковская, 34, Иваново, 153003 Россия ³ГО "НПЦ НАН Беларуси по материаловедению", ул. П. Бровки, 19, Минск, 220072 Беларусь *e-mail: truhanov86@mail.ru Поступила в редакцию 20.02.2018 г. После доработки 07.04.2019 г. Принята к публикации 15.05.2019 г.

Изучено влияние замещения ионов Fe^{3+} ионами Sc^{3+} на магнитные свойства и кристаллическую структуру гексаферрита $BaFe_{12 - x}Sc_xO_{19}$. На основе данных мессбауэровской спектроскопии установлено распределение ионов скандия по подрешеткам и определено их влияние на магнитные характеристики. Выявлена зависимость удельной намагниченности и коэрцитивной силы от места локализации и содержания ионов скандия в кристаллической структуре. Установлена неколлинеарная магнитная структура гексаферрита при x > 0.6.

Ключевые слова: гексаферриты, диамагнитное замещение, мессбауэровская спектроскопия, магнитная структура

DOI: 10.1134/S0002337X19100063

введение

Сильно коррелированные сложные оксиды переходных металлов привлекают интерес многих исследователей [1-5] из-за широкого разнообразия магнитных и электрических свойств и возможности ими управлять, варьируя химический состав [6, 7]. Данный класс материалов демонстрирует широкий спектр необычных электронных и магнитных явлений, что обусловлено кооперативными эффектами зарядового и спинорбитального упорядочения. Именно в этом классе материалов наиболее ярко проявляется мультиферроидность (сосуществование магнитного и сегнетоэлектрического упорядочения) [8, 9]. Интерес к исследованию гексаферритов М-типа и твердых растворов на их основе при замещении различными концентрациями диамагнитных ионов (Al, In, Ga и др.) [10, 11], обусловлен их высокими функциональными свойствами.

До недавнего времени гексаферрит бария широко использовался только в качестве постоянных магнитов и в магнитных носителях записи информации высокой плотности с перпендикулярным намагничиванием. В последнее время также отмечен серьезный рост публикаций по гексаферритам *М*-типа в области исследования таких материалов, как мультиферроики. Это материалы, сочетающие в себе одновременно наличие спонтанной намагниченности и электрической поляризации. Также гексаферрит бария *М*-типа имеет большие перспективы как материал для поглощения электромагнитного излучения в микроволновом диапазоне.

ТЕОРЕТИЧЕСКИЙ АНАЛИЗ

Гексаферриты обладают довольно сложной кристаллической структурой, которая представляется в виде некоторой последовательности шпинельных и гексагональных блоков, чередующихся вдоль оси *с* и содержащих довольно большое число катионов железа (рис. 1). Модель магнитной структуры бариевых гексаферритов *М*-типа, предложенная Гортером, предполагает, что для одной формульной единицы магнитоактивные катионы Fe³⁺ расположены в 5 неэквивалентных кристаллографических позициях, которые имеют октаэдрическое (Fe1 – 2*a*, Fe4 – 4*f*_{VI} и Fe5 – 12*k*), пентаэдрическое (бипирамидальное)

Рис. 1. Модель элементарной ячейки гексагонального феррита *М*-типа (в центре) и возможные анионные координации вокруг иона железа.

(Fe2 – 2b) и тетраэдрическое (Fe3 – 4 f_{IV}) кислородные окружения (рис. 1). Ниже температуры Кюри 740 К 12 катионов Fe³⁺, образующих 5 магнитных подрешеток, упорядочиваются антипараллельно (1Fe1[↑], 2Fe2[↓], 1Fe3[↑], 2Fe4[↓], 6Fe5[↑]) и при 0 К дают суммарный магнитный момент, равный 20 μ_B на одну формульную единицу.

Значительное изменение свойств замешенных ферритов вызвано не только различием в ионных радиусах структурообразующих и примесных элементов, но и обрывом косвенных обменных связей между ионами Fe³⁺ [12]. Однако из-за сложного влияния электронной конфигурации замещающих ионов на магнитную структуру материала во многих случаях сушествует неоднозначность в объяснении различий магнитных параметров в модифицированных ферритах [13, 14]. Предполагается, что в гексагональной структуре феррита $BaFe_{12-x}Sc_xO_{19}$ ионы Sc^{3+} занимают либо октаэдрические, либо пятикратно координированные узлы гексагонального блока. Такая локализация ионов Sc³⁺ способна оказать влияние на интенсивность обменных взаимодействий и, как следствие, на характер спинового упорядочения в структуре феррита. Появление неколлинеарной спиновой структуры в феррите BaFe_{12-x}Sc_xO₁₉ обнаружено нейтронографически лишь при x > 1.6[15]. Вместе с тем заметные изменения констант кристаллографической анизотропии и температуры Кюри наблюдаются в образцах уже при $x \ge 0.6$, для которых не обнаружено нарушения коллинеарности в расположении спиновых моментов ионов Fe³⁺.

Целью настоящей работы было исследование магнитных свойств и катионного распределения

в гексаферритах $BaFe_{12-x}Sc_xO_{19}$ при 0.1 x < x < 1.2, что весьма актуально для создания материалов СВЧ-техники.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Объектами для исследования служили образцы поликристаллических гексаферритов $BaFe_{12} - {}_xSc_xO_{19}$, с x = 0.1, 0.3, 0.6, 0.9, 1.0, 1.2. Образцы были изготовлены по известной керамической технологии из оксидов Fe_2O_3 , Sc_2O_3 и карбоната $BaCO_3$ квалификации "ос. ч.", взятых в соответствующих пропорциях:

$$BaCO_3 + (6 - 0.5x)Fe_2O_3 + 0.5xSc_2O_3 →$$

→
$$BaFe_{12-x}Sc_xO_{19} + CO_2.$$

Исходную смесь обжигали на воздухе при 1200° C (6 ч), а затем спекали при 1300° C (6 ч). После спекания образец медленно охлаждался в печи (~ 100° C/ч).

Для изучения особенностей кристаллической структуры и состава использовали результаты мессбауэровских исследований, полученных на спектрометре Ms1104-Em с обработкой спектров по программе Univem Ms. Магнитные параметры: удельную намагниченность σ_s , коэрцитивную силу H_c , остаточную намагниченность σ_r , форму петли гистерезиса — измеряли на вибрационном магнитометре VSM 250 в магнитном поле напряженностью 20 кЭ при 300 К.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Рассчитанные из полевых и температурных зависимостей удельной намагниченности магнитные параметры (удельная намагниченность, остаточная намагниченность, коэрцитивная сила и температура Кюри) приведены в табл. 1, а на рис. 2 представлены концентрационные зависимости удельной намагниченности и коэрцитивной силы от состава исследованных гексаферритов BaFe_{12-x}Sc_xO₁₉. Из приведенных графиков видно, что с ростом х наблюдается немонотонное уменьшение удельной намагниченности и коэрцитивной силы. Такое уменьшение не может быть связано только с замещением (даже упорядоченным) ионов Fe^{3+} ионами Sc^{3+} . Иными словами, можно отметить фрустрацию магнитной структуры в замещенных ионами скандия гексаферритах бария. Для выяснения механизма наблюдаемых изменений магнитных параметров необходимо привлечение данных о катионном распределении, особенностях электронной конфигурации магнитоактивных ионов и дефектах кристаллической структуры. Эти данные были получены в результате компьютерной обработки

Мессбауэровские спектры образцов (рис. 3) гексаферрита были разложены на 5, 6, 7 и 8 секстетов, обеспечивающих минимальный χ^2 при содержания Sc в пределах $0.1 \le x \le 1.2$. Мессбауэровские параметры компонентов спектров приведены в табл. 2.

мессбауэровских спектров.

Видно, что при введении ионов Sc³⁺ в кристаллическую решетку гексаферрита бария изменение мессбауэровских спектров становится заметным уже при x = 0.1 (рис. 36). Помимо 5 секстетов от ионов железа основных позиций гексаферрита бария, был выделен дополнительный секстет, который был отнесен к неэквивалентному положению ионов Fe³⁺ в позиции 12k и обозначен как 12к' (табл. 2). Учитывая, что при этом наблюдается уменьшение интенсивности секстета, соответствующего подрешетке 2b, а также уменьшение величины квадрупольного сдвига и увеличение ширины линий для подрешетки $4f_2$ (табл. 2), такие изменения мессбауэровских спектров могут быть связаны с преимущественной локализацией ионов Sc^{3+} в подрешетке 2*b*. Следует отметить также то обстоятельство, что причиной уменьшения интегральной интенсивности ионов Fe³⁺ в позиции 2b может быть малая вероятность их резонансного эффекта, поскольку ионы Fe³⁺ в этой позиции имеют значительную амплитуду тепловых колебаний вдоль оси с. Однако основной вклад в уменьшение площади секстета от ионов Fe в позиции 2b обусловлен изоморфным вхождением Sc в эту позицию.

Как видно из табл. 2, для секстета 12k' наблюдаются более высокие значения квадрупольного сдвига и более низкие значения локального магнитного поля на ядрах по отношению к секстету от подрешетки 12k. Это указывает на искажение октаэдрических позиций 12k' для ионов Fe³⁺, име-

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 55 № 10 2

Таблица 1. Результаты измерений магнитных параметров для $BaFe_{12-x}Sc_xO_{19}$

Состав	$σ_s$, Am ² /κΓ	σ _r , Αм²/кг	<i>H_c</i> , кА/м	<i>T_C</i> , K
BaFe _{11.9} Sc _{0.1} O ₁₉	56.93	15.58	71.6	710
BaFe _{11.7} Sc _{0.3} O ₁₉	62.8	14.5	54.5	688
BaFe _{11.4} Sc _{0.6} O ₁₉	56.99	6.2	15.9	653
BaFe _{11.1} Sc _{0.9} O ₁₉	54.2	1.89	6.1	614
BaFe _{10.8} Sc _{1.2} O ₁₉	55.44	3.07	2.4	587

ющих в ближайшем окружении ионы Sc³⁺. Понижено значение величины H_{n} , по данным мессбауэровской спектроскопии, может быть связано с переносом спиновой плотности от ионов Fe³⁺ (3d⁵) на ионы Sc³⁺ (3d⁰). В результате включения в цепь обменных подрешеточных взаимодействий ионов Sc³⁺ и вследствие появления дополнительного зве-

Рис. 2. Зависимости удельной намагниченности (а) и коэрцитивной силы (б) образцов гексаферрита BaFe_{12 – x}Sc_xO₁₉ от состава.

2019

Рис. 3. Мессбауэровские спектры: $a - BaFe_{12}O_{19}$, $\delta - BaFe_{11.9}Sc_{0.1}O_{19}$, $B - BaFe_{11.7}Sc_{0.3}O_{19}$, $\Gamma - BaFe_{11.4}Sc_{0.6}O_{19}$, $\pi - BaFe_{11.1}Sc_{0.9}O_{19}$, $e - BaFe_{10.8}Sc_{1.2}O_{19}$.

на в цепи Fe³⁺–O^{2–}–Fe³⁺–O^{2–}–Sc³⁺–O^{2–}–Fe³⁺, а также усиления прямого диполь-дипольного вза-имодействия Fe³⁺–Fe³⁺ и Fe³⁺–Sc³⁺ может происходить уменьшение магнитных моментов ионов железа в ближайшем окружении ионов скандия.

Более существенные изменения параметров мессбауэровских спектров проявляются для образцов с x = 0.3 и x = 0.6 (рис. 3в и рис. 3г, табл. 2). Помимо уменьшения площади секстетов, соответствующих подрешеткам 12k и 2b, в спектрах наблюдаются понижение вклада компоненты, от-

вечающей $4f_2$ -подрешетке, и появление секстетов 12*k*' и 12*k*" от ядер ионов Fe³⁺, расположенных в позиции 12*k* и имеющих в ближайшем окружении ионы Sc³⁺. Следовательно, в структуре гексаферрита при *x* = 0.3 и *x* = 0.6 ионы Sc³⁺ располагаются в позициях 2*b* и 4*f*₂. При этом следует отметить, что при преимущественной локализации ионов Sc³⁺ в позиции 2*b* значение локального магнитного поля для ионов Fe_{12*k*} (секстет 12*k*') должно уменьшаться на 69 кЭ при учете разрыва 1/12 обменной связи Fe_{12*k*}-O-Fe_{2*b*}. Экспериментально

	Компонента	Изомерный	Квадрупольное	Магнитные	Площади компонент S %	Ширина	Vroit
x	спектря	сдвиг	расщепление Δ ,	поля		линии Г,	910л Ө. грал
	enekipa	δ, мм/с	мм/с	Н _{эф} , кЭ		мм/с	0, град
0	$C1-12k ({\rm Fe}^{3+})_{\rm VI}$	0.37	0.41	414	49.8	0.32	54.9
	$C2-4f_2 (Fe^{3+})_{VI}$	0.39	0.19	516	17.6	0.31	
	$C3-4f_1 (\text{Fe}^{3+})_{\text{IV}}$	0.26	0.22	491	18.5	0.30	
	$C4-2a ({\rm Fe}^{3+})_{\rm VI}$	0.33	0.00	507	8.8	0.33	
	$C5-2b ({\rm Fe}^{3+})_{\rm V}$	0.29	2.21	400	5.3	0.32	
0.1	$C1 - 12k (\mathrm{Fe}^{3+})_{\mathrm{VI}}$	0.36	0.42	412	43.2	0.42	52.8
	$C2-4f_2 (\text{Fe}^{3+})_{\text{VI}}$	0.39	0.02	517	20.7	0.41	
	$C3-4f_1 (\text{Fe}^{3+})_{\text{IV}}$	0.28	0.19	489	19.8	0.38	
	$C4-2a ({\rm Fe}^{3+})_{\rm VI}$	0.36	0.04	505	9.0	0.25	
	$C5-2b ({\rm Fe}^{3+})_{\rm V}$	0.29	2.24	400	4.3	0.32	
	$C6-12k'(Fe^{3+})_{VI}$	0.34	0.52	323	3.0	0.42	
0.3	$C1-12k ({\rm Fe}^{3+})_{\rm VI}$	0.35	0.41	412	43.0	0.40	52.7
	$C2-4f_2$ (Fe ³⁺) _{VI}	0.38	-0.23	513	13.0	0.41	
	$C3-4f_1$ (Fe ³⁺) _{IV}	0.26	0.19	489	19.8	0.28	
	$C4-2a (Fe^{3+})_{VI}$	0.37	-0.04	510	8.8	0.33	
	$C5-2b ({\rm Fe}^{3+})_{\rm V}$	0.30	2.22	339	4.7	0.43	
	$C6-12k'(Fe^{3+})_{VI}$	0.39	0.70	316	2.2	0.35	
	$C7-12k'' (Fe^{3+})_{VI}$	0.35	-0.27	515	8.5	0.27	
0.6	C1-12k (Fe ³⁺) _{VI}	0.35	0.41	403	28.4	0.46	51.3
	$C2-4f_2$ (Fe ³⁺) _{VI}	0.41	0.12	494	13.4	0.38	
	$C3-4f_1$ (Fe ³⁺) _{IV}	0.23	0.05	472	21.3	0.77	
	$C4-2a (Fe^{3+})_{VI}$	0.33	0.28	473	11.9	0.41	
	C5-2b (Fe ³⁺) _V	0.22	1.97	403	3.1	0.56	
	C6-12k' (Fe ³⁺) _{VI}	0.36	0.58	308	13.6	0.62	
	$C7 - 12k''(\text{Fe}^{3+})_{\text{VI}}$	0.41	0.52	344	9.6	0.56	
0.9	C1-12k (Fe ³⁺) _{VI}	0.34	0.41	401	25.1	0.55	52.4
	$C2-4f_2$ (Fe ³⁺) _{VI}	0.41	0.12	497	10.1	0.40	
	C3-2a (Fe ³⁺) _{VI}	0.35	0.07	479	8.4	0.41	
	$C4-4f_1$ (Fe ³⁺) _{IV}	0.27	0.17	464	20.4	0.65	
	C5-2b (Fe ³⁺) _V	0.31	2.21	371	3.2	0.41	
	C6-12k' (Fe ³⁺) _{VI}	0.37	0.42	347	17.6	0.71	
	$C7-12k''(Fe^{3+})_{VI}$	0.36	0.46	311	6.1	0.47	
	$C8-2k'''(Fe^{3+})_{VI}$	0.33	0.28	251	9.1	0.78	
1.2	C1-12k (Fe ³⁺) _{VI}	0.33	0.39	393	20.1	0.58	52.0
	$C2-2a (Fe3+)_{VI}$	0.33	0.07	431	7.5	0.43	
	$C3-4f_1$ (Fe ³⁺) _{IV}	0.31	0.14	455	21.3	0.53	
	$C4-4f_2$ (Fe ³⁺) _{VI}	0.38	0.07	476	10.2	0.44	
	$C5-2b (Fe^{3+})_V$	0.29	1.86	366	1.6	0.31	
	$C6-2k'''(Fe^{3+})_{VI}$	0.46	0.30	214	9.8	0.77	
	C7-12k' (Fe ³⁺) _{VI}	0.33	0.47	342	11.5	0.57	
	$C8 - 12k''(\text{Fe}^{3+})_{\text{VI}}$	0.41	0.42	306	18.0	0.71	

Таблица 2. Результаты мессбауэровских исследований BaFe_{12 - x}Sc_xO₁₉

наблюдаемое уменьшение составляет 91 кЭ. С другой стороны, при частичной локализации ионов Sc³⁺ в позиции 4 f_2 (при x = 0.3 и x = 0.6) следует ожидать более сильного, чем наблюдается на опыте, уменьшения магнитного поля для секстета 12k" в силу более высокого значения параметра межподрешеточного взаимодействия Fe_{12k}–O–Fe_{4 f_2}, чем Fe_{12k}–O–Fe_{2b}.

Кроме того, для феррита $BaFe_{11.4}Sc_{0.6}O_{19}$ наблюдается отклонение интенсивностей первой и второй компонент мессбауэровского спектра от отношения 3 : 2, характерного для коллинеарной спиновой структуры феррита. Это соотношение еще в большей степени нарушается для ферритов с x = 0.9 и x = 1.2 (рис. 3д, 3е). При этом в спектрах этих ферритов появляется секстет 12k''', обусловленный ядрами ионов Fe_{12k}^{3+} , имеющих в ближайшем окружении ионы Sc как в 2b-, так и в $4f_2$ -подрешетках. Это возможно, поскольку кислородные вершины тригональной бипирамиды 2b и октаэдра $4f_2$ являются общими с вершинами октаэдров 12k [8].

Известно, что из соотношения интенсивностей первых и вторых (пятых и шестых) линий секстетов можно определить угол. характеризующий ориентацию магнитных моментов относительно волнового вектора у-излучения. Несмотря на то что исследования выполнены на порошковых образцах поликристаллов, можно заключить, что в ферритах с x = 0.6; 0.9 и 1.2 наблюдаемое отклонение соотношения интенсивностей от 3:2 связано с отклонением от коллинеарности магнитных моментов ионов Fe³⁺, локализованных преимущественно в шпинельном блоке. Кроме этого, величина угла между магнитными моментами ионов Fe³⁺ и гексагональной осью зависит от х. Этот результат находится в соответствии с данными [6], согласно которым введение ионов Sc³⁺ оказывает влияние на интенсивность обменных взаимодействий за счет нарушения связей Fe_{12k}-O-Fe_{4f2}, Fe_{12k}-O-Fe_{2b}, что и является причиной неколлинеарности.

Учитывая тот факт, что при x = 0.1 степень замещения ионов железа невелика, а удельная намагниченность и коэрцитивная сила феррита ВаFe_{11.9}Sc_{0.1}O₁₉ по отношению к ферриту ВаFe₁₂O₁₉ изменяются существенно, наблюдаемое уменьшение нельзя объяснить только избирательной локализацией ионов Sc³⁺ в 2*b*-позиции. Действительно, при такой локализации немагнитных ионов Sc³⁺ удельная намагниченность должна уменьшаться на 2.5–3%. В то же время экспериментально обнаруженное уменьшение σ_s , составляет 11–12%. Такое несоответствие экспериментальных данных магнитных параметров с данными мессбауэровской спектроскопии относительно локализации ионов Sc³⁺ указывает на существенное изменение симметрии внутрикристаллического поля полиэдров, ответственных за кристаллографическую анизотропию в исследованных ферритах, а также на влияние катионных вакансий на магнитные свойства феррита. В гексагональных ферритах катионные вакансии могут находиться в различных зарядовых состояниях. Энергия состояния зависит от спинового момента электрона, захваченного или отданного при образовании комплекса дефектов, а также от характера их распределения. В результате при упорядочении вакансий происходит уменьшение локальных деформаций кристаллической решетки, возникающих вследствие различия ионных радиусов Sc³⁺ (0.089 нм) и Fe³⁺ (0.067 нм), и, как следствие, изменение симметрии внутрикристаллического поля пятикратных и октаэдрических координаций, расположенных на границе шпинельного и гексагонального блоков. Это сопровождается изменением коэрцитивной силы и намагниченности насыщения. Удельная намагниченность феррита при увеличении x с 0 до 0.1 уменьшается с 64.8 до 56.9 Am^2/kr , а коэрцитивная сила — с 96 до 72 kA/m, что может быть связано с угловой, или антипараллельной, ориентацией спиновых моментов ионов Fe^{3+} , локализованных в подрешетке 12*k*.

Локализация ионов Sc³⁺ в позициях при x > 0.3 действительно способствует снижению интенсивности обменных взаимодействий Fe_{12k}–O–Fe_{4/2} и Fe_{4/2}–O–Fe_{2b}, а также уменьшению локальных деформаций решетки. Ослабление межподрешеточных взаимодействий Fe_{4/2}–O–Fe_{2b} приводит к нарушению коллинеарности в расположении спинов магнитоактивных ионов Fe³⁺, что сопровождается отклонением соотношения интегральной интенсивности компонент мессбауэровского спектра 1 и 2 от 3 : 2, а также заметным уменьшению мотальных ной силы.

Убедительным аргументом нарушения коллинеарности в расположении спинов в ферритах при x = 0.6-1.2 является отсутствие симбатности концентрационной зависимости магнитных полей на ядрах ⁵⁷Fe для подрешетки $12k (H_n^{12k})$ и остаточной намагниченности σ_r . Действительно, значение магнитного момента для подрешетки 12k, определяющего величину H_n^{12k} , зависит от намагниченности единицы объема феррита, создаваемой каждой из подрешеток, их концентрации в каждой подрешетке и молекулярного поля

1071

для обменных взаимодействий между ионами Fe³⁺ в этих подрешетках.

В результате поведение H_{π} для всех подрешеток должно согласовываться с изменением остаточной намагниченности с ростом *x*. В действительности, как видно из рис. 2 и табл. 2, изменение σ_r не коррелирует с изменением H_{π}^{12k} для феррита BaFe_{12 – x}Sc_xO₁₉ с ростом *x*. Неколлинеарность спиновых магнитных моментов ионов Fe³⁺ в магнитных подрешетках проявляется и в скачкообразном уменьшении вероятности эффекта Мёссбауэра и интенсивности секстета для подрешетки 12*k* с ростом *x* (при *x* > 0.3). Этот факт легко объясним, если принять во внимание зависимость упругих постоянных кристаллической решетки от энергии обменного взаимодействия и характера упорядочения спиновых моментов ионов.

Как правило, скачкообразное изменение величины эффекта Мёссбауэра наблюдается при фазовом переходе порядок-беспорядок. В свою очередь при малых значениях x ($x \le 0.3$) в ферритах BaFe_{12 - x}Sc_xO₁₉ важную роль в формировании магнитных свойств выполняет упорядоченное расположение ионов Sc³⁺ и катионных вакансий. Благодаря этому в структуре феррита на границе шпинельного и гексагонального блоков формируются кислородные слои с октаэдрической координацией ионов Fe³⁺ и симметрией кристаллического поля, свойственной α -Fe₂O₃, и, как следствие, с антипараллельной ориентацией магнитных моментов части ионов Fe³⁺, локализованных в 12k. Это обеспечивает снижение удельной намагниченности феррита на 12% при замещении 0.8% магнитоактивных ионов Fe³⁺.

ЗАКЛЮЧЕНИЕ

Методом твердофазных реакций получены керамические образцы твердых растворов $BaFe_{12-x}Sc_xO_{19}$ с x = 0.1, 0.3, 0.6, 0.9 и 1.2. Проведены исследования магнитных характеристик синтезированных образцов методом вибрационной магнитометрии в широком диапазоне магнитных полей и температур. Для интерпретации магнитных характеристик проведены исследования характера распределения ионов-заместителей в структуре гексагонального феррита методом Мёссбауэровской спектроскопии.

Выполненные исследования показывают, что причиной высокой чувствительности магнитных параметров поликристаллических ферритов $BaFe_{12-x}Sc_xO_{19}$ являются несколько факторов: 1) упорядоченное расположение ионов Sc^{3+} в позициях 2b и 4f₂, а также упорядочение катионных вакансий на границе шпинельного и гексагонального блоков; 2) перенос спиновой плотности от ионов железа, локализованных в позиции 12k, на 3d-орбитали ионов Sc³⁺; 3) ослабление косвенных обменных взаимодействий между подрешетками 2b, 4f₂ и 12k; 4) наличие неколлинеарной структуры при x > 0.6.

СПИСОК ЛИТЕРАТУРЫ

- 1. Кецко В.А., Береснев Э.Н., Кольёва М.А., Рябкова Л.В., Баранчиков А.Е., Стогний А.И., Труханов А.В., Кузнецов Н.Т. Особенности синтеза твердых растворов в системе (MgGa₂O₄)_x(MgFe₂O₄)_{1-x} пирогидролитическим и твердофазным методами // Журн. неорган. химии. 2010. Т. 51. № 3. С. 476–479.
- Нипан Г.Д., Кецко В.А., Стогний А.И., Труханов А.В., Кольцова Т.Н., Копьева М.А., Рябкова Л.В., Кузнецов Н.Т. Свойства твердых растворов Mg(Fe_{1-x}Ga_x)₂O_{4 + δ} в стабильном и метастабильном состояниях // Неорган. материалы. 2010. Т. 46. № 4. С. 490-494.
- Стогний А.И., Труханов А.В., Кецко В.А., Нипан Г.Д. Свойства керамик и пленок Mg(Fe_{0.8}Ga_{0.2})₂O_{4+δ}// Неорган. материалы. 2011. Т. 47. № 2. С. 247–251.
- 4. Труханов А.В., Стогний А.И., Новицкий Н.Н., Труханов С.В., Кецко В.А., Нипан Г.Д. Синтез и структура пленочных образцов в системе Мg(Fe_{0.8 + x}Ga_{0.2 + y})₂O_{4 δ} // Неорган. материалы. 2011. Т. 47. № 9. С. 1128–1131.
- Труханов А.В., Стогний А.И., Труханов С.В., Гераськин А.А., Кецко В.А. Кристаллическая структура и магнитные свойства наноразмерных пленок Mg(Fe_{0.8}Ga_{0.2})₂O_{4 – δ} на подложках кремния // Кристаллография 2013. Т. 58. № 3. С. 490–496.
- Труханов С.В., Труханов А.В., Панина Л.В., Казакевич И.С., Турченко В.А., Олейник В.В., Яковенко Е.С., Мацуй Л.Ю. Магнитные и поглощающие свойства замещенных гексаферритов М-типа ВаFe_{12 - x}Ga_xO₁₉ (0.1 < x < 1.2) // ЖЭТФ. 2016. Т. 150. № 2(8). С. 536– 545.
- Смирнова М.Н., Гераськин А.А., Стогний А.И., Голикова О.Л., Беспалов А.В., Труханов А.В., Копьева М.А., Береснев Э.Н., Кецко В.А. Кристаллизация пленок Mg(Fe_{0.8}Ga_{0.2})₂O_{4 δ} на Si с буферными слоями SiO₂ и TiO₂ // Журн. неорган. химии. 2014. Т. 59. № 7. С. 993–997.
- Труханов А.В., Труханов С.В., Костишин В.Г., Панина Л.В., Казакевич И.С., Турченко В.А., Кочервинский В.В. Мультиферроидные свойства и структурные особенности Аl-замещенных гексаферритов бария М-типа // ФТТ. 2017. Т. 59. № 4. С. 721–729.
- Труханов А.В., Турченко В.А., Бобриков И.А., Труханов С.В., Балагуров А.М. Исследование кристаллической и магнитной структуры твердых растворов ВаFe_{12 x}Al_xO₁₉ (x = 0.1–1.2) // Кристаллография. 2015. Т. 60. № 5. С. 693–699.
- 10. Trukhanov S.V., Trukhanov A.V., Turchenko V.A., Kostishin V.G., Panina L.V., Kazakevich I.S., Balagurov A.M. Crystal Structure and Magnetic Prop-

КОРОВУШКИН и др.

erties of the BaFe_{12 - x}In_xO₁₉ (x = 0.1-1.2) Solid Solutions // JMMM. 2016. 417. P. 130–136.

- Kojima H. Fundamental Properties of Hexagonal Ferrites with Magnetoplumbite Structure // Ferromagnetic Mater. 1982. V. 3. P. 305–440.
- Шипко М.Н., Розин Е.Г., Бондарь В.И., Башкиров Л.А. Исследование методом мессбауэровской спектроскопии особенностей катионного распределения фазового состава барий-кальциевых гексагональных ферритов // Изв. АН БССР. Сер. физ.-мат. наук. 1984. Т. 1. С. 70–73.
- 13. *Смит Я., Вейн Х.* Ферриты. Физические свойства и практическое применение. Пер. с англ. Елкиной Т.А. и др. М.: Изд-во иностр. лит., 1962.
- Камзин А.С., Ольховик Л.П., Розенбаум В.Л. Мессбауэровские исследования магнитной структуры поверхности и объема скандий-замещенных гексаферритов типа Ва-М // ФТТ. 1999. Т. 41. № 3. С. 483–490.
- 15. Костишин В.Г., Андреев В.Г., Читанов Д.Н., Налогин А.Г., Урсуляк Н.Д., Алексеев А.А., Тимофеев А.В., Адамцов А.Ю. Влияние базового состава и легирующих добавок на свойства гексаферритов // Журн. неорган. химии. 2016. Т. 61. № 3. С. 294–299.