УДК 535.375.54

КОМБИНАЦИОННОЕ РАССЕЯНИЕ СВЕТА В ПОЛИКРИСТАЛЛАХ LIOH И LIOD

© 2019 г. В. С. Горелик^{1, 2, *}, А. И. Водчиц³, Dongxue Bi², В. В. Колташев⁴, В. Г. Плотниченко^{4, 5}

¹Физический институт им. П.Н. Лебедева Российской академии наук, Россия, 119991 Москва, Ленинский пр., 53

²Московский государственный технический университет им. Н.Э. Баумана,

Россия, 105005 Москва, 2-я Бауманская ул., 5, стр. 1

³Институт физики им. Б.И. Степанова Национальная академия наук Беларуси,

Беларусь, 220072 Минск, пр. Независимости, 68

⁴Институт общей физики им. А.М. Прохорова Российской академии наук, Россия, 119991 Москва, ул. Вавилова, 38

⁵Московский физико-технический институт, Россия, 141700 Московская обл., Долгопрудный, Институтский пер., 9

*e-mail: gorelik@sci.lebedev.ru

Поступила в редакцию 04.09.2018 г. После доработки 04.10.2018 г. Принята к публикации 15.10.2018 г.

Исследованы спектры спонтанного и вынужденного комбинационного рассеяния света в поликристаллах LiOH и LiOD. В зарегистрированных спектрах спонтанного комбинационного рассеяния присутствуют низкочастотные высокодобротные решеточные моды, соответствующие трансляционным и либрационным осцилляциям ионов. В спектре вынужденного комбинационного рассеяния обнаружено несколько стоксовых и антистоксовых спутников с большим частотным сдвигом.

Ключевые слова: спектроскопия, литий, гидроксиды, рассеяние, теория групп, кристаллическая решетка, колебания, частоты

DOI: 10.1134/S0002337X19030084

введение

Одним из простейших кристаллов, содержащих лития, является гидроксид лития, который находит широкое применение в водородной энергетике и других областях [1–3]. Анализ кристаллической структуры кристалла LiOH был выполнен в первой половине прошлого века [4]. Спектры комбинационного рассеяния (**КР**) в этом кристалле изучались рядом авторов [5–8]. В работах [5, 6] установлено, что частота валентных колебаний гидроксильной группы в кристалле гидроксида лития равна 3664 см⁻¹. В [7] исследован спектр КР кристалла LiOH в области частот, больших 650 см⁻¹. В работе [8] изучался спектр КР валентных колебаний гидроксильной группы обсуждаемого кристалла в зависимости от присутствия воды.

В данной работе ставилась задача получения более полной информации о колебательном спектре кристалла гидроксида лития методами спектроскопии спонтанного и вынужденного КР и проведения теоретико-группового анализа, включая отнесение типов оптических колебаний и установление правил отбора в спектрах КР и инфракрасного (ИК) поглощения.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры спонтанного КР кристаллического порошка LiOH были зарегистрированы на экспериментальной установке, схема которой представлена на рис. 1а. При этом в качестве источника излучения использовался непрерывный гелийнеоновый лазер (1) с длиной волны генерации 632.8 нм и с мощностью 20 мВт. Лазерное излучение (1) при помощи полупрозрачной пластины (2) и линзы (3) направлялось на образец (4). Излучение КР отражалось зеркалом (6) и фокусировалось с помощью линзы (7). Спектры спонтанного КР были зарегистрированы с помощью тройного монохроматора (8), обеспечивающего возможность регистрации спектра в широкой области, включая как низкочастотный диапазон (5–10 см⁻¹), так и область высоких частот. В качестве приемника вторичного излучения применялась CCD-матрица (9), сигнал от которой передавался на компьютер (10). При выведении из оптической схемы зеркала (6) элементы (12) (пунктир) использовались в качестве микроскопа. Спектральное разрешение при регистрации спектров КР составляло 1 см⁻¹.

Спектр вынужденного комбинационного рассеяния (**BKP**) был исследован с использованием

Рис. 1. Схемы экспериментальных установок для регистрации спектров спонтанного (а) и вынужденного комбинационного рассеяния (б): *1* – лазер; *2* – полупрозрачная пластина; *3*, *7*, *11* – линзы; *4* – образец; *5* – подложка; *6* – зеркало; *8* – тройной монохроматор; *9* – приемники; *10* – компьютер; *12* – микроскоп (а), *1* – лазер; *2* – зеркало; *3*, *7* – линзы; *4* – держатель; *5* – образец; *6* – кварцевое окно; *8*, *10* – миниспектрометры; *9*, *11* – компьютеры (б).

экспериментальной установки [9], схема которой приведена на рис. 16. Возбуждение ВКР осуществлялось с помощью второй оптической гармоники (532 нм) YAG: Nd³⁺-лазера (1). После полупрозрачного зеркала (2) лазерный луч фокусировался линзой (3) на образце (5). Сигнал ВКР, возникающий в кювете (5), с помощью линзы (7) подводился к миниспектрометру (8). Сигнал

ВКР в геометрии "назад" после отражения от зеркала (2) подводился ко входной щели миниспектрометра (10).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На рис. 2а представлен зарегистрированный спектр спонтанного КР поликристаллов гидрок-

Рис. 2. Спектр КР гидроксида лития, зарегистрированный при комнатной температуре в диапазоне частот 10–1350 см⁻¹ (а) и спектры ВКР в кристаллах гидроксида лития (б) и дейтерида лития (в); на вставке к рис. 2а приведен участок спектра из работы [7] в области высоких частот, на котором присутствует пик КР, соответствующий валентному колебанию гидроксильной группы.

Рис. 2. Окончание.

сида лития при комнатной температуре в диапазоне частот 10-1350 см⁻¹. Как видно из рис. 2а, в зарегистрированном спектре КР присутствует большое число низкочастотных линий, наиболее интенсивная из которых имеет частоту 94 см⁻¹. Наблюдается также резкий интенсивный максимум на частоте 1093 см⁻¹. На вставке к рис. 2а приведен интенсивный пик КР в области высоких частот (3664 см⁻¹), соответствующий валентному колебанию гидроксильной группы.

Как выяснилось из экспериментов с использованием интенсивных ультракоротких импульсов генерации твердотельного лазера на алюмоиттриевом гранате с длиной волны 532 нм (вторая оптическая гармоника основной линии генерации – 1064 нм), порог разрушения этого вещества при фокусировке лазерного излучения оказался очень высоким (до 10⁹ Вт/см²). Это обеспечило возможность наблюдения многочастотного ВКР с генерацией нескольких стоксовых и антистоксовых компонент.

Нормированные спектры ВКР, зарегистрированные в поликристаллических порошках LiOH и LiOD, приведены на рис. 26, 2в [9]. В случае кристаллов LiOH в спектре ВКР присутствуют два интенсивных стоксовых и один антистоксовый сателлиты. При этом частотный сдвиг (3664 см⁻¹) соответствует возбуждению внутримолекулярной моды гидроксильной группы (см. вставку к

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 55 № 3 2019

рис. 2а). В спектре ВКР поликристаллов LiOD наблюдаются (рис. 2в) два стоксовых сателлита с частотным сдвигом 2923 см⁻¹. Кроме того, здесь присутствует также дополнительный пик с частотой 3616 см⁻¹, возникающий за счет наличия гидроксильных групп (OH⁻) в дейтерированном образце. Отметим также, что в низкочастотной области спектра также обнаружились полосы ВКР, соответствующие возбуждению решеточных колебаний обсуждаемого кристалла.

Вид примитивной ячейки кристаллической решетки LiOH иллюстрирует рис. 3. Пространственная группа симметрии обсуждаемого кристалла – $D_{4h}^7 (P4/nmm)$; решетка Браве относится к тетрагональной сингонии. В примитивной ячейке кристаллической решетки присутствуют две формульные единицы LiOH; таким образом, в колебательном спектре при k = 0 имеются 18 степеней свободы, 3 из которых относятся к акустическим, а 15 – к оптическим ветвям. Ионы OH⁻ расположены в положениях с локальной симметрией C_{4y} [4].

Анализ свойств симметрии оптических мод обсуждаемого кристалла и правил отбора для оптических процессов кристалла LiOH с использованием неприводимых представлений был выполнен на основе общей теории, изложенной в

Рис. 3. Вид примитивной ячейки кристаллов гидроксида лития [9].

работе [10]. Результаты проведенного теоретикогруппового анализа представлены в табл. 1 и 2.

В результате выполненного теоретико-группового анализа установлено, что колебательное представление содержит следующие типы оптических мод:

$$T_{opt} = 2A_{lg}(KP) + B_{lg}(KP) + 2A_{2u}(MK) + + 3E_g(KP) + 2E_u(MK).$$
(1)

В скобках приведены сведения о правилах отбора соответствующих мод: КР – активность в спектре комбинационного рассеяния, ИК – активность в инфракрасном поглощении.

В табл. 2 приведена структура приводимых представлений, соответствующих либрационным T_{lib} , трансляционным T_{ir} , внешним $T_{out} = T_{lib} + T_{tr}$ и внутренним $T_{in} = T_{opt} - T_{out}$ типам колебаний кристаллов гидроксида лития.

Трансляционные решеточные моды соответствуют поступательным осцилляциям гидроксильной группы OH⁻ и ионов лития Li⁺. Либрационные решеточные моды соответствуют поворотным качаниям гидроксильной группы OH⁻. Наблюдаемые в низкочастотной области спектра КР полосы с частотами 94, 154, 191, 215 см⁻¹ (см. рис. 2а) относятся к трансляциям, среди которых самая интенсивная линия с частотой 94 см⁻¹ соответствует трансляции ионов лития. Колебание с частотой 1093 см⁻¹ отвечает осцилляциям ионов лития относительно группы ОН-. Большое значение этой частоты по сравнению с другими решеточными модами обусловлено малой массой лития – самого легкого металла в Периодической таблице элементов. Внутреннее колебание гидроксильной группы характеризуется частотой 3664 см⁻¹ и проявляется в виде резкого интенсивного спутника КР в высокочастотной области

Мода	Ε	$C_4^{\pm 1}(z)$	$C_2(z)$	$2C_2$	$2C_{2}'$	σ_h	$2\sigma_v$	$2\sigma_d$	$S_4^{\pm 1}$	Ι
ά	0;0;0	$\frac{1}{2};\frac{1}{2};0$	0;0;0	$\frac{1}{2};\frac{1}{2};0$	0;0;0	$\frac{1}{2};\frac{1}{2};0$	0;0;0	$\frac{1}{2};\frac{1}{2};0$	0;0;0	$\frac{1}{2};\frac{1}{2};0$
n_0	6	4	6	0	0	0	6	4	2	0
$n_0 - 1$	5	3	5	-1	-1	-1	5	3	1	-1
χ_{v}	3	1	-1	-1	1	1	1	1	-1	-3
χ_{opt}	15	3	-5	1	-1	-1	5	3	-1	3

Таблица 1. Результаты теоретико-группового анализа оптических мод в кристалле гидроксида лития

Примечание. $\vec{\alpha}$ – вектор трансляции пр. гр. $D_{4h}^7 (P4/nmm)$; n_0 – число атомов, остающихся на месте при преобразованиях симметрии; χ_v – характер векторного представления; χ_{opt} – характер оптического представления.

T ()	D	1 6		
	Результаты класси	тикании колерательных	представлении гилроксида 1	тития
I aosinina 2.	i obysibiui bi ksiucen	рикации колеоціольных	предетавлении пидрокенда з	111111/1

		<u> </u>		
Ион	Li ⁺	OH-		
T _{tr}	$T_{tr}(Li^+) = B_{1g} + A_{2u}$	$T_{tr}(OH^{-}) = A_{1g} + E_g + A_{2u} + E_u$		
	$T_{ir} = A_{1g} + B_{1g} + A_{2u} + 2E_{g} + E_{u}$			
T _{lib}	_	$T_{lib}(OH^-) = E_g + E_u$		
Tout	$T_{out} = A_{1g} + B_{1g} + A_{2u} + 3E_{g} + 2E_{u}$			
T _{in}	_	$T_{in}(\mathbf{OH}^{-}) = A_{1g} + A_{2u}$		
T _{opt}	$T_{opt} = 2A_{1g} + B_{1g} + 2A_{2u} + 3E_g + 2E_u$			

Примечание. T_{tr} – трансляционное колебательное представление; T_{lib} – поворотно-колебательное представление; T_{out} – внешне-колебательное представление; T_{in} – внутренне-колебательное представление.

спектра (см. вставку к рис. 2а). Вследствие высокой добротности низкочастотных оптических мод спонтанного КР (рис. 2а) в дальнейшем представляется перспективным исследование возможности наблюдения ВКР на решеточных модах в обсуждаемом кристаллическом порошке.

ЗАКЛЮЧЕНИЕ

В работе получены данные о характеристиках спонтанного и вынужденного комбинационного рассеяния кристалла в кристаллических порошках гидроксида лития. Выполнено отнесение наблюдаемых комбинационных спутников к трансляционным и либрационным решеточным модам гидроксильных групп и к трансляциям ионов лития относительно гидроксильных групп. Установлена возможность возбуждения многочастотного ВКР в стоксовом и антистоксовом диапазонах с большим частотным слвигом (3664 см^{-1}) при возбуждении интенсивными ультракороткими импульсами лазера YAG:Nd³⁺ с длиной волны генерации 532 нм. Присутствие резкой высокодобротный низкочастотной моды с частотой 94 см⁻¹ открывает возможность для наблюдения стоксантистоксовых процессов при возбуждении ВКР на низкочастотных решеточных модах в кристалле гидроксида лития.

БЛАГОДАРНОСТЬ

Работа выполнена при поддержке РФФИ (гранты 16-02-00488, 16-08-00618 и 18-02-00181) и China Scholarship Council.

СПИСОК ЛИТЕРАТУРЫ

- Laude T., Kobayashi T., Sato Y. Electrolysis of LiOH for Hydrogen Supply // Int. J. Hydrogen Energy. 2010. V. 35. № 2. P. 585–588.
- Megahed S., Ebner W. Lithium-Ion Battery for Electronic Applications // J. Power Sources. 1995. V. 54. № 1. P. 155–162.
- 3. *Pasha M.A., Manjula K.* Lithium Hydroxide: A Simple and an Efficient Catalyst for Knoevenagel Condensation under Solvent-Free Grindstone Method // J. Saudi Chem. Soc. 2011. V. 15. № 3. P. 283–286.
- 4. *Ernst T.* Representation and Crystal Structure of Lithium Hydroxide // J. Phys. Chem. B: Chem. Elementary Processes, Struct. Matter. 1933. V. 20. P. 65–88.
- Phillips B.A., Busing W.R. Comparison of the Infrared and Raman Spectra of Some Crystalline Hydroxides // J. Phys. Chem. 1957. V. 61. № 4. P. 502.
- 6. *Krishnamurti D.* The Raman and Infrared Spectra of Some Solid Hydroxides // Proc. Indian Academy Sci. Section A. 1959. V. 50. № 4. P. 247–253.
- Harbach F, Fischer F. Raman Spectra of Lithium Hydroxide Single Crystals // J. Phys. Chem. Solids. 1975. V. 36. № 6. P. 601–603.
- 8. *Walrafen G.E., Douglas R.T.* Raman Spectra from Very Concentrated Aqueous NaOH and from Wet and Dry, Solid, and Anhydrous Molten, LiOH, NaOH, and KOH // J. Chem. Phys. 2006. V. 124. № 11. P. 114504.
- Gorelik V.S., Bi D., Voinov Y.P. et al. Raman Spectra of Lithium Compounds // J. Phys.: Conf. Ser. 2017. P. 012035.
- Landau L.D., Lifshitz E.M. Quantum Mechanics, Non-Relativistic Theory. Oxford: Pergamon press, 1991. 691 p.