УДК 621.785.532.:546.171.1'882'883

СИНТЕЗ НИТРИДОВ В ПРОЦЕССЕ МАГНИЕТЕРМИЧЕСКОГО ВОССТАНОВЛЕНИЯ ОКСИДНЫХ СОЕДИНЕНИЙ ТАНТАЛА И НИОБИЯ

© 2019 г. В. М. Орлов^{1, *}, Р. Н. Осауленко², В. Я. Кузнецов¹

¹Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева ФИЦ КНЦ Российской академии наук, Академгородок, 26a, Апатиты, Мурманская обл., 184209 Россия

²Петрозаводский государственный университет, пр. Ленина, 33, Петрозаводск, Республика Карелия, 185910 Россия *e-mail: orlov@chemv.kolasc.net

Поступила в редакцию 06.03.2019 г. После доработки 18.04.2019 г. Принята к публикации 15.05.2019 г.

Исследована возможность получения нитридов тантала и ниобия при восстановлении Ta_2O_5 , Nb_2O_5 , $Mg_4Ta_2O_9$ и $Mg_4Nb_2O_9$ парами магния. Процесс вели в две стадии: восстановление оксидов при остаточном давлении аргона в реакторе 5 кПа и температуре 820° С в течение 4 ч; азотирование продуктов восстановления в атмосфере азота при 820 и 900° С в течение 1-12 ч. Фазовый состав полученных после выщелачивания оксида магния порошков исследовали на дифрактометрах ДРФ-2 и ДРОН-4, удельную поверхность определяли методом БЭТ на приборе Micromeritics TriStar II 3020. При использовании в качестве прекурсора Ta_2O_5 получен продукт, содержащий θ -TaN, ε -TaN и Ta_2N . При использовании в качестве прекурсора Nb_2O_5 образуются нитриды NbN с гранецентрированной кубической и гексагональной плотноупакованной решетками, Nb_2N и Nb_4N_3 . Продукты восстановления $Mg_4Ta_2O_9$ и $Mg_4Nb_2O_9$ не азотируются. Дано объяснение полученным результатам.

Ключевые слова: магниетермическое восстановление, оксидные соединения, азотирование, нитрид тантала, нитрид ниобия, порошок

DOI: 10.1134/S0002337X19110101

введение

Нитриды переходных металлов, в частности тантала и ниобия, рассматриваются как перспективные функциональные материалы [1, 2]. При этом для многих областей применения большое значение имеет удельная поверхность материала [3, 4]. Одним из методов получения нитридов является аммонолиз мелкодисперсных порошков металлов или их оксидов [5]. Использование для этих целей мезопористых порошков тантала и ниобия, получаемых восстановлением их оксидных соединений парами магния, позволяет получать соединения этих металлов с азотом уже после 1-2-часовой обработки в токе аммиака при температуре 600-700°С [6, 7]. Однако при аммонолизе порошков с большой удельной поверхностью, в которых преобладают поры размером менее 5-10 нм, уже при температуре 500-600°С происходит многократное уменьшение поверхности. Кроме того, в результате присутствия на поверхности частиц слоя естественного оксида основную массу порошков с большой удельной поверхностью составляет аморфный оксид [8]. Поэтому на первой стадии аммонолиза образуются оксинитриды тантала и ниобия. И если далее образование фазы нитрида при аммонолизе порошка ниобия с удельной поверхностью 123 м²/г наблюдалось уже после выдержки при температуре 700°С [7], то при аммонолизе порошка тантала с удельной поверхностью 56 м²/г даже после трехчасовой выдержки при температуре 870°С продуктом реакции был оксинитрид [6].

Поскольку уменьшение поверхности при аммонолизе мезопористых порошков происходило за счет исчезновения пор менее 10 нм, представляло интерес исследовать возможность азотирования металла непосредственно в процессе восстановления. В этом случае прослойки оксида магния, разделяющие частицы металла и определяющие структуру порошка [9], должны способствовать сохранению пористости частиц и соответственно поверхности полученного нитрида. Кроме того, продукты реакции не должны содержать оксинитриды.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве исходных материалов использовали пентаоксиды тантала и ниобия, а также танталат магния (**TM**) $Mg_4Ta_2O_9$ и ниобат магния (**HM**)

Mg₄Nb₂O₉. ТМ и НМ синтезировали спеканием смеси исходных оксидов при температуре 1300°С. Процесс азотирования вели в реакторе, аналогичном использовавшемуся при восстановлении оксидных соединений парами магния [10]. Контейнеры с оксидными соединениями располагали над контейнером с магнием. Азот высокой чистоты подавали в реактор непосредственно из баллона без дополнительной очистки.

Предварительные эксперименты при температуре в реакторе 900°С показали, что в атмосфере азота восстановление оксидных соединений и соответственно образования нитридов тантала и ниобия не происходит. Это, скорее всего, объясняется тем, что магний, взаимодействуя с азотом, образует нитрид Mg₃N₂. Следует отметить, что энтальпия образования Mg₃N₂ составляет -461 кДж/моль, а TaN и NbN всего -272 и -234 кДж/моль соответственно [11], т.е. реакция азотирования магния является приоритетной. Температура разложения нитрида магния 1500°С. Вследствие этого при заполнении азотом в реакторе отсутствуют пары магния и восстановления оксидов не происходит. Поэтому в дальнейшем процесс осуществляли в 2 этапа. Вначале вели восстановление при температуре 820°С и остаточном давлении аргона в реакторе 5 кПа в течение 4 ч. После этого реактор заполняли азотом и, поддерживая его избыточное давление на уровне 30-100 кПа, осуществляли выдержку при температуре 820 или 900°С в течение 1-12 ч. Полученную реакционную массу (РМ) выщелачивали 15%-ным раствором азотной кислоты. Порошок промывали дистиллированной водой до нейтральной реакции и сушили при температуре 70°С.

Фазовый состав продуктов реакции определяли на дифрактометре ДРФ-2 с Си K_{α} -излучением и графитовым монохроматором. Идентификацию фаз осуществляли по базе дифрактометрических данных PDF-2 ICPDS-ICCD 2002. Для уточнения параметров кристаллической структуры использовали автоматизированный рентгеновский дифрактометр ДРОН-4, метод Ритвельда и базу данных структур неорганических кристаллов ICSD, Карлсруе, 2013. На приборе Micromeritics TriStar II 3020 измеряли удельную поверхность адсорбционным статическим методом БЭТ и параметры пористости методом ВЈН. Содержание азота и кислорода определяли методом газо-адсорбционной хроматографии в сочетании с импульсным нагревом на анализаторе К-671.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В табл. 1 и 2 приведены удельная поверхность (S), содержание азота (C_N) и фазовый состав продуктов, полученных азотированием пентаоксидов тантала и ниобия в ходе двухстадийного эксперимента

в зависимости от температуры азотирования и длительности выдержки. Ориентировочное содержание фаз определено по соотношению высоты соответствующих рефлексов на рентгенограммах. Содержание азота в продуктах, рассчитанное на основе приведенного фазового состава, хорошо коррелирует с данными анализа. Температура и длительность выдержки РМ в атмосфере азота практически не оказали влияния на содержание азота в полученных порошках и их удельную поверхность. Удельная поверхность соответствовала поверхности порошков тантала и ниобия, получаемых восстановлением парами магния в аналогичных условиях без стадии азотирования. Изменение объема и поверхности пор разных размеров в зависимости от длительности азотирования продуктов восстановления пентаоксида тантала приведено на рис. 1. Данные свидетельствуют о том, что с увеличением длительности выдержки при температуре 820°C с 3 до 12 ч объем пор увеличился с 0.057 до 0.105 см³/г. Доля поверхности, обеспечиваемая порами размером более 10 нм, выросла с 40 до 48%. В этих же условиях при использовании в качестве прекурсора пентаоксида ниобия объем пор, наоборот, уменьшился с 0.089 до $0.075 \text{ см}^3/\Gamma$, а их средний диаметр изменился с 13.6 до 11.6 нм. При использовании в качестве прекурсора ТМ или НМ параметры пористости с изменением температуры и длительности выдержки стадии азотирования оставались практически неизменными.

Рентгенограммы образцов 6 и 7 (табл. 1), полученных азотированием РМ после восстановления Та₂О₅, приведены на рис. 2. Уточненный методом Ритвельда фазовый состав и параметры кристаллической структуры нитридов приведены в табл. 3. В соответствии с уточненными данными, в процессе азотирования образуется нитрид тантала TaN с двумя типами кристаллической решетки. Фаза θ-ТаN с гексагональной решеткой (ICSD № 76455) характеризуется пр. гр. Рбт2. Гексагональная фаза ε-TaN (ICSD № 1396) с пр. гр. Р62m отличается от фазы θ-ТаN симметрией расположения атомов азота в элементарной ячейке и примерно в 1.8 раза бо́льшими периодами по осям a и b. Базис элементарной ячейки ε-TaN состоит из 6 атомов. 3 из которых тантал и 3 азот. На элементарную ячейку θ -ТаN приходится 2 атома (1 Та и 1 N).

На рис. 3 приведены рентгенограммы, а в табл. 4 уточненные методом Ритвельда фазовый состав и параметры кристаллической структуры образцов 2 и 5 (табл. 2), полученных азотированием продуктов восстановления Nb_2O_5 . Вне зависимости от температуры азотирования в образцах одновременно присутствуют нитриды NbN как с гранецентрированной кубической (ГЦК), так и с гексагональной плотноупакованной (ГПУ) решетками. Поскольку ГЦК-фаза характерна для

Опыт	Условия азотирования		Характеристики продуктов						
		τ, ч	<i>S</i> , м²/г	C _N , %	Содержание фаз, %				
	I, IC				TaN	TaN _{0.83}	Ta ₂ N	Та	
1	820	1	16	6.8	40	35	20	5	
2		3	16	6.4	45	30	15	10	
3		6	22	6	35	45	20	—	
4		12	25	5.5	30	35	30	—	
5		1	17	4.9	25	20	45	10	
6	000	3	17	6.5	40	40	20	—	
7	200	6	25	6	17	62	22	—	
8		12	27	5.5	25	50	25	_	

Таблица 1. Характеристики азотированных продуктов, полученных после восстановления Ta₂O₅

Таблица 2. Характеристики азотированных продуктов, полученных после восстановления Nb₂O₅

Опыт	Условия азотирования		Характеристики продуктов							
	+ °C	τ, ч	<i>S</i> , м ² /г	<i>C</i> _N , %	Содержание фаз, %					
	<i>l</i> , C				NbN (куб.)	NbN (гекс.)	Nb_2N	Nb		
1	820	1	25	10.4	45	25	20	10		
2		3	25	10.1	50	30	10	10		
3		6	27	10.2	40	45	_	5		
4		12	24	11.5	50	50	—	—		
5		3	28	10.3	30	50	10	10		
6	900	6	20	11	60	10	30	—		
7		12	27	10.5	40	55	5	_		

нитрида состава NbN_{0.88}—NbN_{1.00}, а ГПУ-фаза для состава NbN_{1.00}—NbN_{1.06} [11], возможно, их одновременное существование объясняется разной степенью азотирования частиц ниобия. С повышением температуры азотирования количество более богатой по азоту ГПУ-фазы увеличилось. Несмотря на то что в образцах, полученных азотированием РМ после восстановления пентаоксидов, по данным анализа, содержалось 3—5 мас. % кислорода, рентгенофазовый анализ не выявил присутствия оксидных фаз. Это означает, что высокое содержание кислорода обусловлено только присутствием на поверхности частиц порошка пленки естественного оксида.

При использовании в качестве прекурсора ТМ и НМ содержание азота в продуктах, полученных их восстановлением с последующим азотированием, значительно ниже (табл. 5), чем в продуктах с использованием в качестве прекурсора пен-

процесса. На рентгенограммах (рис. 4), несмотря на то что общее содержание азота в порошках выше предела растворимости, рефлексы, соответствующие нитридным фазам, не наблюдаются. Присутствие рентгеноаморфной фазы обусловлено большим количеством естественного аморфного оксида на поверхности частиц порошка [12]. Удельная поверхность азотированных порошков соответствует поверхности порошков тантала и ниобия, получаемых восстановлением этих прекурсоров в аналогичных условиях [10, 13]. Параметры элементарной ячейки порошков тантала и ниобия до (1) и после азотирования (2), рассчитанные на основании рентгенограмм (рис. 4), приведены в табл. 6. Восстановление в обоих случаях шло при температуре 820°С и остаточном давлении аргона в реакторе 5 кПа в течение 4 ч.

таоксидов. Оно, так же как и величина удельной

поверхности, практически не зависело от условий

Рис. 1. Зависимости суммарного объема (а) и поверхности пор (б) от их среднего диаметра в азотированных продуктах после восстановления Ta_2O_5 при температуре 820°С и выдержке 3 (1), 6 (2), 12 ч (3); 900°С, 12 ч (4).

Рис. 2. Рентгенограммы азотированных продуктов после восстановления Ta_2O_5 (образцы 6 и 7 из табл. 1): температура 900°С, выдержка 3 (*1*), 6 ч (*2*).

Последующее азотирование РМ проводили при 900°С в течение 3 ч. Период элементарной ячейки порошков, полученных восстановлением с последующим азотированием (образцы 2), даже несколько меньше, чем у порошков без азотирования. Следовательно, внедрения азота в кристаллическую решетку металла не происходило. Вероятно, в порошках, полученных при использовании в качестве прекурсора ТМ и HM, азот сорбирован большой удельной поверхностью.

Возникает вопрос, почему при взаимодействии с азотом продуктов реакции восстановления пентаоксидов азотирование порошка металла происходит, но до определенных пределов, а при использовании в качестве прекурсора танталатов и ниобатов нитриды вообще не образуются? Продукты восстановления оксидных соединений тан-

			Пе	Comment						
Фаза № ICSD		Пр. гр.		a		Содержание,				
			ICSD	эксп.	ICSD	эксп.				
Азотирование 820°С, 3 ч (образец 2, табл. 1)										
θ-TaN	76455	$P\overline{6}m2$	2.931	2.9338(3)	2.879	2.8806(1)	40			
ε-TaN	1396	$P\overline{6}2m$	5.196(4)	5.1891(2)	2.911(2)	2.9058(6)	36			
Ta ₂ N	76015	$P\overline{3}m1$	3.0476	3.0479(2)	4.9187	4.9193(5)	16			
Та	151407	Im3m	3.2959(3)	3.3080(3)	c =	=a	8			
Азотирование 900°C, 3 ч (образец 6, табл. 1)										
θ-TaN	76455	$P\overline{6}m2$	2.931	2.9306(6)	2.879	2.8795(1)	39			
ε-TaN	1396	$P\overline{6}2m$	5.196(4)	5.1885(8)	2.911(2)	2.9060(7)	42			
Ta ₂ N	76015	$P\overline{3}m1$	3.0476	3.0481(2)	4.9187	4.9263(5)	19			
	Азотирование 900°С, 6 ч (образец 7, табл. 1)									
θ-TaN	76455	P6m2	2.931	2.9323(7)	2.879	2.8792(4)	57			
ε-TaN	1396	$P\overline{6}2m$	5.196(4)	5.1901(4)	2.911(2)	2.9072(6)	18			
Ta ₂ N	76015	$P\overline{3}m1$	3.0476	3.0495(6)	4.9187	4.9297(3)	25			

Таблица 3. Фазовый состав и параметры структуры продуктов восстановления-азотирования Та2О5

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 55 № 11 2019

Рис. 3. Рентгенограммы азотированных продуктов после восстановления Nb_2O_5 (образцы 2 и 5 из табл. 2): выдержка 3 ч, температура 820 (1), 900°С (2).

тала и ниобия представляют собой порошки губчатой структуры, состоящие из наноразмерных частиц металла [8, 13]. При восстановлении пентаоксидов в наших условиях расчетный размер частиц, исходя из величины удельной поверхности, тантала всего около 15 нм, а ниобия 30 нм. Это означает, что кинетических ограничений, связанных с диффузией азота в металле, быть не должно. Из данных табл. 1 и 2 видно, что уже после часовой выдержки РМ в атмосфере азота его содержание в продуктах достигает максимального значения. Следовательно, причиной недостаточно полного азотирования или его отсутствия является затрудненная диффузия молекул азота к поверхности металлических частии. Частина порошка восстановленного оксидного соединения представляет собой слоистую структуру, состоящую из наноразмерных частиц металла и оксида магния [8, 9, 14]. Чтобы газ мог диффундировать внутрь восстановленной частицы, между металлом и оксидом магния должен быть зазор. Порошки, полученные восстановлением танталатов и ниобатов, характеризуются меньшим размером пор, следовательно, более тонкими прослойками оксида магния. Сравнение результатов азотирования РМ, полученной восстановлением пентаоксидов и сложных оксидов, показывает, что величина зазора зависит от толщины прослоек оксида магния. Нитриды при выдержке РМ, полученной восстановлением сложных оксидов, в атмосфере азота не образуются, потому что величина зазора между металлом и оксидом магния недостаточна для проникновения молекул азота в зону контакта с металлом. В случае азотирования РМ, полученной в результате восстановления пентаоксидов, начальный зазор межлу металлом и оксилом магния достаточен для проникновения азота к поверхности частиц металла, образовавшихся в объеме восстановленной частицы. В дальнейшем вслелствие поглошения азота объем металлических частиц увеличивается, каналы поступления азота в наиболее мелких порах перекрываются. Азотирование на этих участках прекрашается. В результате содержание азота не увеличивается и

			Пери					
Фаза	№ ICSD	Пр. гр.		a		С	Содержание, %	
			ICSD	эксп.	ICSD	эксп.		
		Азотирован	ие 820°С, 3 ч	(образец 2, т	табл. 2)			
NbN (куб.)	604392	Fm3m	4.3913(2)	4.3878(4)	0	a = a	49	
NbN (гекс.)	76384	$P6_3/mmc$	2.968	2.9672(4)	5.549	5.5495(3)	20	
Nb ₂ N	31165	$P6_3/mmc$	3.064	3.0519(2)	4.971	4.9965(5)	10	
Nb ₄ N ₃	76389	I4/mmm	4.382	4.3852(4)	8.632	8.6490(1)	11	
Nb	645059	Im3m	3.3063	3.3021(9)	6	e = a	10	
Азотирование 900°С, 3 ч (образец 5, табл. 2)								
NbN (куб.)	604392	Fm3m	4.3913(2)	4.3894(9)	c = a		41	
NbN (гекс.)	76384	$P6_3/mmc$	2.968	2.9668(1)	5.549	5.5522(4)	38	
Nb ₂ N	31165	$P6_3/mmc$	3.064	3.0526(3)	4.971	4.9939(5)	7	
Nb ₄ N ₃	76389	I4/mmm	4.382	4.3783(1)	8.632	8.6401(3)	9	
Nb	645059	Im3m	3.3063	3.3020(6)	c = a		5	

Таблица 4. Фазовый состав и параметры структуры продуктов восстановления-азотирования Nb₂O₅

ОРЛОВ и др.

Условия азотирования		Характеристики продуктов							
		из ТМ			из НМ				
t, °C	τ, ч	<i>S</i> , м²/г	<i>C</i> _N , %	Фазовый состав	<i>S</i> , м²/г	<i>C</i> _N , %	Фазовый состав		
820	6	70	0.95		132	1.5			
	12	69	0.76	1	158	1.2			
900	3	71	1.1	Та и РАФ	140	1.9	Nb и PAФ		
	6	68	1.1		128	1.8			
	12	68	1.0	1	151	1.9	1		

Таблица 5. Характеристики азотированных продуктов, полученных после восстановления ТМ и НМ

Примечание. РАФ – рентгеноаморфная фаза.

Таблица 6. Параметры элементарной ячейки порошков, полученных магниетермическим восстановлением ТМ и НМ (I) и после дополнительного азотирования (II)

Фаза	M ICDD	Пр гр	Период элементарной ячейки, Å			
	THE TODD	11p. 1p.	ICDD	Ι	II	
Та	4-788	Im3m	3.305	3.3110	3.3051	
Nb	34-370	Im3m	3.303	3.3072	3.3051	

Рис. 4. Рентгенограммы продуктов после восстановления (*1*) и азотирования (*2*) танталата (а) и ниобата магния (б).

практически не меняется фазовый состав продуктов (табл. 1, 2).

ЗАКЛЮЧЕНИЕ

Выполненное исследование показало, что провести одновременное восстановление и азотирование оксидных соединений тантала и ниобия не представляется возможным, т. к. образование нитрида магния препятствует испарению последнего. Восстановление оксидов и, соответственно, синтез нитридов не происходят. Процесс вели в две стадии: восстановление при остаточном давлении аргона в реакторе 5 кПа и температуре 820°С; выдержка продуктов реакции в атмосфере азота при 820 и 900°С. В этом режиме при восстановлении Та₂О₅ фазовый состав представлен нитридами θ-TaN (ICSD № 76455, пр. гр. *Р*б*m*2), ε-TaN (ICSD № 1396, пр. гр. *P*62*m*) и Ta₂N (ICSD № 76015, пр. гр. *Р*3*m*1). При использовании в качестве прекурсора Nb_2O_5 образуется нитрид NbN как с ГЦК- (ICSD № 604392, пр. гр. *Fm*3*m*), так и с ГПУ-решетками (ICSD № 76384, пр. гр. *P*6₃/*mmc*), Nb₂N (ICSD № 31165, пр. гр. *P*6₃/*mmc*) и Nb₄N₃ (ICSD № 76389, пр. гр. *I*4/*mmm*). Содержание азота и фазовый состав продуктов с увеличением времени выдержки практически не меняются. Порошки характеризуются мезопористой структурой с удельной поверхностью на уровне 20-28 м²/г. При использовании в качестве прекурсора $Mg_4Ta_2O_9$ или $Mg_4Nb_2O_9$ в полученных продуктах нитриды не наблюдались.

Анализ результатов показывает, что размер зазора между частицами металла и прослойками оксида магния в слоистой структуре восстановленной частицы, обеспечивающего доступ молекул азота к поверхности реагирования, определяется размером пор, т.е. толщиной пластинок оксида магния, разделяющих частицы металла. В порошках, полученных восстановлением пентаоксидов тантала и ниобия, доля поверхности, определяемая порами размером менее 10 нм, на уровне 20 и 50% соответственно. В порошках, полученных восстановлением $Mg_4 Ta_2 O_9$ и $Mg_4 Nb_2 O_9$, она увеличивается до 80 и 95% [8, 15].

СПИСОК ЛИТЕРАТУРЫ

- 1. *Тот Л*. Карбиды и нитриды переходных металлов: Пер. с англ. / Под реда. Гельда П.В. М.: Мир, 1974. 296 с.
- 2. *Ningthoujam R.S., Gajbhiye N.S.* Synthesis, Electron Transport Properties of Transition Metal Nitrides and Applications // Progress Mater. Sci. 2015. V. 70. № 5. P. 50–154.
- 3. *Maeda K., Terashima H., Kase K., Domen K.* Nanoparticulate Precursor Route to Fine Particles of TaON and ZrO₂-TaON Solid Solution and Their Photocatalytic Activity for Hydrogen Evolution under Visible Light // Appl. Catal. A: General. 2009. V. 357. № 2. P. 206–212.
- 4. Wang X.-J., Krumeich F., Worle M. et al. Niobium(V) Oxynitride: Synthesis, Characterization, and Feasibility as Anode Material for Rechargeable Lithium-Ion Batteries // Chem. Eur. J. 2012. V. 18. № 19. P. 5970– 5978.
- Lu D., Kondo J. N., Hara M. et al. Systematical Investigation on Characteristics of a Photocatalyst: Tantalum Oxynitrides // Microscopy. 2014. V. 63. № 4. P. 313–324.

- 6. *Орлов В.М., Кузнецов В.Я., Осауленко Р.Н.* Аммонолиз магниетермических порошков тантала // Журн. неорган. химии. 2017. Т. 62. № 1. С. 38–43.
- 7. *Орлов В.М., Осауленко Р.Н.* Свойства нитридов, получаемых аммонолизом магниетермических порошков ниобия // Неорган. материалы. 2018. Т. 54. № 7. С. 675–680.
- 8. *Орлов В.М., Крыжанов М.В., Князева А.И.* Порошки тантала с мезопористой структурой // Физикохимия поверхности и защита материалов. 2016. Т. 52. № 5. С. 500–504.
- 9. Müller R., Bobeth M., Brumm H. et al. Kinetics of Nanoscale Structure Development During Mg-Vapour Reduction of Tantalum Oxide // Int. J. Mater. Res. 2007. V. 98. № 11. P. 1138–1145.
- 10. *Орлов В.М., Крыжанов М.В.* Получение нанопорошков тантала магниетермическим восстановлением танталатов // Металлы. 2015. № 4. С. 93–97.
- 11. Самсонов Г.В., Кулик О.П., Полищук В.С. Получение и методы анализа нитридов. Киев: Наукова думка, 1978. 318 с.
- 12. Орлов В.М., Осауленко Р.Н., Крыжанов М.В., Лобов Д.В. Рентгенографическое исследование магниетермических танталовых порошков // Неорган. материалы. 2017. Т. 53. № 4. С. 386-391.
- 13. Орлов В.М., Крыжанов М.В., Калинников В.Т. Восстановление оксидных соединений ниобия парами магния // ДАН. 2015. Т. 465. № 2. С. 182–185.
- 14. *Gille G., Schnitter Ch., Brumm H. et al.* Nanosize structures composed of valve metals and valve metal suboxides and process for producing them: Pat. WO 2009/021820. 2009.
- Орлов В.М., Крыжанов М.В., Князева А.И. Осауленко Р.Н. Порошки ниобия с мезопористой структурой // Физикохимия поверхности и защита материалов. 2018. Т. 54. № 5. С. 444–449.