УДК 546.07'273.54-165.48

СИНТЕЗ И ТЕРМОЛЮМИНЕСЦЕНТНЫЕ СВОЙСТВА ТВЕРДЫХ РАСТВОРОВ PbCd_{2 – x}Mn_xB₆O₁₂

© 2019 г. Т. Н. Хамаганова*

Байкальский институт природопользования СО Российской академии наук, Россия, 670047 Улан-Удэ, ул. Сахьяновой, 6 *e-mail: khama@binm.ru Поступила в редакцию 11.04.2018 г. После доработки 25.09.2018 г.

Принята к публикации 15.10.2018 г.

Методом твердофазных реакций получены порошки двойного бората $PbCd_2B_6O_{12}$ и твердых растворов состава $PbCd_{2-x}Mn_xB_6O_{12}$. Определены кристаллографические характеристики полученных фаз (пр. гр. $P2_1/n$). Методами ДСК и РФА показано, что соединение $PbCd_2B_6O_{12}$ плавится инконгруэнтно при 734°С. Впервые исследована зависимость интенсивности термолюминесценции фаз переменного состава от концентрации ионов активатора в интервале температур 25–400°С. Показано, что максимальную яркость свечения в видимой области спектра обеспечивает образец с концентрацией ионов Mn^{2+} 5 мол. %.

Ключевые слова: поликристаллические бораты свинца и кадмия, РФА, ДСК, термолюминесценция, ион марганца

DOI: 10.1134/S0002337X19030114

введение

Электронное строение ионов свинца Pb²⁺ из-за наличия неподеленной электронной пары предполагает проявление неожиданных и уникальных физических свойств у соединений, в составе которых они присутствуют. Это обусловило повышенный интерес к таким свинецсодержащим фазам, в том числе и к боратам [1–3]. Важное значение для практических приложений приобретают неорганические люминофоры или т.н. кристаллофосфоры, в виде порошков, пленок, монокристаллов, имеющие в составе незначительные количества примеси-активатора. Ионы активатора становятся определяющей составной частью центров свечения кристаллофосфора. Поэтому создание эффективного люминофора зависит от выбора как люминесцентной матрицы, так и ионов активатора. Имеются данные о проявлении люминесцентных свойств полиморфными модификациями сложного бората лития и кадмия LiCdBO₃. По [4], в ультрафиолетовом свете α-LiCdBO3 люминесцирует розовым, а β-LiCdBO₃ – красным цветом. Эффективную люминесценцию дают ионы Mn²⁺ в бескислородных и кислородсодержащих соединениях кадмия [5-7]. В последние годы интенсивно ведутся исследования термолюминесцентных свойств борсодержащих соединений [8–14]. Расширение ассортимента боратов, обладающих ярко выраженными термолюминесцентными свойствами, весьма актуально для практического использования. Недавно нами исследованы термолюминесцентные свойства тетрабората кадмия, легированного катионами Mn²⁺ [15].

Цель настоящей работы — установление оптимальных условий твердофазного синтеза индивидуальной фазы PbCd₂B₆O₁₂ и твердых растворов на ее основе, полученных легированием ионами марганца, определение ее кристаллографических и термических характеристик, а также исследование зависимости термолюминесценции твердых растворов PbCd_{2-x}Mn_xB₆O₁₂ от концентрации ионов Mn²⁺.

При изучении тройной оксидной системы PbO– CdO–B₂O₃ получен двойной борат свинца и кадмия состава PbCd₂B₆O₁₂. Состав фазы PbCd₂B₆O₁₂ был смоделирован исходя из предположения о возможном гетеровалентном замещении катионов в K₃YB₆O₁₂ [16] по реакции: $3K^+ + Y^{3+} \rightarrow Pb^{2+} +$ $+ 2Cd^{2+}$.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез образцов осуществляли методом твердофазных реакций: реакционные смеси готовили тщательным смешиванием стехиометричес-ких количеств исходных веществ с последующим отжигом в платиновых тиглях на воздухе с проме-

Рис. 1. Рентгенограммы индивидуальной фазы и твердых растворов: $1 - PbCd_2B_6O_{12}$, $2 - PbCd_{1.97}Mn_{0.03}B_6O_{12}$, $3 - PbCd_{1.95}Mn_{0.05}B_6O_{12}$, $4 - PbCd_{1.93}Mn_{0.07}B_6O_{12}$.

Рис. 2. Кривые нагревания и охлаждения бората $PbCd_2B_6O_{12}$.

жуточными перетираниями. Исходными реагентами служили предварительно прокаленные при 600°С в течение 5 ч оксиды металлов: PbO квалификации "х. ч.", CdO и MnO "ч. д. а." и борная кислота H₃BO₃ "х. ч.". Концентрация активатора (Mn²⁺) составляла 3, 5 и 7 мол. %. Синтез легированных образцов проводили в интервале 350– 620°С.

Контроль за достижением равновесия в образцах осуществляли методом рентгенофазового анализа (**РФА**). Съемку образцов проводили в интервале углов дифракции 10° — 60° на порошковом автоматическом дифрактометре D8 Advance фирмы BRUKER (Cu K_{α} -излучение).

Синтез образца $PbCd_2B_6O_{12}$ проводили последовательным повышением температуры на 50– 100°C с 350 до 590°C. Образование новой фазы было зафиксировано при 590°C, о чем свидетельствовала рентгенограмма полученного образца (рис. 1), на которой отсутствовали рефлексы исходных и промежуточных соединений. Чистота порошка $PbCd_2B_6O_{12}$ подтверждена методами $P\PhiA$ и дифференциальной сканирующей калориметрии (**ДСК**). ДСК-кривые нагрева и охлаждения показаны на рис. 2. Наши результаты подтверждены данными [17] о существовании соединения этого состава. Авторами [17] выращены монокристаллы и определена кристаллическая структура $PbCd_2B_6O_{12}$.

Индицирование рентгенограмм синтезированных образцов и уточнение параметров элементарных ячеек выполнено по программе TOPAS-4.

Термический анализ бората $PbCd_2B_6O_{12}$ проводили методом ДСК на термоустановке Jupiter STA 449С фирмы NETZSCH. Нагрев и охлаждение образца выполняли со скоростью 10°С/мин, масса навески составляла ~30 мг.

Исследование термостимулированной люминесценции выполняли построением кривых высвечивания по [18] при температурах 20–400°С. Схема экспериментальной установки, состоящей из печи, терморегулятора, самописца и фотоэлектронного умножителя (ФЭУ), приведена ранее [15]. Отметим, что область спектральной чувствительности ФЭУ составляла 300–600 нм.

В качестве источника облучения использовали контрольный стронций-иттриевый β-источник. Продолжительность воздействия излучением β-источника составляла 0.5–2 ч. Нормировку результатов измерений термолюминесцентной чувствительности проводили по сигналу от эталона, которым служил LiF:Mg,Ti.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Двойной борат PbCd₂B₆O₁₂ кристаллизуется в моноклинной сингонии, пр. гр. P2₁/n [17]. Кристаллическая структура $PbCd_2B_6O_{12}$ представляет собой трехмерный каркас [Cd₂B₆O₁₂]²⁻, состоящий из [(B₆O₁₂)⁶⁻]_n-слоев, параллельных плоскости *ab*. Между слоями [(B₆O₁₂)⁶⁻] проходят одномерные туннели 8-членных колец, которые заполнены цепочками Cd(2)O₆-октаэдров, связанных ребрами и формирующих новые двумерные $[Cd_2B_6O_{12}]^{4-}$ -слои, которые также параллельны плоскости ab. Соседние двумерные слои $[Cd_2B_6O_{12}]^{4-}$ соединены мостиковыми димерами, связанными ребрами Cd(1)O7-полиэдров, в трехмерную $[Cd_2B_6O_{12}]^{2-}$ анионную сеть. В пустотах каркаса расположены ионы Pb²⁺, координированные семью атомами кислорода.

Рентгенограммы полученных фаз показаны на рис. 1. Видно, что рентгенограммы легированных образцов и индивидуального соединения $PbCd_2B_6O_{12}$ практически идентичны по располо-

Фаза	a, Å	b, Å	c, Å	β, град	<i>V</i> , Å ³
PbCd ₂ B ₆ O ₁₂ [17]	6.5570(3)	6.9924(4)	19.2094(10)	90.285(4)	880.72(8)
$PbCd_2B_6O_{12}$	6.5618(3)	6.9868(4)	19.2081(8)	90.250(3)	880.61(7)
$PbCd_{1.97}Mn_{0.03}B_6O_{12}$	6.5594(5)	6.9857(6)	19.213(2)	90.230(6)	880.4(2)
$PbCd_{1.95}Mn_{0.05}B_6O_{12}$	6.5572(6)	6.9883(7)	19.208(2)	90.269(5)	880.2(2)
PbCd _{1.93} Mn _{0.07} B ₆ O ₁₂	6.5559(6)	6.9847(9)	19.200(2)	90.278(5)	879.2(2)

Таблица 1. Параметры элементарных ячеек порошков $PbCd_2B_6O_{12}$, легированных ионами Mn^{2+} (пр. гр. $P2_1/n$, Z = 4)

жению рефлексов и их относительным интенсивностям. Данные для монокристалла [17] использованы при уточнении параметров элементарных ячеек полученных нами порошков (табл. 1). Монотонное уменьшение параметров моноклинных ячеек и их объемов указывает на образование непрерывного ряда твердых растворов в области изученных концентраций. Изменение параметров и объемов ячеек согласуется с величинами радиусов ионов активатора и замещаемых ионов матрицы.

На кривой нагревания $PbCd_2B_6O_{12}$ имеется один четко выраженный эндотермический эффект при 734°С, отвечающий плавлению вещества (рис. 2). По результатам РФА охлажденного сплава установлено, что соединение плавится инконгруэнтно. Рентгенограмма расплавленного образца показана на рис. 3. Видно, что в аморфном расплаве наряду с рефлексами $PbCd_2B_6O_{12}$ (самый интенсивный рефлекс на рентгенограмме принадлежит расплавленной фазе) присутствуют в качестве дополнительных линии тетрабората кадмия CdB_4O_7 , оксида свинца PbO и бората свинца $Pb_6B_{10}O_{21}$.

Как известно, в некоторых веществах под действием излучения образуются носители зарядов (электроны и дырки), локализующиеся в центрах захвата. В результате происходит накопление поглощенной энергии, которая способна высвобождаться при внешнем воздействии. Таким внешним воздействием (стимулированием) для термолюминесценции является нагрев вещества.

В настоящей работе впервые исследованы термолюминесцентные свойства соединения $PbCd_2B_6O_{12}$, активированного катионами Mn^{2+} . При выполнении исследования варьировали содержание иона активатора и время воздействия источником излучения.

На рис. 4 показаны три температурные зависимости интенсивности термолюминесценции, выполненные для образца состава $PbCd_2B_6O_{12}$: 0.05 Mn^{2+} , и кривая для эталона. Время выдержки образца под воздействием облучателя составляло 2 ч. Сравнительный анализ полученных экспериментальных данных показал, что максимальная интенсивность свечения наблюдается в образцах с содержанием Mn 5 мол. % при любой продолжительности воздействия β -источника. Зависимости интенсивности термолюминесценции образцов с разным содержанием ионов активатора от времени облучения демонстрирует рис. 5.

Рис. 3. Рентгенограмма расплава $PbCd_2B_6O_{12}$.

Рис. 4. Температурные зависимости интенсивности термолюминесценции образца $PbCd_{1.95}Mn_{0.05}B_6O_{12}$ выдержанного в течение 2 ч под действием облучателя, для трех параллельных опытов (*1*–3) и эталона (4).

Рис. 5. Зависимости интенсивности термолюминесценции твердых растворов $PbCd_{2-x}Mn_xB_6O_{12}$, содержащих 3 (1), 5 (2), 7 мол. % (3) марганца, от времени воздействия β -источником облучения.

Результаты исследования показали, что оптимальная концентрация, обеспечивающая максимальную яркость свечения в видимой области спектра, находится в области 5 мол. % ионов Mn^{2+} , причем максимальный выход люминесценции наблюдается при минимальной выдержке образцов под воздействием излучения β -источника.

Борат $PbCd_2B_6O_{12}$, легированный катионами Mn^{2+} , в исследованном интервале температур обладает термолюминесцентными свойствами и может рассматриваться как возможный материал для дозиметрии слабого ионизирующего излучения.

ЗАКЛЮЧЕНИЕ

Смоделирован химический состав и отработаны режимы твердофазного синтеза порошка двойного бората свинца и кадмия $PbCd_2B_6O_{12}$ из стехиометрических количеств оксидов PbO, CdO и борной кислоты H_3BO_3 . Установлено, что соединение $PbCd_2B_6O_{12}$ образуется в процессе отжига исходных веществ при 590°С, а при активировании ионами марганца и отжиге при 620°С образуются твердые растворы состава $PbCd_{2-x}Mn_xB_6O_{12}$.

Методами РФА и ДСК подтверждена индивидуальность полученного соединения. Определена температура плавления $PbCd_2B_6O_{12}$, составляющая 734°С, и показан инконгруэнтный характер плавления соединения. Монотонное уменьшение параметров моноклинных ячеек фаз, легированных катионами марганца Mn^{2+} , свидетельствует об образовании непрерывного ряда твердых растворов замещения в области изученных концентраций.

В результате исследования термолюминесцентных свойств полученных твердых растворов установлено, что максимальный выход люминесценции наблюдается при минимальном по времени воздействии излучения на образцы. Показано, что максимальную яркость свечения в видимой области спектра обеспечивает образец с концентрацией 5 мол. % ионов Mn²⁺.

Таким образом, в исследованном интервале температур борат $PbCd_2B_6O_{12}$, легированный катионами Mn^{2+} , обладает термолюминесцентными свойствами и может быть рассмотрен в качестве возможного материала для дозиметрии слабого ионизирующего излучения.

СПИСОК ЛИТЕРАТУРЫ

- Plachinda P.A., Dolgikh V.A., Stefanovich S.Yu., Berdonosov P.S. Nonlinear-Optical Susceptibility of Hilgardite-Like Borates M₂B₅O₉X (M = Pb, Ca, Sr, Ba; X = Cl, Br) // Solid State Sci. 2005. V. 7. № 10. P. 1194–1200.
- Huang Z., Pan S., Yang Z., Yu H., Dong X., Zhao W., Dong L., Su X. Pb₈M(BO₃)₆ (M = Zn, Cd): Two New Isostructural Lead Borates Compounds with Two-Dimensional ∞[Pb₈B₆O₁₈]^{2−} Layer Structure // Solid State Sci. 2013. V. 15. P. 73–78. http://d_x.doi.org/ 10.1016/j_solidstatesciences.2012.08.031.
- Yang Z., Pan S., Yu H., Lee M.H. Electronic Structure and Optical Properties of the Nonlinear Optical Crystal Pb₄O(BO₃)₂ by First-Principles Calculations // J. Solid State Chem. 2013. V. 198. P. 77–80. http://d_x.org/ 10.106/j.jssc.2012.09.024.
- Булутов Н.Т., Караев З.Ш., Абдуллаев Г.К. Система LiBO₂-CdO // Журн. неорган. химии. 1985. Т. 30. № 6. С. 1523-1526.
- Ropp R.C. Manganese-Activated Cadmium Pyrophosphate Phosphors // J. Electrochem. Soc. 1962. V. 109. P. 569–574.
- Wanmaker W.L., Verriet J.G., ter Vrugt J.W. Manganese-Activated Luminescence in Cd₂PO₄F // Phil. Res. Rep. 1972. V. 27. P. 350–357.
- Blasse G. The Luminescence of the Gd(II) Ion and of Cadmium Compounds // J. Alloys Compd. 1994. V. 210. P. 71–73.
- Furetta C., Prokis M., Salamon R., Kitis G. Dosimetric Characterization of a New Production of MgB₄O₇:Dy, Na Termoluminescent Material // Appl. Radiat. Isotop. 2000. V. 52. P. 243–250.
- Prokic M. Lithium Borate Solid TL Detectors // Radiat. Measurem. 2001. V. 33. P. 393–396.
- Jiang L.H., Zhang Y.L., Li C.Y., Hao J.Q., Su Q. Thermoluminescence Properties of Ce³⁺-Doped LiSr₄(BO₃)₃ Phosphor // Mater. Lett. 2007. V. 61. P. 5107–5109. http://dx.doi.org/10.1016/j.matlet.2007.04.016.
- Depci T., Özbayoglu G., Yilmaz A., Yazici A.N. The Thermoluminescent Properties of Lithium Triborate (LiB₃O₅) Activated by Aluminium // Nucl. Instrum. Methods Phys.Res. Sect. B. 2008. V. 266. P. 755–762. doi 10.1016/j.nimb.2007.12.094
- 12. Keleman A., Mesterhazy D., Ignatovych M., Holovey V. Thermoluminiscence Characterization of Newly Developed Cu-Doped Lithium Tetraborate Materials //

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 55 № 3 2019

Radiat. Phys. Chem. 2012. V. 81. P. 1533–1535. doi 10.1016/j.radphyschem.2012.01.041

- Omanwar S.K., Koparkar K.A., Virk H.S. Recent Advances and Opportunities in TLD Materials: A Review // Luminescence Related Phenomena and Their Applications / Ed. Hardev Singh Virk. Trans Tech Publications, 2013. P. 75–110. https://org/10.4028/www.scientific.net/DDF.347.75.
- Un A. Investigation of Dopant Effect on Some TL Dosimeters Containing Boron // Radiat. Phys. Chem. 2013. V. 85. P. 23–35. http://dx.org/10.1016/j.radphyschem.2012.10.016.
- 15. Хамаганова Т.Н., Хумаева Т.Г., Субанаков А.К., Перевалов А.В. Синтез и термолюминесцентные

свойства CdB₄O₇:Tb³⁺, Mn²⁺ // Неорган. материалы. 2017. Т. 53. № 1. С. 59–63. doi 10.7868/ S0002337X17010109

- Zhao S., Zhang G., Yao J., Wu Y. K₃YB₆O₁₂: A New Nonlinear Optical Crystal with a Short UV Cutoff Edge // Mater. Res. Bull. 2012. V. 47. P. 3810–3813.
- Hao Y.-C., Xu X., Kong F., Song J.-L., Mao J.-G. PbCd₂B₆O₁₂ and EuZnB₅O₁₀: Syntheses, Crystal Structures and Characterizations of Two New Mixed Metal Borates // CrystEngComm. 2014. V. 16. P. 7689–7695. doi 10.1039/c4ce00777h
- Daniels F, Boyd C.A., Saunders D.F. Thermoluminescence as a Research Tool // Science. 1953. V. 117. P. 343–349.