УДК 541.123.3

ВЛИЯНИЕ СЕРЕБРА НА ДИЭЛЕКТРИЧЕСКИЕ СВОЙСТВА МОНОКРИСТАЛЛОВ TIInSe₂

© 2019 г. С. М. Асадов¹, С. Н. Мустафаева^{2, *}

¹Институт катализа и неорганической химии Национальной академии наук Азербайджана, пр. Г. Джавида, 113, Баку, AZ 1143 Азербайджан ²Институт физики Национальной академии наук Азербайджана, пр. Г. Джавида, 131, Баку, AZ 1143 Азербайджан *e-mail: solmust@gmail.com Поступила в редакцию 28.11.2018 г. После доработки 28.02.2019 г. Принята к публикации 16.04.2019 г.

Изучено влияние добавки серебра на диэлектрические свойства и *ac*-проводимость синтезированных из исходных высокочистых химических элементов и выращенных методом Бриджмена—Стокбаргера монокристаллов на основе TllnSe₂ (2 мол. % Ag). Экспериментальные результаты по изучению частотной дисперсии диэлектрических коэффициентов и проводимости монокристаллов (1-x)(TllnSe₂) · *x*Ag позволили установить природу диэлектрических потерь, прыжковый механизм переноса заряда и оценить параметры локализованных в запрещенной зоне состояний.

Ключевые слова: TlInSe₂, твердый раствор (1 - x)(TlInSe₂) · *x*Ag, монокристаллы, серебро, диэлектрические свойства, проводимость, параметры локализованных состояний **DOI:** 10.1134/S0002337X19100014

введение

Соединение TIInSe₂ перспективно для использования в электронной технике. Этот материал обладает полупроводниковыми свойствами, относительно высокой фото-, рентгено- и электронной проводимостью [1-3]. Эти свойства определяются слоисто-цепочечной структурой TlInSe₂. Физические характеристики полупроводниковых соединений существенно зависят от типа и концентрации введенных легирующих добавок. Так, легирование монокристаллов TIInSe₂ различными металлами (Ag, Cu, Sn) [2], а также интеркалирование литием [1] позволяют повышать их фото- и рентгеночувствительность [1, 2]. Изучение диэлектрических свойств нелегированных монокристаллов TIInSe₂ на переменном токе [3] показало, что в диапазоне частот $5 \times 10^4 - 3.5 \times 10^7$ Гц в них имеет место релаксационный характер дисперсии диэлектрической проницаемости. Экспериментально определено значение оптической диэлектрической проницаемости ($\dot{\epsilon_{ont}} = 17.9$) монокристалла TIInSe₂. Рассчитаны значения частоты релаксации $f_{\rm p}=1.84\times 10^4$ Гц и времени релаксации $\tau = 5.4 \times 10^{-5}$ с.

В [4] представлены результаты высокочастотных диэлектрических измерений твердых растворов $TlIn_{1-x}Er_xSe_2$. Показано, что диэлектрические свойства TIIn_{1 – x}Er_xSe₂ закономерно зависят от концентрации легирующей примеси Er (x = 0, 0.001, 0.005 и 0.01). При сохранении кристаллической структуры TIInSe₂ в твердых растворах на его основе обнаруживается улучшение функциональных характеристик решетки TIInSe₂ и закономерное влияние легирующей добавки Er на примесное состояние и перенос заряда.

Таким образом, физическими свойствами монокристаллов $TlInSe_2$ можно управлять, контролируя количество легирующей добавки. В материалах на основе $TlInSe_2$ взаимодействия ионов решетки $TlInSe_2$ с легирующими катионами, чувствительными к межатомным расстояниям и углам межатомных связей, влияют на зонную структуру и физические свойства.

Среди всех проводниковых материалов Ag обладает минимальным удельным сопротивлением при нормальной температуре. Сведения о действии серебра в полупроводниках скудны [5]. Серебро как примесь в полупроводниках имеет ряд преимуществ по сравнению с лантаноидами. Процесс легирования полупроводников лантаноидами вызывает технологические трудности, связанные с окислением этих металлов на воздухе.

В настоящей работе изучали влияние добавки серебра Аg на диэлектрические свойства и элек-

тропроводность полученных монокристаллов на основе TlInSe₂. Выбор добавки серебра и его количества (2 мол. % Ag) связан с тем, что, хотя TlInSe₂ и имеет область гомогенности, возможная структурная неоднородность, связанная с большой концентрацией добавки (>2 мол. % Ag), может нарушить монотонность изменения физических свойств.

Цель исследования состояла в том, чтобы определить зависимость диэлектрических свойств от заданной концентрации добавки (2 мол. % Ag), выяснить природу диэлектрических потерь в кристаллах (1 - x)(TIInSe₂) · *x*Ag и установить механизм переноса заряда.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

При выборе режимов синтеза TIInSe₂, содержащего серебро, использовали сведения о фазовой диаграмме состояния $Tl_2Se-In_2Se_3$ [6]. В этой системе образуется промежуточная фаза состава TIInSe₂. По данным дифференциального термического анализа (Д**TA**), фаза TIInSe₂ плавится конгруэнтно при 1025 К. Фаза TIInSe₂ имеет двустороннюю область гомогенности. При температуре 665 К область гомогенности соединения TIInSe₂ составляет ~5 мол. %.

Для получения TlInSe₂ и твердого раствора (TlInSe₂)_{1 – x}Ag_x использовали метод прямого синтеза из элементов. Исходными компонентами служили особо чистые химические элементы: Tl-000, In-000, Se OCЧ-16-4 и Ag Cp-99.999. Стехиометрический состав твердого раствора отвечал формуле (1 – x)(TlInSe₂) · xAg (x = 0.02).

Поликристаллы TlInSe₂ и (1 - x)(TlInSe₂) · xAg (x = 0.02) синтезировали из взятых в стехиометрических соотношениях элементов путем непосредственного их сплавления в вакуумированных до 10⁻³ Па кварцевых ампулах в течение 5–7 ч. При синтезе твердых растворов (1 - x)(TlInSe₂) · xAg (x = = 0.02) сплавление компонентов проводили при температуре 1240 К, превышающей температуру плавления серебра (1233.8 К). Синтезированные образцы в ампулах отжигали при 750 К в течение 120 ч. Затем образцы охлаждали до комнатной температуры в режиме выключенной печи. Завершенность синтеза и гомогенность полученных образцов, а также их индивидуальность контролировали методами ДТА и рентгенофазового анализа (РФА). РФА образцов проводили на дифрактометре ДРОН-2 с использованием излучения CuK_{α} при комнатной температуре.

Из синтезированных образцов TlInSe₂ и $(1-x)(TlInSe_2) \cdot xAg (x = 0.02)$ методом Бриджмена—Стокбаргера выращивали монокристаллы [7, 8]. Для этого синтезированные образцы измельчали и помещали в кварцевые ампулы длиной 8–10 см с заостренным концом и внутренним диаметром 1 см. Вакуумированные до давления 10^{-3} Па кварцевые ампулы с образцами помещали в двухтемпературную печь для выращивания монокристаллов. В верхней зоне печи поддерживалась температура 1030 ± 5 , а в нижней зоне – 953 ± 10 К. Скорость перемещения ампулы в печи составляла 0.3-0.5 см/ч, а градиент температуры у фронта кристаллизации – 25 ± 5 К. Указанный режим направленной кристаллизации оказался оптимальным для роста монокристаллов TlInSe₂ и (1 - x)(TlInSe₂) · xAg (x = 0.02).

Диэлектрические коэффициенты монокристаллических образцов TlInSe₂ и (1 - x)(TlInSe₂) · *x*Ag (x = 0.02) измеряли резонансным методом [9]. Диапазон частот переменного электрического поля составлял 5 × 10⁴-3.5 × 10⁷ Гц.

Образцы из TlInSe₂ и (1 - x)(TlInSe₂) · xAg (x = 0.02) для электрических измерений готовили в виде плоских конденсаторов. В качестве электродов использовали серебряную пасту. Толщина монокристаллических образцов составляла 0.03– 0.04 см. Все диэлектрические измерения проводили при 300 К. Воспроизводимость положения резонанса составляла по емкости ±0.2 пФ, а по добротности ($Q = 1/\text{tg}\delta$) ± 1.0–1.5 деления шкалы. При этом наибольшие отклонения от средних значений составляли 3–4% для є' и 7% для tg δ .

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Анализ результатов РФА образцов TlInSe₂ и (1 - x)(TlInSe₂) · xAg (x = 0.02) (рис. 1) показал, что они однофазные. Параметры решетки тетрагональной элементарной ячейки (пр. гр. D_{4h}^{18} –I4/mcm) TlInSe₂ имеют следующие значения: $a = 8.084 \pm 0.002$ Å, $c = 6.844 \pm 0.004$ Å. Эти параметры совпадают с данными [10] и близки к данным [11] (a = 8.075, c = 6.847 Å).

При растворении 2 мол. % Ад в TIInSe₂ сдвига основных пиков на рентгеновской дифрактограмме образца не наблюдается (рис. 1). На дифрактограммах помимо рефлексов фазы TIInSe₂ не наблюдается никаких других пиков, связанных с растворенным Ад. Это указывает на то, что при взаимодействии серебра с TIInSe₂ в кристаллическом состоянии образуются твердые растворы. Атомы серебра имеют близкие относительные электроотрицательности с замещаемыми катионами: T1 (1.8), In (1.78) и Ад (1.9 по шкале Полинга) [12], поэтому образуются твердые растворы замещения.

На рис. 2 приведены частотные зависимости действительной составляющей комплексной диэлектрической проницаемости (ϵ ') образцов TlInSe₂ и (1 – x)(TlInSe₂) · xAg (x = 0.02). Видно, что в TlInSe₂ (кривая *I*) во всем изученном диапа-

Рис. 1. Рентгеновские дифрактограммы выращенных монокристаллов TlInSe₂ (*1*) и (1 - x)(TlInSe₂) · *x*Ag (*x* = 0.02) (*2*).

зоне частот имеет место существенная дисперсия є' (значение є' по мере увеличения частоты от 5×10^4 до 3.5×10^7 Гц уменьшалось почти на порядок). В (1 - x)(TlInSe₂) · xAg (x = 0.02) (кривая 2) с изменением частоты в этом же диапазоне значение є' уменьшалось примерно в 3 раза, т.е. частотная дисперсия є' после введения серебра в TlInSe₂ значительно уменьшалась. Наблюдаемое в экспериментах уменьшение диэлектрической проницаемости монокристалла (1 - x)(TlInSe₂) · xAg (x = 0.02) с ростом частоты свидетельствует о релаксационной дисперсии [13–15].

Образование твердых растворов $(1 - x)(\text{TIInSe}_2) \cdot x\text{Ag} (x = 0.02)$ приводило к заметному уменьшению є' при $f = 5 \times 10^4$ Гц (рис. 2). А при высоких частотах ($f \ge 10^5$ Гц) значения є' для образцов TIInSe₂ и $(1 - x)(\text{TIInSe}_2) \cdot x\text{Ag} (x = 0.02)$ не столь существенно отличались друг от друга. Частотные зависимости мнимой части комплексной диэлектрической проницаемости є" монокристаллических образцов TIInSe₂ и $(1 - x)(\text{TIInSe}_2) \cdot x\text{Ag} (x = 0.02)$ (рис. 3) также свидетельствуют о релаксационной дисперсии.

Значения тангенса угла диэлектрических потерь (tg δ) в монокристалле (1 - x)(TlInSe₂) · *x*Ag (x = 0.02) были существенно меньше, чем в TlInSe₂ (рис. 4). Кроме того, если в TlInSe₂ зависимость tg $\delta(f)$ имела ярко выраженный максимум при 10⁵ Гц, то в (1 – *x*)(TlInSe₂) · *x*Ag (x = 0.02) максимум tg $\delta(f)$ наблюдался при 1.6 × 10⁶ Гц. Характер зависимости tg $\delta(f)$ в изученных кристаллах свидетельствует о релаксационных потерях.

На рис. 5 представлены частотные зависимости *ac*-проводимости (σ_{ac}) монокристаллов TlInSe₂ (кривая *1*) и (1 – *x*)(TlInSe₂) · *x*Ag (*x* = 0.02) (кривая *2*) при 300 К. Как видно из рис. 5, после введения серебра *ac*-проводимость образца TlInSe₂ су-

Рис. 2. Дисперсионные кривые $\varepsilon'(f)$ для монокристаллов TlInSe₂ (*1*) и (1 - x)(TlInSe₂) · *x*Ag (x = 0.02) (*2*) при 300 К.

щественно уменьшалась (при $f = 5 \times 10^4$ Гц примерно в 50 раз). При увеличении частоты разница в значениях проводимости сокращалась и при f = $= 3.5 \times 10^7$ Гц значения отличались в 2.5 раза. В частотной области $5 \times 10^4 - 2 \times 10^5$ Гц *ас*-проводимость монокристалла TlInSe₂ почти не изменялась, а затем имела место зависимость $\sigma_{ac} \sim f^{0.5}$. В отличие от TlInSe₂ *ас*-проводимость образца (1 - x)(TlInSe₂) · *x*Ag (x = 0.02) в частотной обла-

Рис. 3. Частотная зависимость мнимой составляющей комплексной диэлектрической проницаемости монокристалла (1 - x)(TlInSe₂) · xAg (x = 0.02).

Рис. 4. Зависимости тангенса угла диэлектрических потерь в монокристаллах $TlInSe_2(I) u (1 - x)(TlInSe_2) \cdot xAg (x = 0.02) (2)$ от частоты приложенного электрического поля.

Рис. 5. Частотные зависимости проводимости монокристаллов TlInSe₂ (*1*) и (1 - x)(TlInSe₂) · *x*Ag (*x* = = 0.02) (*2*) при *T* = 300 K.

сти $5 \times 10^4 - 6 \times 10^6$ Гц изменялась по закону $\sigma_{ac} \sim f^{0.8}$, а при $f = 6 \times 10^6 - 3.5 \times 10^7$ Гц наблюдалась линейная зависимость: $\sigma_{ac} \sim f$.

Ас-проводимость зонного типа является в основном частотно-независимой вплоть до 10^{10} — 10^{11} Гц. Наблюдаемая нами экспериментальная зависимость $\sigma_{ac} \sim f^{0.8}$ в монокристаллах на основе TlInSe₂ свидетельствует о том, что она обусловлена прыжками носителей заряда между локализованными в запрещенной зоне состояниями. Это

могут быть состояния, локализованные вблизи краев разрешенных зон или вблизи уровня Ферми [16]. Но так как в экспериментальных условиях проводимость по состояниям вблизи уровня Ферми всегда доминирует над проводимостью по состояниям вблизи краев разрешенных зон, полученный нами закон $\sigma_{ac} \sim f^{0.8}$ свидетельствует о прыжковом механизме переноса заряда по состояниям, локализованным в окрестности уровня Ферми. Предложенная в [17] формула для такой проводимости имеет вид:

$$\sigma_{ac}(f) = \frac{\pi^3}{96} e^2 k T N_F^2 a_l^5 f \left[\ln\left(\frac{\nu_{ph}}{f}\right) \right]^4, \qquad (1)$$

где e – заряд электрона, k – постоянная Больцмана, N_F – плотность состояний вблизи уровня Ферми, $a_l = 1/\alpha$ – радиус локализации, α – постоянная спада волновой функции локализованного носителя заряда $\Psi \sim e^{-\alpha r}$, V_{ph} – фононная частота.

Согласно формуле (1), *ac*-проводимость зависит от частоты как $f [\ln(v_{ph}/f)]^4$, т.е. при $f \ll v_{ph} \sigma_{ac}$ пропорциональна $f^{0.8}$. Экспериментальные возможности не позволили нам наблюдать прыжковую проводимость в монокристаллах TlInSe₂, так как для этого требовались частоты, превышающие 3.5×10^7 Гц.

С помощью формулы (1) по экспериментально найденным значениям $\sigma_{ac}(f)$ образцов (1 – x)(TlInSe₂) · xAg (x = 0.02) вычислили плотность состояний на уровне Ферми: $N_F = 4.9 \times 10^{17}$ эВ⁻¹ см⁻³. При вычислениях N_F для радиуса локализации и фононной частоты взяты значения: $a_l = 58$ Å по аналогии с InSe [18] и $v_{ph} = 10^{12}$ Гц.

Согласно теории прыжковой проводимости на переменном токе [16], среднее расстояние прыжков (*R*) определяется по формуле

$$R = \frac{1}{2\alpha} \ln\left(\frac{v_{ph}}{f}\right).$$
 (2)

В формуле (2) значение *f* соответствует средней частоте, при которой наблюдается $f^{0.8}$ — закон для проводимости. Вычисленное по формуле (2) значение *R* для монокристалла (1 - x)(TIInSe₂) · *x*Ag (x = 0.02) составило 371 Å. Это значение в 6.4 раз превышает среднее расстояние между центрами локализации носителей заряда в изученных кристаллах. Значение *R* позволило по формуле

$$\tau^{-1} = v_{ph} \exp(-2\alpha R) \tag{3}$$

определить среднее время прыжков в образце монокристалла (1 - x)(TlInSe₂) · *x*Ag (*x* = 0.02): τ = 3.3 × × 10⁻⁷ c. По формуле [16]

$$\Delta E = \frac{3}{2\pi R^3 N_F} \tag{4}$$

в (1 - x)(TlInSe₂) · *x*Ag (x = 0.02) оценен энергетический разброс локализованных вблизи уровня Ферми состояний: $\Delta E = 0.02$ эВ. А по формуле

$$N_t = N_F \Delta E \tag{5}$$

определена концентрация глубоких ловушек в запрещенной зоне, ответственных за *ac*-проводимость в этих образцах: $N_t = 9.8 \times 10^{15}$ см⁻³.

ЗАКЛЮЧЕНИЕ

В выращенных монокристаллах $(1 - x)(TIInSe_2) \cdot xAg (x = 0, 0.02)$ изучена частотная дисперсия тангенса угла диэлектрических потерь $(tg\delta)$, действительной (є') и мнимой (є'') составляющих комплексной диэлектрической проницаемости и *ас*-проводимости (σ_{ac}) поперек цепей в области частот $f = 5 \times 10^4 - 3.5 \times 10^7$ Гц. Введение серебра (2 мол. % Аg) в монокристалл TlInSe₂ приводило к модифицированию дисперсионных кривых tg $\delta(f)$, $\varepsilon'(f)$, $\varepsilon''(f)$ и $\sigma_{ac}(f)$. Во всей изученной области частот в образце имели место релаксационные потери. В области частот 5 × $\times 10^4$ —6 $\times 10^6$ Гц *ас*-проводимость образца (1 - x)(TlInSe₂) · xAg (x = 0.02) подчинялась закономерности $\sigma_{ac} \sim f^{0.8}$, характерной для прыжкового механизма переноса заряда по локализованным вблизи уровня Ферми состояниям. Нами оценены плотность ($N_F = 4.9 \times 10^{17} \ \mathrm{sB^{-1} \ cm^{-3}}$) и энергетический разброс ($\Delta E = 0.02$ эВ) состояний, лежащих в окрестности уровня Ферми, среднее расстояние (R = 371 Å) и время ($\tau = 3.3 \times 10^{-7}$ с) прыжков, а также концентрация глубоких ловушек ($N_t = 9.8 \times 10^{15} \,\mathrm{cm}^{-3}$).

Таким образом, установлено, что за счет введения в матрицу монокристалла TlInSe₂ серебра можно варьировать диэлектрические коэффициенты и *ас*-проводимость монокристалла (1 - x)(TlInSe₂) · *x*Ag (*x* = 0.02).

БЛАГОДАРНОСТЬ

Работа выполнена при финансовой поддержке Фонда развития науки при президенте Азербайджанской Республики (грант № EİF-BGM-3-BRFTF-2+/2017-15/05/1-М-13 и грант № EİF-BGM-4-RFTF-1/2017-21/05/1-М-07).

СПИСОК ЛИТЕРАТУРЫ

 Mustafaeva S.N., Ramazanzade V.A., Asadov M.M. Influence of Intercalation on Electrical and Photoelectrical Properties of Ternary Chain and Layer Semiconductors // Mater. Chem. Phys. 1995. V. 40. № 2. P. 142–145. 2. Мустафаева С.Н., Керимова Э.М., Магеррамов А.Б. Влияние примесей Ag, Cu, Sn на электрические и фотоэлектрические свойства монокристаллов TIInSe₂ // Неорган. материалы. 1997. Т. 33. № 11. С. 1325–1326.

- Мустафаева С.Н. Частотная зависимость действительной и мнимой частей комплексной диэлектрической проницаемости и проводимости монокристалла TIInSe₂ при релаксационных процессах // Журн. радиоэлектроники. 2013. № 7. С. 1–8.
- Mustafaeva S.N., Kerimova E.M., Gasanov A.I. Synthesis, Roentgenophase Analysis and Physical Properties of TlIn_{1-x}Er_xSe₂ Solid Solutions // Acta Physica Polonica A. 2015. V. 128. № 4. P. 697–699.
- Шаров М.К. Электрофизические свойства твердых растворов серебра в РbTe // ФТП. 2012. Т. 46. Вып. 5. С. 613–615.
- Mucha I. Phase Diagram for the Quasi-Binary Thallium(I) Selenide–Indium(III) Selenide System // Thermochim. Acta. 2012. V. 550. P. 1–4.
- Мустафаева С.Н., Асадов М.М., Джаббаров А.И., Керимова Э.М. Проводимость и термо-э. д. с. кристаллов (TlInSe₂)_{0.2}(TlGaTe₂)_{0.8} // Неорган. материалы. 2015. Т. 51. № 3. С. 267–271.
- Мустафаева С.Н., Асадов С.М., Керимова Э.М. Диэлектрические свойства и электропроводность легированного серебром монокристалла TlGaS₂ // ФТП. 2018. Т. 52. Вып. 2. С. 167–170.
- 9. Мустафаева С.Н. Методика измерения проводимости высокоомных материалов на переменном токе // Все материалы. Энциклопедический справочник. 2016. № 10. С. 74–79.
- Шелег А.У., Зуб Е.М., Ячковский А.Я., Мустафаева С.Н., Керимова Э.М. Рентгенографические исследования кристаллов системы (TIInSe₂)_{1-x}(TIGaTe₂)_x // Кристаллография. 2012. Т. 57. № 2. С. 332–334.
- Muller D., Eulenberger G., Hahn H. Über ternere. Thallium chalkogenide mit Thallium-selenid-struktur // Z. Anorg. Allg. Chem. 1973. V. 398. № 2. P. 207–220.
- Хьюи Дж. Неорганическая химия. Строение вещества и реакционная способность: пер. с англ. / Под ред. Степина Б.Д., Лидина Р.А. М.: Химия, 1987. 696 с.
- Пасынков В.В., Сорокин В.С. Материалы электронной техники. 6-е изд. СПб.-М.-Краснодар: Лань, 2004. 368 с.
- Асадов С.М., Мустафаева С.Н. Диэлектрические потери и перенос заряда в легированном сурьмой монокристалле TIGaS₂ // ФТТ. 2018. Т. 60. Вып. 3. С. 495–498.
- 15. Мустафаева С.Н., Асадов С.М., Керимова Э.М. Диэлектрические свойства и проводимость монокристаллов TlGaSe₂:Tm // Неорган. материалы. 2018. T. 54. № 7. С. 662–667.
- Мотт Н., Дэвис Э. Электронные процессы в некристаллических веществах: пер. с англ. 2-е изд., перераб. и доп. В 2 томах. М.: Мир, 1982. Т. 1. 368 с. Т. 2. 664 с.
- 17. *Pollak M.* Frequency Dependence of Conductivity in Amorphous Solids // Phil. Mag. 1971. V. 23. P. 519–542.
- Мустафаева С.Н., Асадов М.М., Исмайлов А.А. Перенос заряда по локализованным состояниям в монокристаллах InSe и InSe(Sn) // Физика низких температур. 2010. Т. 36. № 4. С. 394–397.

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 55 № 11 2019