УДК 539.23539.216.2

СОСТАВ, СТРУКТУРА И ДИЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПЛЕНОК (Sr_{0.5}Ba_{0.5})Nb₂O₆/Pt(111)/Si(001)

© 2019 г. А. В. Павленко^{1, 2,} *, Ю. А. Кудрявцев³, Д. В. Стрюков¹, А. С. Анохин¹, А. П. Ковтун¹, Б. Я. Севастьянов¹

¹Южный научный центр Российской академии наук, Россия, 344006 Ростов-на-Дону, пр. Чехова, 41 ²Научно-исследовательский институт физики Южного федерального университета, Россия, 344090 Ростов-на-Дону, пр. Стачки, 194

³Solid State Electronics Section, Cinvestav-IPN, Mexico, Mexico DF, Cinvestav-IPN, Av. Instituto Politecnico Nacional #2508

*e-mail: ANTVPR@mail.ru

Поступила в редакцию 23.04.2018 г.

Методом высокочастотного газоразрядного напыления в атмосфере чистого кислорода синтезированы пленки сегнетоэлектрика-релаксора $Sr_{0.5}Ba_{0.5}Nb_2O_6$ (SBN) различной толщины на подложках Pt(111)/Si(001). Проведены исследования их структуры, профиля состава, динамики решетки и диэлектрических характеристик при температурах $25-200^{\circ}$ С. Показано, что состав по толщине пленки не изменяется и соответствует составу распыляемой керамической мишени, а на границе раздела SBN/Pt присутствует переходной слой толщиной более 30 нм, представляющий собой смесь платины и SBN. При рентгендифракционных исследованиях установлено, что полученные пленки являются поликристаллическими с преимущественной ориентацией оси [001] SBN параллельно нормали к поверхности подложки. Установлено, что в пленках SBN на подложке Pt(111)/Si при толщинах 950 нм и более не наблюдается существенных отличий от монокристалла в параметрах элементарной ячейки, динамике решетки, значениях температуры Бёрнса. Обсуждаются закономерности формирования структуры и характеристик объектов.

Ключевые слова: сегнетоэлектрики, тонкие пленки, диэлектрическая проницаемость, масс-спектрометрия

DOI: 10.1134/S0002337X19020106

введение

Сегнетоэлектрики (СЭ). благодаря широкому спектру функциональных возможностей. успешно интегрируются в устройства функциональной электроники [1]. Известно, что в случае СЭ-керамики или монокристаллов изменение свойств достигается преимущественно вариацией химического состава: изменением концентрации компонентов в твердых растворах (ТР) или модифицированием. В наноразмерных структурах на основе СЭ-пленок это возможно путем изменения механизма роста пленки и/или толщины материала [1]. В частности, в работе [2] показано, что в случае тонких пленок титаната бария-стронция, выращенных на подложке MgO(001), можно варьировать свойства и напряжения в пленке за счет изменения механизма роста и толщины. В работе [3] отмечено, что в поликристаллических пленках ВаТіО₃ уменьшение ее толщины приводит к понижению температуры СЭ-фазового перехода (ФП) подобно размерному эффекту в наноструктурированной керамике BaTiO₃ [4], а в эпитаксиальных – к ее повышению. При этом размерные эффекты в тонких пленках сегнетоэлектриковрелаксоров (СЭР) исследовались значительно реже. К числу одних из наиболее перспективных СЭР относятся твердые растворы $Sr_{1-x}Ba_xNb_2O_6$ [5], которые в виде монокристаллов (производители Altechna, Thorlabs Inc.) применяются в электрооптических и оптико-акустических элементах.

Настоящая работа посвящена установлению закономерностей формирования структуры и свойств пленок $Sr_{0.50}Ba_{0.50}Nb_2O_6$ (SBN) в интервале толщин 570—2400 нм, выращенных на подложке Pt(111)/Si(001).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Газоразрядное RF-напыление пленок SBN на предварительно подготовленную подложку Pt(111)/Si(001) осуществляли по методике [6]. Толщина пленок оценивалась по предварительно определенной скорости роста. Керамическая мишень стехиометрического состава Sr_{0.50}Ba_{0.50}Nb₂O₆ была изготовлена в отделе ИМиНТ НИИФ ЮФУ.

Рис. 1. Структура и изображение экспериментальной гетероструктуры Al/SBN/Pt(111)/Si(001).

Рентгенографический анализ проводили на дифрактометре **ДРОН-4-07** методом $\theta/2\theta$ -сканирования (СиК_α-излучение). Профили атомов по толщине пленки измерялись методом масс-спектрометрии вторичных ионов с помощью времяпролетного спектрометра TOF-SIMS-V фирмы Ion-TOF GmbH. Профилирование осуществлялось в режиме "двойного пучка": распыление на площади 300 × 300 мкм проводилось пучком ионов Cs⁺ с энергией 0.5 кэВ; при этом анализировались вторичные положительные кластерные ионы CsM⁺ (где М – рассматриваемый элемент), распыленные из центральной части (100 × 100 мкм) кратера травления импульсным пучком ионов Ві³⁺ с энергией 30 кэВ. Угол падения для обоих пучков ионов составлял 45°. Глубина экспериментального кратера измерялась профилометром Dektak-XT фирмы Bruker; полученные данные использовались для пересчета глубины в экспериментальном профиле. Для компенсации заряда поверхности в процессе профилирования применялся источник электронов низкой энергии (20 кэВ) с током пучка 17мкА.

Для получения спектров комбинационного рассеяния света (**KPC**) использовалось поляризованное излучение аргонового лазера ($\lambda = 514.5$ нм) и микро-КРС-спектрометр Renishaw inVia Reflex с edge-фильтром, позволяющим записывать спектры начиная с 50 см⁻¹. Спектры регистрировались по схеме обратного рассеяния с помощью оптического микроскопа Leica, диаметр лазерного пучка на образце составлял 1–2 мкм.

Для проведения диэлектрических измерений в направлении, перпендикулярном плоскости пленки, на свободную поверхность пленки через маску с отверстиями диаметром ~200 мкм осаждались электроды методом термического испарения Al в вакууме (рис. 1). В качестве нижнего электрода выступала Pt. Относительная диэлектрическая проницаемость ($\varepsilon/\varepsilon_0$) определялась из соотношения $C = \varepsilon_0 S/h$, где C – емкость структуры, h – толщина слоя сегнетоэлектрика, S – площадь электрода, $\varepsilon_0 = 8.854 \times 10^{-12} \, \Phi/m$ – электрическая постоянная. Площадь электрода измерялась на *3D*-микроскопе Кеуепсе VK-9700 (Объединенный центр научно-технологического оборудования ЮНЦ РАН). Зависимости от температуры $\varepsilon/\varepsilon_0$ и тангенса угла диэлектрических потерь (tg\delta) на частоте 10⁵ Гц с амплитудой 0.04 В измеряли с помощью измерителя иммитанса E7-20 в режиме "Норма". Погрешность расчета $\varepsilon/\varepsilon_0$ не превышала 4–5%.

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА

На рис. 2 приведен профиль распределения структурообразующих атомов одной из гетероструктур SBN/Pt/Si по толщине. Анализ показал, что состав SBN-пленки соответствует составу распыляемой керамической мишени и по толщине пленки не изменяется. На границе раздела SBN/Pt видна область толщиной ~30–40 нм, в которой одновременно фиксируются атомы пленки и Pt. В работе [7] при исследовании оптических характеристик гетероструктуры SBN/Pt/Si было показано, что на границе раздела SBN/Pt присутствует переходной слой толщиной более 30 нм, представляющий собой смесь платины и SBN. Его возникновение может быть обусловлено слоем шероховатости платины.

На рентгенограммах (рис. 3) наблюдаются отражения от подложки Si – 004, пленки Pt – 111 и 222, а также семейства плоскостей (00*l*) пленки SBN. Это говорит о том, что полученные пленки являются поликристаллическими с преимущественной ориентацией оси [001] SBN параллельно нормали к поверхности подложки. Для всех исследуемых гетероструктур параметр *с* пленки платины равнялся 3.91(0) Å (рис. 3). Уменьшение толщины пленки SBN в интервале 950–2280 нм не привело к изменению параметра ($c \sim 3.95(2)$ Å) (рис. 3), а при толщинах менее 950 нм параметр уменьшался (c = 3.94(6) Å при h = 570 нм). Посторонних фаз в исследуемых образцах не обнаружено.

Рис. 2. Профиль распределения по толщине атомов Ba, Sr, Nb, O, Pt, Si в гетероструктуре SBN/Pt(111)/Si(001).

Рис. 3. Дифрактограмма гетероструктуры SBN (h = 950 нм)/Pt(111)/Si(001); на вставке — зависимости параметров *с* пленки SBN и Pt от толщины *h*.

Деполяризованные спектры КРС гетероструктур SBN/Pt/Si при T = 300 K, снятые в геометрии обратного рассеяния, приведены на рис. 4. Основной вклад в спектр пленки SBN во всех случаях вносят три широкие полосы при 230, 630 и 850 см⁻¹, состоящие из набора линий (отсутствие ярко выраженных линий Si обусловлено его экранированием слоем платины). Для определения параметров

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 55 № 2 2019

Рис. 4. Спектры КРС при T = 300 К пленок SBN/Pt/Si различной толщины: 570 (a), 950 (б), 1700 (в) и 2280 нм (г).

отдельных фононов проводилась аппроксимация спектра SBN набором аддитивных невзаимодейсвующих гармонических осцилляторов согласно [8]:

$$I(\omega, \mathbf{T}) = A(n(\omega, T) + 1) \operatorname{Im} G(\omega), \qquad (1)$$

$$G(\omega) = \left(\omega_0^2 - \omega^2 + i\Gamma\omega\right)^{-1}, \qquad (2)$$

где *А* и Г — амплитуда и затухание гармонического осциллятора.

В каждом из анализируемых случаев в спектре выделяется 15 мод с частотами v_1-v_{15} (рис. 4), что коррелирует с [9]. Это свидетельствует в пользу того, что в SBN-пленках тетрагональное искажение элементарной ячейки сохраняется. Анализ показал, что при уменьшении *h* значения частот практически всех мод (табл. 1), кроме v_{12} (согласно [10], соответствующей внутренним колебаниям NbO₃-октаэдра вдоль полярной оси *Z*), не изменяются.

Результаты исследований диэлектрических характеристик гетероструктур Al/Cr/SBN/Pt/Si приведены на рис. 5. Видно, что в ряду монокристалл \rightarrow керамика \rightarrow пленка наблюдается снижение t_{max} и $\epsilon/\epsilon_0(t = t_{\text{max}})$, усиление размытия $\Phi\Pi$ и рост температурной стабильности ϵ/ϵ_0 материала.

Для установления значений температур Бёрнса (*t_B*) (температура, выше которой СЭР ведут себя как классические СЭ в параэлектрической (ПЭ) фазе, а ниже этой температуры его свойства обусловлены образованием полярных нанокластеров) были проанализированы зависимости $(\epsilon/\epsilon_0)^{-1}(t)$, представленные на рис. 5б. Для сравнения на рис. 5 также представлена зависимость (ϵ/ϵ_0)⁻¹(t, f = $= 10^5$ Гц) для монокристалла SBN. Видно, что в SBN/Pt/Si t_B в пленках толщиной 950-2280 нм составляет 155-160°С и практически совпадает со значением в монокристалле. В пленке толщиной 570 нм, как видно из рис. 56, $t_B > 200^{\circ}$ С (вследствие увеличения электропроводности данной пленки при высоких температурах надежных измерений из-за вкладов эффектов межслоевой поляризации получить не удалось).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В настоящее время существуют различные направления в описании природы СЭР: одни авторы представляют их как объекты с локальными температурами $\Phi\Pi$, другие развивают подходы, связанные с действием случайных полей, двухмо-

Мода	Частота, см ⁻¹	Полуширина, см ⁻¹	Частота, см ⁻¹	Полуширина, см ⁻¹	Частота, см ⁻¹	Полуширина, см ⁻¹	Частота, см ⁻¹	Полуширина, см ⁻¹
	570 нм		950 нм		1700 нм		2280 нм	
1	70.1	14.2	70.1	10.6	70.1	10.3	70.1	13.4
2	95.1	27	95.1	25.1	95.1	23.1	95.1	23.4
3	119.9	33.8	120	36.3	120	39.5	120	46
4	181.7	31.7	181.7	40.3	181.7	43.5	181.7	31.7
5	225.4	39.4	225.4	40.7	225.4	40.8	225.4	46.2
6	274.4	50.3	274.4	55	274.4	56.7	274.4	51.1
7	362.6	63.8	362.6	40	362.6	40	362.6	38.7
8	417.5	10.5	417.5	9.9	417.5	9.3	417.5	7.4
9	504.9	54.2	505	45.1	505	39.5	505	35.5
10	563.5	37.6	563.8	36.2	563.8	38.4	563.8	38.8
11	599.7	29.9	601.1	26.2	601.1	23.6	601.1	28.2
12	631	31.3	632	35.7	635	36.2	636	30
13	686.4	38.5	686.4	45.7	686.4	46.7	686.4	44.6
14	816.8	36.5	816	24	816	17.8	816	21.1
15	856.5	40.4	856	37.6	856	41.6	856	37.2

Таблица 1. Частоты линий в спектрах пленок SBN/Pt/Si различной толщины

довую модель для мягкой оптической моды, при этом проблема релаксорного поведения СЭ не нашла окончательного решения [11–13]. Отдельного внимания заслуживает вопрос о том, как проявляются релаксорные свойства в тонких пленках, так как в этом случае, с одной стороны,

Рис. 5. Зависимости $\varepsilon/\varepsilon_0$ и $(\varepsilon/\varepsilon_0)^{-1}$ от *t* для монокристалла SBN из (*1*), керамики SBN (*2*) и гетероструктур Al/SBN/Pt/Si (*3* – 950, *4* – 1700, *5* – 2280, *6* – 570 нм) при *t* = 30–200°С на частоте *f* = 10⁵ Гц.

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 55 № 2 2019

толщины самих пленок могут быть сопоставимы с размерами полярных нанообластей, а с другой влияние деформации может привести к исчезновению релаксорных свойств. Ранее в работе [6] показано, что признаки СЭР в пленках SBN на подложке Pt(111)/Si(001) (наличие широкого пика на зависимости $\varepsilon/\varepsilon_0(t)$, частотная дисперсия, выполнение закона Фогеля-Фулчера) сохраняются. Результаты данного исследования диэлектрических характеристик пленок SBN, отличающихся только толщиной слоя, показали, что переход из ПЭ-фазы в состояние СЭР при понижении температуры начинает происходить при достаточно близких температурах (рис. 5б). Эти результаты достаточно хорошо коррелируют с выводами работы [14], в которой обращено внимание на связь свойств ТР ниобатов бария-стронция со степенью ацентричности NbO₆-октаэдров. Это важно с точки зрения технологии получения данных структур. В частности, в [15] отмечено, что повышение содержания Sr от 61 до 75 ат. % или же введение 1-2 ат. % примеси редкоземельного элемента (Се, Тт и др.) или Сг приводит к изменению температуры СЭ-перехода более чем на 30°С. Последнее позволяет сделать вывод о том, что в рамках используемого метода не происходит существенных нарушений в реальной структуре SBN. В пользу этого свидетельствуют результаты исследований профиля состава, данных рентгенографического анализа и спектроскопии КРС.

Снижение рассчитываемых значений ϵ/ϵ_0 для слоя пленки SBN при уменьшении *h*, с нашей точки зрения, учитывая поликристаллическую структуру пленок, связано с существованием на границе раздела пленка/подложка буферного слоя с низкой диэлектрической проницаемостью в направлении, перпендикулярном к плоскости подложки, как это имело место, например, в пленках BaTiO₃ [15]. Его "следы" были видны как при анализе профиля состава гетероструктуры (рис. 2), так и при оптических исследованиях [7].

ЗАКЛЮЧЕНИЕ

Показано, что в случае поликристаллических пленкок SBN, выращенных одностадийным методом RF-напыления на подложке Pt(111)/Si, при толщинах 950 нм и более не наблюдается существенных отличий от монокристалла в структуре и параметрах элементарной ячейки.

При анализе спектров КРС гетероструктур SBN/Pt/Si при T = 300 К в интервале $\lambda = 50 - 100$ см⁻¹ установлено, что в пленках сохраняется тетрагональное искажение элементарной ячейки, а при уменьшении их толщины изменяется только частота моды, соответствующей внутренним колебаниям NbO₃-октаэдра вдоль полярной оси.

При изучении диэлектрических характеристик образцов показано, что в ряду монокристалл $\rightarrow \rightarrow$ керамика \rightarrow пленка наблюдаются усиление размытия СЭ–ПЭ ФП, рост температурной стабильности ϵ/ϵ_0 материала, а температуры Бёрнса для кристалла и пленок с толщинами 950–2280 нм близки. Однако для пленок толщиной 570 нм видны существенные изменения их структуры и динамики решетки, связаные, с нашей точки зрения, с проявлением размерных эффектов. Выявлены признаки существования переходного слоя между Pt-электродом и SBN-пленкой толщиной 30–40 нм, что ограничило изучение влияния размерных эффектов в СЭР SBN.

БЛАГОДАРНОСТЬ

Работа выполнена в рамках государственного задания ЮНЦ РАН (тема № госрегистрации 01201354247), гранта РФФИ № 16-32-60095 мол_а_дк и гранта РФФИ № 16-29-14013 офи_м.

Авторы благодарят В.М. Король и А.В. Назаренко за помощь в организации и проведении экспериментальных исследований.

СПИСОК ЛИТЕРАТУРЫ

- 1. Воротилов К.А., Мухортов В.М., Сигов А.С. Интегрированные сегнетоэлектрические устройства. М.: Энергоатомиздат, 2011. 175 с.
- 2. Мухортов В.М., Головко Ю.И., Бирюков С.В., Анохин А., Юзюк Ю.И. Влияние механизмов роста на деформацию элементарной ячейки и переключение поляризации в гетероструктурах титаната бариястронция на оксиде магния // ЖТФ. 2016. Т. 86. № 1. С. 93–98. doi 10.1134/S106378421601014X
- 3. Давитадзе С.Т., Струков Б.А., Высоцкий Д.В., Леманов В.В., Шульман С.Г., Uesu Y., Asanuma S. Фазовый переход в сегнетоэлектрических эпитаксиальных тонких пленках по данным тепловых измерений // ФТТ. 2008. Т. 50. № 12. С. 2206–2209. doi 10.1134/S1063783408120135
- Zhao Z., Buscaglia V., Viviani M., Buscaglia M., Mitoseriu L., Testino A., Nygren M., Johnsson M., Nanni P. Grain-Size Effects on the Ferroelectric Behavior of Dense Nanocrystalline BaTiO₃ Ceramics // Phys. Rev. B. 2004. V. 70. № 2. P. 024107. doi 10.1103/Phys-RevB.70.024107
- 5. *Кузьминов Ю.С.* Сегнетоэлектрические кристаллы для управления лазерным излучением. М.: Наука, 1982. 400 с.
- Павленко А.В., Захарченко И.Н., Анохин А.С., Куприна Ю.А., Кисилева Л.И., Юзюк Ю.И. Структура, динамика решетки и диэлектрические характеристики пленок Sr_{0.5}Ba_{0.5}Nb₂O₆ // ФТТ. 2017. Т. 59. С. 888–891. doi 10.1134/S1063783417050249
- Ковтун А.П., Зинченко С.П., Павленко А.В., Толмачев Г.Н. Оптическая анизотропия и диэлектрические характеристики пленок (Ва_{0.5}Sr_{0.5})Nb₂O₆ на подложке Pt(111)/Si(001) // Письма в ЖТФ. 2016. Т. 42. № 11. С. 48–55. doi 10.1134/S1063785016060109

- Wojdyr M. Fityk: a General-Purpose Peak Fitting Program // J. Appl. Crystallogr. 2010. V. 43. № 5. P. 1126– 1128. doi 10.1107/S0021889810030499
- Samanta K., Arora A.K., Ravindran T.R., Ganesamoorthy S., Kitamura K., Takekawa S. Raman Spectroscopic Study of Structural Transition in Sr_xBa_{1-x}Nb₂O₆ Single Crystals // Vib. Spectrosc. 2012. V. 62. P. 273–278. doi 10.1016/j.vibspec.2012.07.002
- Bartlett K.G., Wall L.S. Temperature Study of the Polarized Raman Spectra of Strontium Barium Niobate // J. Appl. Phys. 1973. V. 44. № 11. P. 5192–5193. doi 10.1063/1.1662124
- Bokov A.A., Ye Z.-G. Recent Progress in Relaxor Ferroelectrics with Perovskite Structure // J. Mater. Sci. 2006. V. 41. № 1. P. 31–52. doi 10.1007/s10853-005-5915-7

- Мамин Р.Ф., Шапошникова Т.С. Возникновение релаксорного поведения // Письма в ЖЭТФ. 2015. Т. 101. № 1. С. 29–33. doi10.1134/S0021364015010099
- Вахрушев С.Б., Бурковский Р.Г., Shapiro S., Ivanov A. Кристаллические структуры и элементарные возбуждения. Двухмодовое поведение в релаксоре Рb-Mg_{1/3}Nb_{2/3}O₃ // ФТТ. 2010. Т. 52. № 5. С. 838-841. doi 10.1134/S106378341005001X
- 14. Черная Т.С., Максимов Б.А., Волк Т.Р., Ивлева Л.И., Симонов В.И. Атомное строение монокристалла Sr_{0.75}Ba_{0.25}Nb₂O₆ и связь состав–структура–свойства в твердых растворах (Sr,Ba)Nb₂O₆ // ФТТ. 2000. Т. 42. № 9. С. 1668–1672. doi 10.1134/1.1309457
- Бойко Ю.А., Клаесон Т. Диэлектрическая проницаемость эпитаксиальных пленок ВаТіО₃, выращенных на (001) YBa₂Cu₃O_{7 - δ}// ФТТ. 2001. Т. 43. № 2. С. 323-330. doi 10.1134/1.1349485