УЛК 536.413

ИССЛЕДОВАНИЕ ТЕПЛОВОГО РАСШИРЕНИЯ И СТАБИЛЬНОСТИ НАНОКРИСТАЛЛИЧЕСКОГО УВ, МЕТОДОМ ВЫСОКОТЕМПЕРАТУРНОЙ РЕНТГЕНОГРАФИИ

© 2019 г. Д. Ю. Ковалев^{1, *}, Н. Ю. Хоменко¹, С. П. Шилкин²

 1 Институт структурной макрокинетики и проблем материаловедения им. А.Г. Мержанова Российской академии наук, ул. Академика Осипьяна, 8, Московская обл., Черноголовка, 142432 Россия ²Институт проблем химической физики Российской академии наук, пр. Академика Семенова, 1, Московская обл., Черноголовка, 142432 Россия *e-mail: kovalev@ism.ac.ru

Поступила в редакцию 18.10.2018 г. После доработки 09.04.2019 г. Принята к публикации 16.04.2019 г.

Методом высокотемпературной рентгенографии проведены исследования теплового расширения нано- и микрокристаллического VB₂ в температурном интервале 300–1473 К. Впервые определен коэффициент теплового расширения нанокристаллического VB₂ в температурном интервале 300-1473 К и установлена его линейная зависимость от температуры. Обнаружено, что КТР нанокристаллического VB₂ выше, чем у микрокристаллического аналога, что обусловлено ростом ангармонизма атомных колебаний в нанокристаллах. Обнаружена анизотропия теплового расширения нанокристаллического VB₂. Показано, что вдоль оси c KTP VB₂ выше, чем вдоль оси a, что связано с анизотропией сил связи в направлениях осей гексагональной ячейки. С увеличением температуры различия КТР вдоль кристаллографических осей в нанокристаллическом VB₂ уменьшаются, что указывает на ослабление ковалентной связи В-В в боридных слоях нанокристаллического VB₂ с ростом температуры. Установлено, что размер областей когерентного рассеяния нанокристаллического VB₂ не увеличивается и остается равным 10–12 нм при нагреве до 1273 К.

Ключевые слова: нанокристаллический VB₂, коэффициент теплового расширения, параметры ячейки, анизотропия, высокотемпературная рентгенография

DOI: 10.1134/S0002337X19100075

ВВЕДЕНИЕ

Диборид ванадия принадлежит к классу бескислородных высокотемпературных керамических соединений. Высокая температура плавления и теплопроводность. устойчивость к окислению в газовых средах обуславливают его применение в высокотемпературной технике [1]. Введение VB₂ в состав керамики на основе карбила бора позволяет повысить уровень высокотемпературной прочности композиционного материала за счет существенной разницы коэффициентов теплового расширения (**КТР**) VB_2 и B_4C [2]. Добавка дисперсного VB₂ в литьевые алюминиевые сплавы, используемые при изготовлении поршней двигателей, существенно улучшает их механические свойства [3]. VB₂ является перспективным анодным материалом в воздушных электрохимических ячейках [4, 5]. Известно, что переход в наноструктурное состояние приводит к изменению физико-химических свойств материалов [6, 7]. Анализ работ по свойствам соедине-

ний с наноразмерными структурными составляющими показывает ограниченность сведений о теплофизических характеристиках этих объектов. Важным с эксплуатационной точки зрения свойством материала является КТР, его анизотропия и температурная зависимость. Диборид ванадия используется, как правило, в составе композиционных материалов, поэтому информация о тепловом расширении важна для прогнозирования их поведения в условиях высоких температур. Обзор работ по свойствам VB₂ показал отсутствие данных о его теплофизических свойствах в нанокристаллическом состоянии [8-12]. Сведения о величинах КТР VB₂ исчерпываются данными для образцов с размером зерна от 10 мкм. Дилатометрические измерения расширения VB₂ в интервале 300-2500 К показали, что величина КТР составляет $\alpha = (8.0 - 8.3) \times 10^{-6} \text{ K}^{-1}$ [11]. В работе [12] методом высокотемпературной рентгеновской дифракции был определен КТР микрокристалличе-

Таблица 1. КТР VB₂

α , 10 ⁻⁶ K ⁻¹	<i>Т</i> , К	Метод исследования	Источник
8.0-8.3	300-2500	Дилатометр поликристалл пористость 8%	Г.В. Самсонов и др. 1971 [11]
$\begin{aligned} \alpha_a &= 3.984 \times 10^{-6} + 2.502 \times 10^{-9}T \\ \alpha_a &(300) = 4.7; \ \alpha_a (1473) = 7.7 \\ \alpha_c &= 13.267 \times 10^{-6} + 2.353 \times 10^{-9}T \\ \alpha_c &(300) = 14.0; \ \alpha_c &(1473) = 16.7 \end{aligned}$	300-1500	XRD Поликристалл	B. Lönnberg 1988 [12]

ского VB_2 в интервале 300—1500 К. Известные данные о КТР VB_2 представлены в табл. 1.

Цель работы состояла в определении КТР нанокристаллического VB_2 в температурном интервале 273—1473 К методом высокотемпературной рентгеновской дифракции.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Нанокристаллический VB2 был получен методом твердофазного синтеза VCl₃ с NaBH₄. Синтез, методические аспекты которого представлены в [13], проводили в реакторе-автоклаве из нержавеющей стали в атмосфере аргона при давлении 4 МПа и температуре до 930°С. Микрокристаллический VB₂ был синтезирован методом твердофазного реакционного спекания из смеси V + 2B в условиях изотермической выдержки при температуре 1300°С в течение 3 ч в атмосфере аргона при давлении 0.2 МПа. В качестве исходных соединений для синтеза VB2 использовались порошки: NaBH₄ (чистота 99.3%), товарный VCl₃ (99.5%), V (99.5%), В аморфный черный марки Б-99В (99.0%). Синтезы проводились в аргоне (99.998%).

Исследования качественного состава поверхности VB_2 проводились методом рентгеновской фотоэлектронной спектроскопии (**РФЭС**) на электронном спектрометре PHOIBOS 150 MCD. Содержание бора, ванадия, хлора и кислорода определяли по стандартным аналитическим методикам.

Рентгенофазовый анализ (**РФА**) VB₂ проводили на дифрактометре ДРОН-3 с монохроматором на вторичном пучке. Регистрацию спектра вели в режиме пошагового сканирования на излучении Cu K_{α} в интервале углов 2 $\theta = 20^{\circ}-90^{\circ}$ с шагом съемки 0.02° и экспозицией 4 с в точке. Профильный анализ рентгенограмм проводили методом Ритвельда в программном пакете PDWin 6.0. В качестве исходной модели для уточнения использовались структурные данные VB₂ [14], приведенные в Crystallography Open Database. Расчет метрики ячейки и параметров тонкой структуры

проводили по 7 рефлексам. Инструментальное уширение учитывали по уширению линий эталона — LaB₆ (SRM 660b). Расчет размера областей когерентного рассеяния (**OKP**) проводили в пакете Size&Strain, использующем метод вторых моментов [15].

Температурные рентгенодифракционные исследования проводили на дифрактометре ARL Х'ТRА с высокотемпературной приставкой НТК2000 Anton Paar в геометрии Брегга-Брентано на отражение. Порошок VB₂ ровным слоем, толшиной около 100 мкм. наносили на поверхность вольфрамовой пластины-нагревателя. Далее проводили вакуумирование камеры до давления 2×10^{-3} Па. Регистрацию рентгенограмм осушествляли в диапазоне температур 300-1473 К с шагом 200 К. После достижения заданной температуры следовала выдержка в течение 4 мин с последующей регистрацией рентгенограммы в режиме пошагового сканирования в интервале углов $2\theta = 27^{\circ} - 48^{\circ}$, с шагом съемки 0.02° и временем набора 1 с в точке. Скорость нагрева между изотермическими участками составляла 100 К/мин. При максимальной температуре 1473 К остаточное давление в камере составляло 8×10^{-3} Па. Для юстировки проводили регистрацию рентгенограммы при комнатной температуре и по известному угловому положению дифракционных линий VB₂ корректировали положение камеры относительно горизонтальной оси гониометра. Режим нагрева задавали контроллером Еиrotherm 2604, датчиком которого служила термопара BP5\20, приваренная к нижней поверхности вольфрамового нагревателя. Для калибровки температуры предварительно проводили нагрев порошка гексагонального BN, нанесенного на поверхность нагревателя. По угловому смещению линии 002 BN и известному значению его КТР вдоль оси *с* элементарной ячейки $\alpha_c = 41.2 \times 10^{-6} \text{ K}^{-1}$ [16] рассчитывали температуру и сравнивали ее с температурой, регистрируемой термопарой. Различия расчетной и регистрируемой температур при T == 1473 К не превышали 10 К.

Рис. 1. Рентгенограммы нано- и микрокристаллического VB₂ при T = 300 K.

Для расчета метрики ячейки нано- и микрокристаллического VB₂ в температурных экспериментах использовали дифракционные отражения 001, 100, 101. Обработку экспериментальных данных проводили методом Ритвельда. Уточнялись профильные параметры рефлексов, фон, параметры решетки и тепловые параметры атомов. Взвешенный и профильный *R*-факторы составляли: $R_{wp} = 8.3-9.6\%$ и $R_p = 6.5-7.3\%$ соответственно.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

РФА показал, что на рентгенограммах синтезированных нано- и микрокристаллических порошков присутствуют только дифракционные линии VB₂, гексагональная сингония, структурный тип AlB₂ (рис. 1). По данным химического анализа, нанокристаллический диборид ванадия имеет состав VB_{2.01}O_{0.02}. Следов хлорид-иона, водорода и азота не обнаружено. По результатам РФЭС в спектрах наряду с линиями диборида VB₂ присутствуют линии, указывающие на присутствие в поверхностных слоях наночастиц оксидов ванадия и бора. Размер OKP VB₂ 10–12 нм, удельная поверхность порошка $S_{ya} = 70 \text{ м}^2/\text{г}$. Полуши-

Рис. 2. Профиль линии 101 нанокристаллического VB₂ при нагреве.

рина линий нанокристаллического VB₂ практически не изменяется при нагреве до 1273 К (рис. 2). При 1473 К наблюдается увеличение ОКР до 15 нм, а после охлаждения материала размер ОКР составил 17 нм (рис. 3). Следовательно, в температурном диапазоне 300-1273 К нанокристаллическая структура VB₂ стабильна.

Параметры элементарной ячейки нанокристаллического VB₂ отличаются от параметров ячейки синтезированного микрокристаллического VB₂ и от значений, приведенных в базе данных порошковой дифракции PDF-2 (табл. 2). У нанокристаллического VB₂ параметр c элементарной ячейки оказался существенно ниже, чем у микрокристаллического VB₂. Возможной причиной сжатия решетки вдоль оси c у нанокристалли-

Рис. 3. Температурные зависимости полуширины линии и размера ОКР нанокристаллического VB₂.

ческого VB₂ является наличие вакансий в позициях атомов V. Аналогичный эффект был обнаружен при исследовании связи структурных характеристик с размерным фактором у нанокристаллического TiB₂, имеющего один структурный тип с VB₂ [17]. У кристаллов TiB₂ размером менее 22 нм концентрация вакансий в металлической подрешетке существенно увеличивалась с уменьшением размера кристаллитов, что приводило к заметному уменьшению параметра *с* элементарной ячейки.

Температурные зависимости параметров решетки *a* и *c* ячейки микро- и нанокристаллического VB₂ представлены на рис. 4. Экспериментальные результаты показывают, что параметры ячейки увеличиваются с ростом температуры нелинейно, т.е. наблюдается зависимость КТР от температуры. Температурную зависимость параметров элементарной ячейки представляют обычно в виде полинома второй степени. Для микрокристаллического VB₂ такая аппроксимация дает следующие выражения:

$$a(T) = 2.9934 + 10.932 \times 10^{-6}T + 4.233 \times 10^{-9}T^{2}(\text{\AA}),$$

$$c(T) = 3.0577 + 22.646 \times 10^{-6}T + 7.5232 \times 10^{-9}T^{2}(\text{\AA}).$$

Коэффициент детерминации *R*² при аппроксимации экспериментальных данных полиномом 2-й степени составляет $R^2 = 0.993$ и 0.989 для параметров решетки *а* и *с* соответственно. Квадратичная зависимость параметров ячейки от температуры определяет линейную зависимость КТР от температуры. Взяв производную функции изменения параметра ячейки по температуре и разделив ее на параметр ячейки при T = 0 К, получим температурную зависимость мгновенного КТР микрокристаллического VB₂:

$$\alpha_a(T) = 3.652 \times 10^{-6} + 4.242 \times 10^{-9}T,$$

$$\alpha_a(T) = 7.406 \times 10^{-6} + 4.921 \times 10^{-9}T.$$

Относительная ошибка определения КТР микрокристаллического VB_2 составила 3–4%. В табл. 3 приведены КТР вдоль кристаллографических осей элементарной ячейки микрокристаллического VB_2 в сравнении с данными [12], где также была установлена температурная зависимость КТР.

Экспериментальные данные показывают наличие существенной анизотропии теплового расширения VB₂. Вдоль оси *с* КТР выше, чем вдоль оси *a*, что обусловлено жесткостью структуры в базисных плоскостях (h00) по сравнению с плоскостями (00l). Известно, что анизотропия теплового расширения в гексагональных кристаллах

Образец	Hauo VB	Микро-VB ₂	PDF2 [18]	
			№ 000-38-1463	№ 000-75-0968
<i>a</i> , Å	3.001(8)	2.9971(1)	2.99761	2.9980
<i>c</i> , Å	3.045(7)	3.0561(4)	3.05620	3.0570
<i>V</i> , Å ³	23.77	23.77	23.78	23.79

Таблица 2. Параметры элементарной ячейки VB₂

Рис. 4. Температурные зависимости параметров решетки *а* и *с* нано- и микрокристаллического VB₂.

КТР	<i>Т</i> , К	α , 10 ⁻⁶ K ⁻¹			
		нано	микро	[12]	
α_a	303	4.6	4.9	4.7	
	473	5.6	5.6	5.2	
	673	6.7	6.5	5.7	
	873	7.8	7.3	6.2	
	1073	9.0	8.2	6.7	
	1273	10.1	9.1	7.2	
	1473	11.2	9.9	7.7	
α	303	9.3	8.9	14.0	
	473	9.6	9.7	14.4	
	673	10.0	10.7	14.9	
	873	10.3	11.7	15.3	
	1073	10.7	12.7	15.8	
	1273	11.0	13.7	16.3	
	1473	11.4	14.6	16.7	

Таблица 3. КТР VB₂

Примечание. По данным [11] $\alpha = 8 \times 10^{-6} \text{ K}^{-1}$.

связана с анизотропией сил связи в направлениях осей решетки. В диборидах переходных металлов со структурным типом AlB₂ атомы металла располагаются слоями, параллельными базисной плоскости. Расстояние V–V в плотноупакованном базисном слое – 2.998 Å. Атомы бора располагаются слоями, лежащими между слоями V, а расстояние В–В в слое, равное $a/3^{1/2}$, составляет 1.73 Å. Сила связи в базальных плоскостях определяется сильной ковалентной связью В–В в боридных слоях. Жесткость связи вдоль оси *c*, определяемая связью V–В с расстоянием $(a^2/3 + c^2/4)^{1/2} = 2.31$ Å, слабее, чем связь В–В в базальной плоскости. Эти различия приводят к большему значению КТР вдоль оси *c* кристалла VB₂.

Температурные зависимости параметров ячейки нано- и микрокристаллического VB_2 различаются (рис. 4). Увеличение параметра *а* нано-VB₂ происходит в большей степени, чем микро-VB₂. Аппроксимация температурной зависимости параметров решетки нанокристаллического VB₂ полиномом 2-й степени дает следующие выражения:

$$a(T) = 2.9863 + 8.5655 \times 10^{-6}T + 8.4629 \times 10^{-9}T^{2},$$

$$c(T) = 3.0172 + 26.533 \times 10^{-6}T + 2.6302 \times 10^{-9}T^{2}.$$

Вследствие уширения и низкой интенсивности дифракционных линий нанокристаллического VB₂ ошибка в определении параметров ячейки составила 0.001 Å. Несмотря на бо́льшую ошибку по сравнению с микрокристаллическим VB₂, коэффициент детерминации R^2 при аппроксимации экспериментальных данных полиномом 2-й степени составил $R^2 = 0.988$ и 0.984 для параметров решетки *а* и *с* соответственно. Температурная зависимость мгновенного КТР для нанокристаллического VB₂ определяется следующими формулами:

$$\alpha_a(T) = 2.868 \times 10^{-6} + 5.668 \times 10^{-9}T,$$

$$\alpha_c(T) = 8.794 \times 10^{-6} + 1.744 \times 10^{-9}T.$$

Относительная ошибка определения КТР нанокристаллического VB₂ составила 8-10%. На рис. 5 представлены температурные зависимости КТР нано- и микрокристаллического VB₂ в сравнении с данными [12]. Как и в микрокристаллическом VB₂, наблюдается анизотропия KTP: $\alpha_c > \alpha_a$, однако с увеличением температуры различия теплового расширения вдоль кристаллографических осей в нанокристаллическом VB2 становятся незначительными (табл. 3). Наблюдается аномальный рост КТР с увеличением температуры вдоль базальной плоскости по сравнению с осью с. Полученные данные свидетельствуют о существенном влиянии температуры на жесткость ковалентной связи В-В в боридных слоях нанокристаллического VB₂.

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 55 № 11 2019

ИССЛЕДОВАНИЕ ТЕПЛОВОГО РАСШИРЕНИЯ И СТАБИЛЬНОСТИ

Материал	α_a	α,	α _{cp}	Интервал температур, К
Нанокристаллический VB ₂	7.9	10.3	8.7	300-1400
Микрокристаллический VB ₂	6.16	11.82	8.04	
Микрокристаллический VB ₂ [11]	_	_	8.00	300-1300
			8.30	1300-2300

Таблица 4. Эффективный KTP VB₂ (α , 10⁻⁶ K⁻¹)

В табл. 4 приведены значения КТР, полученные при линейной аппроксимации температурной зависимости параметров ячейки VB₂, т.е. в предположении отсутствия температурной зависимости КТР. Среднее значение КТР для кристаллов гексагональной сингонии получено по формуле $\alpha_{cp} = (2\alpha_a + \alpha_c)/3$. Для сравнения приведены результаты [11], полученные дилатометрическим методом.

Анализ полученных результатов указывает на отличие в тепловом расширении микро- и нанокристаллического VB₂ (табл. 3, 4). Средний КТР нанокристаллов VB₂ выше, чем у микрокристаллического VB₂ (рис. 5). Вещества в нанокристаллическом состоянии характеризуются бо́льшим значением КТР по сравнению с крупнокристаллическими аналогами [19–22]. Исследование теплового расширения нанокристаллического HfB₂ показало, что его КТР выше, чем у микрокристаллического диборида гафния [19]. КТР нанокристаллов карбида бора размером 55 нм выше на 10%, чем у микрокристаллического аналога размером 300 нм [20]. Авторы связывают изменение КТР с увеличением поверхностной энергии

Рис. 5. Температурные зависимости КТР нано- и микрокристаллического VB₂.

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 55 № 11 2019

кристаллической решетки нанокристаллического материала. Для сульфидов свинца и серебра в нанокристаллическом состоянии (40–50 нм) значения КТР также выше аналогичных величин для крупнокристаллических объектов [21, 22]. Увеличение КТР связывается с ростом ангармонизма атомных колебаний в нанокристаллах за счет увеличения поверхностей раздела.

ЗАКЛЮЧЕНИЕ

Впервые определен КТР нанокристаллического VB₂ в температурном интервале 300-1473 К и установлена его линейная зависимость от температуры. Показано, что средний КТР нанокристаллического VB₂ выше, чем у микрокристаллического VB₂. Увеличение КТР в нанокристаллах связывается с ростом ангармонизма атомных колебаний за счет увеличения поверхностей раздела.

Обнаружена анизотропия теплового расширения нанокристаллического VB₂. Вдоль оси *с* КТР выше, чем вдоль оси *а*, что обусловлено анизотропией сил связи в направлениях осей гексагональной ячейки. С увеличением температуры различия КТР вдоль кристаллографических осей в нанокристаллическом VB₂ становятся незначительными, что указывает на существенное влияние температуры на жесткость ковалентной связи B–B в боридных слоях нанокристаллического VB₂. В температурном диапазоне 300–1273 К нанокристаллический VB₂ стабилен, размер OKP не увеличивается и сохраняется в пределах 10–12 нм.

СПИСОК ЛИТЕРАТУРЫ

- Bulfon C., Leithe-Jasper A., Sassik H., Rogl P. Microhardness of Czochralski-Grown Single Crystals of VB₂ // J. Solid State Chem. 1997. V. 133. № 1. P. 113–116.
- Demirskyi D., Sakka Y., Vasylkiv O. Consolidation of B₄C−VB₂ Eutectic Ceramics by Spark Plasma Sintering // J. Ceram. Soc. Jpn. 2015. V. 123. № 1. P. 1051– 1054.
- 3. *Cui X., Wu Y., Liu X.* Microstructural Characterization and Mechanical Properties of VB₂/A390 Composite Alloy // J. Mater. Sci. Technol. 2015. V. 31. № 10. P. 1027–1033.

- 4. *Yang H.X., Wang Y.D., Ai X.P., Cha C.S.* Metal Borides: Competitive High Capacity Anode Materials for Aqueous Primary Batteries // Electrochem. Solid-State Lett. 2004. V. 7. № 7. P. A212–A215.
- Licht S., Hettige C., Lau J., Cubeta U., Wu H., Stuart J., Wang B. Nano-VB₂ Synthesis from Elemental Vanadium and Boron: Nano-VB₂ Anode/Air Batteries // Electrochem. Solid-State Lett. 2012. V. 15. № 1. P. A12–A14.
- Андриевский Р.А. Наноструктурные дибориды титана, циркония и гафния: синтез, свойства, размерные эффекты, стабильность // Успехи химии. 2015. Т. 84. С. 540–554.
- 7. *Andrievski R.A., Khatchoyan A.V.* Nanomaterials in Extreme Environments. Fundamentals and Applications. Heidelberg: Springer, 2016. 107 p.
- Carenco S., Portehault D., Boissiere C., Mezailles N., Sanchez C. Nanoscaled Metal Borides and Phosphides: Recent Developments and Derspectives // Chem. Rev. 2013. V. 113. № 10. P. 7981–8065.
- 9. Андриевский Р.А., Спивак И.И. Прочность тугоплавких соединений и материалов на их основе. Справочник. Челябинск: Металлургия, 1989. 368 с.
- 10. *Basu B., Balani K.* Advanced Structural Ceramics. Hoboken: Wiley, 2011. 474 p.
- 11. Самсонов Г.В., Ковенская Б.А., Серебрякова Т.И., Тельников Е.Я. Термическое расширение диборидов переходных металлов IV и V групп // Теплофизика высоких температур. 1971. Т. 9. № 1. С. 195–197.
- 12. Lönnberg B. Thermal Expansion Studies on the Group IV–VII Transition Metal Diborides // J. Less-Common Met. 1988. V. 141. № 1. P. 145–156.
- Кравченко С.Е, Ковалев Д.Ю., Коробов И.И., Калинников Г.В., Коновалихин С.В., Хоменко Н.Ю., Шилкин С.П. Синтез наночастиц диборида циркония при взаимодействии ZrCl₄ и NaBH₄ в ионном рас-

плаве бромида калия // Журн. общ. химии. 2018. Т. 88. № 1. С. 1402–1404.

- Terlan B., Akselrud L., Baranov A., Borrmann H., Grin Yu. On the Transferability of Electron Density in Binary Vanadium Borides VB, V₃B₄ and VB₂ // Acta Crystallogr., Sect. B. 2015. V. 71. P. 777–787.
- 15. Дымченко Н.П., Шишлянникова Л.М., Ярославцева Н.Н. Применение ЭВМ при расчете тонкой кристаллической структуры поликристаллов методом вторых и четвертых моментов // Аппаратура и методы рентгеновского анализа. Вып. XV. Л.: Машиностроение, 1974. С. 37–45.
- 16. *Pease R.S.* An X-ray Study of Boron Nitride // Acta Crystallogr. 1952. V. 5. № 3. P. 356–361.
- 17. Terlan B., Levin A.A., Börrnert F., Zeisner J., Kataev V., Schmidt M., Eychmüller A. A Size-Dependent Analysis of the Structural, Surface, Colloidal, and Thermal Properties of $Ti_{1-x}B_2$ (x = 0.03-0.08) Nanoparticles // Eur. J. Inorg. Chem. 2016. V. 21. P. 3460-3468.
- 18. International Centre for Diffraction Data, Joint Committee on Powder Diffraction Standards (JCPDS).
- Kovalev D.Yu., Shilkin S.P., Konovalikhin S. V., Kalinnikov G.V., Korobov I.I., Kravchenko S.E., Khomenko N.Yu., Andrievskii R.A. Thermal Expansion of Micro and Nanocrystalline HfB₂ // High Temperature. 2019. V. 57. № 1. P. 32–36.
- Pilladi T.R., Panneerselvam G., Anthonysamy S., Ganesam V. Thermal Expansion of Nanocrystalline Boron Carbide // Ceram. Int. 2012. V. 38. № 5. P. 3723–3728.
- 21. *Садовников В.И., Гусев А.И.* Тепловое расширение наноструктурированных пленок PbS и ангармонизм атомных колебаний // ФТТ. 2014. Т. 56. № 11. С. 2274–2278.
- 22. Гусев А.И., Садовников В.И., Чукин А.В., Ремпель А.А. Тепловое расширение нанокристаллического и крупнокристаллического сульфида серебра Ag₂S // ФТТ. 2016. Т. 58. № 2. С. 246–251.