УДК 546+544.01(02)

СИНТЕЗ 2*D*-ВЫСОКОДИСПЕРСНЫХ АЛЮМОКОБАЛЬТОВЫХ ОКСИГИДРОКСИДНЫХ СОЕДИНЕНИЙ НА ОСНОВЕ ПРОДУКТОВ СВЧ-АКТИВАЦИИ КРИСТАЛЛИЧЕСКОГО ГИББСИТА

© 2019 г. А. В. Жужгов^{1, *}, О. П. Криворучко¹, Т. В. Ларина¹, А. В. Ищенко^{1, 2}, Л. А. Исупова¹

¹Институт катализа им. Г.К. Борескова СО Российской академии наук, Россия, 630090 Новосибирск, пр. Ак. Лаврентьева, 5 ²Новосибирский государственный университет, Россия, 630090 Новосибирск, ул. Пирогова, 2 *e-mail: faleks2010@gmail.com Поступила в редакцию 21.08.2018 г.

> После доработки 19.10.2018 г. Принята к публикации 31.10.2018 г.

Исследован процесс взаимодействия продукта CBЧ-активации гиббсита (ГБ) и водного раствора азотнокислого кобальта при комнатной температуре, атмосферном давлении и pH 8.0 ± 0.3. Обнаружено, что в этих условиях в приповерхностных слоях частиц CBЧ-активированного ГБ образуется алюмокобальтовый оксигидроксид с фрагментами структуры шпинели состава $Co_{2.3}Al_{0.7}O_4$ и гидротальцита нестехиометрического состава $Co_{6-x}Al_{2-x}(OH)_{1.5} \cdot 3.5H_2O$ ($0 \le x \le 1$). Показано, что морфология таких соединений представляет собой 2*D*-наночастицы в форме изогнутых листов с толщиной 2–5 нм и длиной от 500 нм и более. После прокаливания при 500°С состав продуктов вза-имодействия соответствует алюмокобальтовому оксиду $Co_{2.3}Al_{0.7}O_4$ со структурой шпинели.

Ключевые слова: кристаллический гиббсит, СВЧ-активированный гиббсит, изогнутые 2*D*-высокодисперсные алюмокобальтовые соединения

DOI: 10.1134/S0002337X1904016X

введение

Алюмокобальтовые материалы со структурой слоистых двойных гидроксидов (СДГ), а также продукты их термического разложения – алюмокобальтовые оксидные системы со структурой шпинели (Co_3O_4/Al_2O_3 , $CoAl_2O_4$ и Co_2AlO_4) – используют в фармацевтике, био-, фото- и электрохимии, в качестве модификаторов различных полимерных материалов, например для повышения термостойкости резины [1–5]. Кроме того, соединения на основе алюмокобальтового оксида (АКО) в нанодисперсном состоянии находят применение в качестве материалов для производства суперконденсаторов (ионисторов) высокой производительности [6, 7]. Сложные многокомпонентные АКО-соединения используют как катализаторы процесса синтеза Фишера-Тропша, а также в различных окислительно-восстановительных процессах, например низкотемпературном окислении СО [8].

Известен метод приготовления АКО-материалов, базирующийся на традиционном способе высокотемпературного прокаливания механических смесей оксидов и/или гидроксидов Al³⁺ и Co²⁺ при температурах 800—1100°С и выше в окислительной либо инертной атмосфере [9, 10]. Одним из существенных недостатков такого способа синтеза является необходимость применения высоких температур прокаливания, приводящих к спеканию частиц оксидов и, соответственно, к значительному падению величины их удельной поверхности.

Распространенным способом приготовления АКО-материалов является также метод совместного осаждения (золь—гель-технология) гидроксо-комплексов Al³⁺ и Co²⁺ из смешанных водных растворов солей различной природы [11, 12]. Для получения целевых продуктов таким методом требуется большое количество технологических стадий с использованием солей, кислот и щелочей; переосажденные продукты содержат примеси анионов солей (нитратов, сульфатов, хлоридов, карбонатов и т.д.), которые могут быть удалены только с использованием промывных вод.

Для приготовления AKO-материалов часто используют метод пропитки растворами различных солей Co^{2+} предварительно подготовленных носителей на основе Al_2O_3 . В качестве кобальтсодержащих исходных соединений, как правило, используют различные соли кобальта (например, хлориды и нитраты). После нанесения соединений кобальта на носитель образцы сушат при $110 \pm 10^{\circ}$ С до полного удаления слабосвязанной влаги и далее прокаливают в среде инертного газа или воздуха при температуре 800° С и выше. Более глубокое взаимодействие нанесенного оксида кобальта с носителем с образованием CoAl₂O₄ со структурой шпинели происходит лишь при температуре 600° С и выше [13, 14].

Следует отметить, что в литературе описаны и новые способы синтеза многокомпонентных $Al^{3+}-M^{n+}$ -соединений на основе переходных и непереходных металлов, в том числе кобальта. Так, в работах [15, 16] представлены результаты исследования процессов взаимодействия механохимически активированных (МХА) образцов гиббсита (МХА-ГБ), характеризующихся повышенной реакционной способностью, в водных растворах солей $M^{2+}(NO_3)_2$ ($M^{2+} = Zn$, Cu, Ni, Со). Показано, что "старение" исходного ГБ, а также кристаллического бемита в таких растворах при комнатной температуре не приводит к формированию каких-либо соединений, в состав которых входили бы вышеуказанные катионы; лишь для МХА-образцов ГБ наблюдается химическое взаимодействие с образованием слоистых двойных гидроксидов - соединений с гидротальцитоподобной структурой [16]. Подобные результаты были продемонстрированы в работе [17]. Показано, что при смачивании (при рН среды 7.0-7.5 и температуре 20-80°С) смеси МХА-ГБ и хорошо окристаллизованного оксида цинка происходит "эрозионное" поглощение ("захват") частиц ZnO частицами МХА-ГБ с образованием слоистого гидроксоалюмината цинка. Опубликованные данные свидетельствуют о возможности "мягкого" (без соосаждения, а также высокотемпературного прокаливания) получения сложных оксидов (алюминатов) на основе МХА-ГБ.

В настоящее время СВЧ-излучение широко применяют как способ повышения реакционной способности конденсированных сред, а также скорости твердофазных преврашений. На сегодняшний день СВЧ-излучение используют для синтеза одно- и многокомпонентных гидроксидных, а также оксидных соединений, в том числе АКО-материалов. В ряде работ (например, [18–20]) при синтезе АКО-материалов использовали такие подходы, как высокотемпературное спекание механических смесей оксидов и/или гидроксидов Со и Al, варьируя частоту, мощность и время воздействия СВЧ-излучения [20]; обработка смешанных водных растворов солей азотнокислого Со и Al в CBЧ-поле [18]; сочетание традиционных методов и СВЧ-обработки предшественников, например на стадиях сушки или конечном этапе СВЧ-спекания [19].

В целом, имеющиеся примеры синтеза сложных оксидных соединений с использованием СВЧ-излучения свидетельствуют о том, что это более эффективный способ по сравнению с известными традиционными методиками, поскольку он обеспечивает существенное снижение временных затрат на получение конечных продуктов.

Выполненные нами исследования по влиянию СВЧ-излучения на ГБ, являющийся инертным материалом, показали, что в результате СВЧ-активации происходит внутриобъемная аморфизация его микрокристаллов. В частности, аморфная составляющая после СВЧ-обработки ГБ обнаружена нами методом просвечивающей электронной микроскопии высокого разрешения (ПЭМВР), а также методом РФА: на дифрактограммах таких продуктов наблюдается размытое "гало" в области углов $2\theta = 30^{\circ} - 50^{\circ}$ [21, 22]. Аморфное состояние в твердом теле представляет собой довольно лабильные образования ("active microspecies") с избыточной энергией [23]. Такое активированное состояние твердого тела вызывает практический интерес для приготовления функциональных материалов различного назначения, в том числе катализаторов и носителей. В связи с этим можно ожидать, что СВЧ-активированный ГБ будет проявлять повышенную реакционную способность при контакте, например, с растворами солей переходных и непереходных металлов с образованием сложных гидроксо(оксо)соединений в более мягких условиях. При этом, в отличие от традиционных золь-гель-методик, не потребуется большое количество солей, кислот и оснований.

Данная работа посвящена исследованию возможности получения сложных гидроксо(оксо)соединений при взаимодействии СВЧ-активированного ГБ с водным раствором азотнокислого кобальта в мягких условиях (при комнатной температуре и атмосферном давлении).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве исходного вещества для СВЧ-активации использовали гидроксид алюминия γ -Al(OH)₃ – ГБ марки ГД-О производства Ачинского глиноземного комбината. Содержание примесей в ГБ (в мас. %): Fe – 0.002, Na – 0.11, K – 0.033 и Si – 0.014. Величина площади удельной поверхности исходного порошка составляла не более 1 м²/г. Данный ГБ характеризуется наличием микрокристаллов двух типов: 3*D*-монокристаллы с совершенной огранкой и 2*D*-кристаллиты пластинчатой формы, образующие поликристаллические агрегаты микронных размеров [21].

СВЧ-активация ГБ выполнена с использованием специально сконструированного СВЧстенда с возможностью размещения образцов в реакторах-резонаторах [24]. Время активации составляло 11 мин при частоте 2.45 ГГц и мощности излучения 50 Вт. Отметим, что в наших условиях максимально достигнутая температура при CBЧактивации составляла $250 \pm 30^{\circ}$ С. Более подробно методика CBЧ-обработки ГБ описана в работах [23, 24]. Для CBЧ-активированного образца ГБ принято обозначение Al*. По качественному и количественному фазовому составу образец Al* содержит ГБ (17 мас. %), кристаллический бемит (41 мас. %) и аморфную составляющую (42 мас. %) [22].

Для приготовления растворов использовали кристаллогидрат соли азотнокислого кобальта $Co(NO_3)_2 \cdot 6H_2O$ ("ч. д. а.") с концентрацией 0.5 моль/л ([Co²⁺] = 29.5 г/л). После полного растворения навески соли полученный раствор подщелачивали гидроксидом аммония (NH₄OH) до рН 8.0 ± 0.3 с целью проведения реакций частичной поликонденсации гидроксокомплексов Co²⁺. К приготовленному раствору постепенно при перемешивании добавляли навеску СВЧ-активированного образца ГБ. Массовое соотношение твердой фазы ГБ к раствору составляло 1:10, что соответствовало атомному соотношению катионов Co : Al = 1 : 2.6. Готовую суспензию перемешивали в течение 4 ч с помощью лабораторной мешалки. После отстаивания осадка его отделяли от раствора методом декантации и затем подвергали трехкратной отмывке дистиллированной водой с использованием фильтровальной бумаги при соотношении твердой фазы к жидкости 1 : 10. Осадок сушили на воздухе при температуре 25°С в течение суток. Для продукта взаимодействия СВЧ-активированного ГБ с раствором нитрата кобальта принято обозначение CoAl*.

Электронные спектры диффузного отражения (ЭСДО) регистрировали на спектрофотометре UV-2501 РС фирмы SHIMADZU в диапазоне длин волн 190–900 нм с использованием приставки диффузного отражения ISR-240A. ЭСДО регистрировали для образцов в виде порошков в кварцевой кювете с длиной оптического пути 2 мм. Для интерпретации данных ЭСДО все спектры отражения были преобразованы в спектры поглощения по функции Кубелки–Мунка F(R) == $(1-R)^2/2R$, где R – коэффициент отражения.

Морфологию образцов исследовали методом ПЭМВР с использованием просвечивающего электронного микроскопа JEM-2010, работающего при ускоряющем напряжении 200 кВ. Пространственное разрешение — 1.4 Å по решетке. Прибор оснащен приставкой EDX для определения локального элементного анализа (локальность электронного зонда до 10 нм). Образцы для электронно-микроскопического исследования были диспергированы с помощью ультразвука и нанесены напылением из этилового спирта на подложки — медные сетки диаметром 3 мм, покрытые углеродной пленкой с сетью отверстий.

Рентгенофазовый анализ (РФА) проводили с помощью дифрактометра D-500 фирмы Siemens с использованием Cu K_{α} -излучения и графитового монохроматора на отраженном пучке. Съемку образцов осуществляли методом сканирования в области $2\theta = 10^{\circ} - 70^{\circ}$ с шагом 0.05° и временем накопления 3 с. Идентификацию фаз осуществляли путем сравнения экспериментальных дифрактограмм с дифрактограммами, собранными в базах данных ICDD и PDF 2.

Термический анализ (**TA**) образцов выполняли на дериватографе фирмы NETZSCH в интервале температур от 20 до 1000°С со скоростью нагрева 10° С/мин с использованием навесок 30 мг.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В процессе исследования обнаружено, что при контакте СВЧ-активированных образцов ГБ с водным раствором нитрата кобальта происходят существенные изменения в их морфологии, фазовом составе, а также в электронном состоянии.

Из сопоставления данных РФА для исходного ГБ, образца кристаллического бемита (рис. 1а) и продукта СВЧ-активации ГБ до (рис. 16, кривая 1) и после его взаимодействия с раствором нитрата кобальта (рис. 16, кривая 2) видно, что на рентгенограмме продукта взаимодействия CoAl* присутствуют рефлексы исходного недоразложившегося ГБ и бемита, сформированного на стадии СВЧ-активации ГБ. Кроме того, на рентгенограмме появляются три кратных рефлекса с d_{hkl} = = 7.77, 2.38 и 2.6 Å (рис. 16, кривая 2), обусловленных формированием гидроксоалюмината Co²⁺ (СДГ) со слоистой структурой типа гидротальцита (PDF № 89-460). На дифрактограмме образца CoAl* отсутствуют какие-либо рефлексы АКОсоединений со структурой шпинели, они могут быть замаскированы рефлексами гиббсита и бемита, находящихся в тех же областях углов.

Согласно данным ПЭМВР, взаимодействие СВЧ-активированного образца ГБ и слабощелочного (pH 8.0 ± 0.3) водного раствора нитрата кобальта приводит к образованию 2D-высокодисперсных нанокристаллов в форме изогнутых листов с толщиной 2-5 нм и длиной от 500 нм и более. Так, на рис. 2а представлено изображение частицы ГБ с типичной морфологией: крупные микрокристаллы с четко выраженной огранкой по основным кристаллографическим направлениям. Характерным является отсутствие пористой структуры. После СВЧ-активации преимущественно наблюдаются частицы, сопоставимые по размерам с исходным ГБ. При этом теряется огранка частиц, образуется большое количество разломов и трещин; кроме того, присутствуют частицы с развитой пористой структурой (рис. 2б). Размеры пор варьируются в пределах 3-10 нм. Та-

Рис. 1. Данные РФА образцов: а – исходный кристаллический ГБ и образец сравнения бемит; б – СВЧ-активированный ГБ (*1*) и образец CoAl* (*2*).

кие изменения морфологии отражаются на дифрактограммах уширением основных пиков и возникновением гало в области малых углов. В растворе нитрата кобальта происходит формирование протяженных чешуеобразных тонких изогнутых слоев в приповерхностных областях частиц Al* (рис. 2в). В свою очередь "чешуйки" формируют ажурную систему вокруг исходных частиц, что, вероятно, связано с отрывом образовавшихся двумерных слоев вследствие различия кристаллических структур основной матрицы (СВЧ-активированного ГБ) и сформированных соединений. При исследовании на высоком разрешении было обнаружено, что состав образующихся частиц соответствует АКО со структурой шпинели (рис. 3а–3в). Идентифицированный набор межплоскостных расстояний (см. табл. 1).

указанных на фурье-дифрактограммах и электронных снимках (рис. 3a-3B), достаточно хорошо коррелирует со значениями из кристаллографической базы данных для кобальтсодержащих шпинелей Co_3O_4 (PDF № 42-1467), $CoAl_2O_4$ (PDF 44-160) и Co_2AlO_4 (PDF № 38-814). Формирование двумерных образований происходит вдоль основного направления кубической структуры [111], а их изгиб обусловлен небольшими расхождениями в латеральных направлениях в связи с лабильностью кристаллической структуры к катионному составу в пределах одного типа кристаллической структуры.

Энергодисперсионные рентгеновские спектры (EDX) указывают на то, что в различных локально выделенных областях для приповерхностных слоев 2*D*-изогнутых частиц образца CoAl*

Локально выделенная область	Набор межплоскостных расстояний, Å	Co : Al
А	4.66, 3.24, 2.55	~2.0
Б	4.61, 4.44, 2.94, 2.51	~3.0
В	4.64, 2.89, 2.53, 2.48	~5.0
Г	4.88, 2.90	~2.3
Д	4.52, 2.44, 2.39	~2.0
Е	4.56, 2.92, 2.44, 2.36	~2.3
	4.66, 2.85, 2.43, 2.33	_
	4.67, 2.86, 2.44, 2.34	0.5
	4.67, 2.86, 2.44, 2.33	2
	7.60, 3.79, 2.62, 2.53, 2.56	3.0
	Локально выделенная область А Б В С С Д Е	Локально выделенная областьНабор межплоскостных расстояний, ÅА4.66, 3.24, 2.55Б4.61, 4.44, 2.94, 2.51В4.64, 2.89, 2.53, 2.48Г4.88, 2.90Д4.52, 2.44, 2.39Е4.56, 2.92, 2.44, 2.364.67, 2.86, 2.44, 2.334.67, 2.86, 2.44, 2.337.60, 3.79, 2.62, 2.53, 2.56

Таблица 1. Набор межплоскостных расстояний и атомное соотношение Со : Al для локально выделенных областей образца CoAl* по данным ПЭМВР

Рис. 2. Электронные микрофотографии исходного ГБ (а), СВЧ-активированного ГБ (б) и продукта (CoAl*) его взаимодействия с водным раствором нитрата кобальта (в), г – морфология образца CoAl* после прокаливания при 500°С.

наблюдаются три характерных атомных соотношения: Al : Co = 1 : 2, Al : Co = 1 : 3 и Al : Co = 1 : 5 (табл. 1), что свидетельствует о формировании в приповерхностных слоях частиц смешанных алюмокобальтовых соединений с различной стехиометрией. При сопоставлении наборов межплоскостных расстояний образца CoAl* до и после термообработки с межплоскостными расстояниями образцов сравнения (табл. 1) видно, что характерные межплоскостные расстояния для структуры СДГ (3.24, 2.55, 2.53 и 2.51 Å) после прокаливания образца CoAl* полностью исчезают. Установленный набор межплоскостных расстояний из локально выделенных областей, по данным ПЭМВР, для образца CoAl*/500°C соответствует АКО-соединениям со структурой шпинели (табл. 1).

На рис. 4 представлена электронная микрофотография высокого разрешения, демонстрирующая изогнутый 2*D*-нанокристаллит, "зачехленный" слоями гидроксоалюмината кобальта (СДГ) с толщиной ~1.5 нм. Таким образом, на основе данных РФА и ПЭМВР можно сделать заключение о формировании в приповерхностных слоях частиц СВЧ-активированного ГБ при контакте с раствором нитрата кобальта не только двойных гидроксидов со структурой гидротальцита, но также смешанных АКО-соединений со структурой шпинели, при этом наблюдаемые 2D-нанокристаллиты стабильны при воздействии электронного пучка в колонне микроскопа в процессе микроскопических исследований.

Как известно, слоистая структура СДГ базируется на бруситоподобных пакетах, состоящих из двух слоев плотноупакованных ОН-групп, между которыми расположен слой катионов Al³⁺ и Co²⁺. Общая формула СДГ может быть представлена следующей формулой:

$$\left[M^{2+}M^{3+}(OH)_{2}\right]^{q+}(A)^{n-}\cdot mH_{2}O,$$

где $M^{2+} - Co^{2+}$, Ni^{2+} , Zn^{2+} , Mg^{2+} и т.д., $M^{3+} - Al^{3+}$, Cr^{3+} , Fe^{3+} . Положительный заряд пакетов ком-

2019

Рис. 3. Электронные микрофотографии высокого разрешения продукта взаимодействия CoAl*: а–в – морфология образца, полученного при комнатной температуре; г–е – морфология образца после дополнительного прокаливания при 500°С; а также данные EDX-анализа и межплоскостные расстояния на фурье-дифрактограммах с локально выделенных областей.

Рис. 4. Микроструктура 2*D*-нанолиста образца CoAl* до термообработки.

пенсируется слоем отрицательно заряженных частиц (A)^{*n*-}, например, OH⁻, NO₃⁻, CO₃²⁻, SO₄²⁻ и т.д. В процессе прокаливания гидроксоалюмината кобальта на воздухе в температурном интервале 230–350°С формируются, как правило, оксидные соединения со структурой шпинели, при этом в случае СДГ возможно образование твердых растворов двух типов шпинелей – CoAl₂O₄ и Co₂AlO₄. Основываясь на данных TA, РФА и ПЭМВР, сформированный СДГ может быть представлен следующим переменным составом: Co_{6-x}Al_{2-x}(OH)_{1.5} · · 3.5H₂O ($0 \le x \le 1$) [25]. В нашем случае отрица-

тельно заряженные частицы (NO_3^-) отсутствуют в составе СДГ, так как, по данным ТА, отсутствуют пики, соответствующие разложению соединения NH_4NO_3 .

На ДТА-кривой CoAl*, по сравнению с исходным Al* [21], появляются два тепловых эндотермических эффекта — при 145 и 220°С, связанных с удалением из СДГ физически адсорбированной слабосвязанной воды и находящейся в межслоевом пространстве соответственно (рис. 5). Кроме того, отметим, что в образце CoAl* присутствует эндоэффект при 408°С с потерей веса (2.4 мас. %), обусловленный дегидроксилированием бруситоподобных слоев и удалением межслоевых анионов из СДГ (в нашем случае OH⁻). Наблюдаемые эндотермические эффекты на кривой нагрева образца CoAl* при 294 и 528°С связаны с дегидратацией остаточного ГБ и бемита соответственно.

В табл. 2 приведен фазовый состав образцов Al* и CoAl* (без учета шпинели Co_{2.3}Al_{0.7}O₄), рассчитанный из данных TA. Видно, что после взаимодействия практически сохраняется содержание недоразложившегося исходного ГБ, уменьшается количество бемита и аморфной составляющей, появляется СДГ состава Co_{6-x}Al_{2-x}(OH)_{1.5} · 3.5H₂O ($0 \le x \le 1$) в количестве ~36 мас. %.

Рис. 5. Данные ТА образца CoAl* до термообработки.

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 55 № 4 2019

Образец	Состав, мас. %			
	ГБ	БЕ	AC	СДГ
Al* [24]	17	41	42	_
CoAl*	17	26	21	36

Таблица 2. Фазовый состав образцов Al* и CoAl*

Примечание. БЕ – бемит, АС – аморфная составляющая.

Последующая термообработка образца CoAl* при 500°С не приводит, как следует из полученных данных, к существенным изменениям морфологии частиц, что соответствует т. н. явлению псевдоморфного перехода по исходному соединению. На электронных снимках (рис. 2г, 3г–3е) также наблюдаются изогнутые 2*D*-нанолисты с параметрами, соответствующими образцу CoAl* до термической обработки (рис. 3а–3в). Однако после термической обработки образца CoAl* атомное соотношение Co : Al, по данным EDXанализа, становится близким к 2.3 (табл. 1). Поскольку по данным химического анализа (полное растворение) образец CoAl* состоит из 17% кобальта и 83% алюминия (без учета кислорода), можно предположить, что основные изменения произошли прежде всего в приповерхностных слоях частиц Al*, более доступных для взаимодействия с раствором нитрата кобальта.

Таким образом, на основании данных РФА и ПЭМВР, образец CoAl*, полученный взаимодействием CBЧ-активированного ГБ и раствора нитрата кобальта, представляет собой неоднородный смешанный оксигидроксид, частицы которого на поверхности обогащены кобальтом. Этот образец соответствует переменному нестехиометрическому составу Co_{6-x}Al_{2-x}(OH)_{1.5} · 3.5H₂O (0 ≤ x ≤ 1) со структурой СДГ и AKO-соединению типа шпинели, отвечающей составу Co_{2.3}Al_{0.7}O₄. После термообработки CoAl* при 500°С состав AKO соответствует соединению Co_{2.3}Al_{0.7}O₄. Для уточнения возможности образования оксидной фазы переменного состава на стадии взаимодействия (что ранее не отмечалось в литературе), а не в колонне

Рис. 6. ЭСДО: а – исходный кристаллический ГБ (1), образец сравнения кристаллического бемита (2), СВЧ-активированный продукт ГБ (3); б – образец CoAl*, приготовленный при нормальных условиях; в – CoAl* после термообработки при 500°С.

микроскопа в вакууме под действием электронного пучка были получены ЭСДО.

На рис. 6а представлены ЭСДО исходного ГБ (кривая 1), а также образцов сравнения кристаллического бемита (кривая 2) и продукта СВЧ-активации ГБ (кривая 3). Из ЭСДО видно, что для всех образцов в видимой области вплоть до 30000 см⁻¹ отсутствуют какие-либо полосы поглощения. После контакта СВЧ-активированного ГБ с раствором Co²⁺ в спектре образца CoAl* (рис. 66) появляется набор полос поглощения в видимой области: присутствуют п.п. с максимумами при 16000, 19000, 20300 и 22000 см⁻¹, первая из которых обусловлена d-d-переходом катионов Co_{Td}^{2+} , следующие три, вероятнее всего, связаны с проявлением тетрагонального искажения вокруг катионов $\operatorname{Co}_{Oh}^{2+}$. Кроме того, в спектре присутствует по-глощение с максимумом при 27500 см⁻¹, обусловленное d-d-переходом ${}^{1}A_{1g}-{}^{1}T_{2g}$ катионов Со $_{Oh}^{3+}$ в низкоспиновом состоянии (рис. 66) [26–28]. Наличие в ЭСДО п.п. от $\operatorname{Co}_{Td}^{2+}$ и $\operatorname{Co}_{Oh}^{3+}$ характерно для АКО-соединения со структурой типа $\operatorname{Co}_2\operatorname{AlO}_4$ [26]. С учетом данных ПЭМВР образец CoAl* представляет собой фазу переменного состава, которая описывается вышеприведенной формулой $Co_{6-x}Al_{2-x}(OH)_{1.5} \cdot 3.5H_2O (0 \le x \le 1)$ и АКО состава $Co_{2.3}Al_{0.7}O_4$. Присутствие в ЭСДО поглощения от Co²⁺_{0h} согласуется с данными РФА и ПЭМВР об образовании слоистого двойного гидроксида со структурой типа гидротальцита. Полученные данные подтверждают возможность образования не только двойных гидроксидов, но и АКО уже на стадии выдерживания Al* в растворе нитрата кобаль-

Дополнительное прокаливание образца CoAl* при 500°C приводит к полному исчезновению п.п. $\operatorname{Co}_{Oh}^{2+}$, что свидетельствует, как показано выше, о разложении соединения типа СДГ. При этом сохраняется поглощение от $\operatorname{Co}_{Td}^{2+}$ со смещением от 16000 до 14200 см⁻¹ (рис. 6в). Полоса поглощения с максимумом 27500 см⁻¹ от $\operatorname{Co}_{Oh}^{3+}$ смещается до 22000 см⁻¹ (рис. 6в). Последнее связано с уменьшением силы кристаллического поля, создаваемого лигандами первой координационной сферы вокруг рассматриваемого катиона.

та при комнатной температуре.

Основываясь на известных данных [11, 12] по процессам кристаллизации в соосажденных гидроксидах, в том числе Al³⁺–Co²⁺, можно полагать, что процесс взаимодействия CBЧ-активированных продуктов ГБ и раствора нитрата кобальта описывается аналогичными закономерностями, но лишь с той разницей, что формирование промежуточного лабильного состояния Al* происходит не в результате поликонденсации аквакатионов в растворах солей Al³⁺, а на стадии предварительной CBЧ-активации грубодисперсных микрокристаллов ГБ, обеспечивающей эффективный переход ГБ в химически активное промежуточное метастабильное состояние.

ЗАКЛЮЧЕНИЕ

Показано, что при комнатной температуре и атмосферном давлении бемит и аморфная составляющие продукта СВЧ-активации гиббсита взаимодействуют со слабощелочным (pH 8.0 ± 0.3) pacтвором азотнокислого кобальта с образованием в приповерхностных слоях частиц смешанных высокодисперсных алюмокобальтовых гидрооксосоединений со структурой шпинели Co_{2 3}Al_{0 7}O₄ и гидротальцита переменного состава $Co_{6-x}Al_{2-x}(OH)_{1.5}$ · 3.5H₂O (0 ≤ x ≤ 1). Обнаруженные алюмокобальтовые соединения состоят из изогнутых 2D-нанокристаллитов в форме листов с толщиной 2-5 нм и длиной более 500 нм. По данным ПЭМВР, поверхностные слои оксида Co_{2 3}Al_{0 7}O₄ покрыты слоями СДГ. После термообработки при 500°С из СДГ образуется AKO-соединение состава $Co_{23}Al_{07}O_{4}$ со структурой шпинели, при этом форма нанолистов сохраняется.

БЛАГОДАРНОСТЬ

Работа выполнена в рамках государственного задания Института катализа СО РАН, проект АААА-А17-117041710090-3.

СПИСОК ЛИТЕРАТУРЫ

- Merikhi J., Jungk H., Feldmann C. Sub-micrometer CoAl₂O₄ Pigment Particles – Synthesis and Preparation of Coatings // J. Mater. Chem. 2002. V. 10. P. 1311–1314.
- Rangappa D., Ohara S., Naka T., Kondo A., Ishii M., Adschiri T. Synthesis and Organic Modification of CoAl₂O₄ Nanocrystals Supercritical Water Conditions // J. Mater. Chem. 2007. V. 17. P. 4426–4429.
- Evans D.G., Slade R.C.T. Structural Aspects of Layered Double Hydroxides // Struct. Bond. 2006. V. 119. P. 1–87.
- Khodakov A.Y., Chu W., Fongarland P. Advances in the Development of Novel Cobalt Fischer-Tropsch Catalysts for Synthesis of Long-Chain Hydrocarbons and Clean Fuels // Chem. Rev. 2007. V. 107. P. 1692–1744.
- 5. *Li F, Duan X*. Applications of Layered Double Hydroxides // Struct. Bond. 2006. V. 119. P. 193–223.
- Tian Li., Huang K., Liu Y., Liu S. Topotactic Synthesis of Co₃O₄ Nanoboxes from Co(OH)₂ Nanoflakes // J. Solid State. Chem. 2011. V. 184. P. 2961–2965.
- Tang Y., Liu Y., Yu S., Mu S., Xiao S., Zhao Y., Gao F. Morphology Controlled Synthesis of Monodisperse Cobalt Hydroxide for Supercapacitor with High Performance and Long Cycle life // J. Power Sour. 2014. V. 256. P. 160–169.

- Jacobs G., Das T.K., Zhang Y., Li J., Racoillet G., Davis B.H. Fisher– Tropsch Synthesis: Support, Loading, and Promoter Effects on the Reducibility of Cobalt Catalysts // App. Catal. A: General. 2002. V. 233. P. 263–281.
- Wang C., Lui S., Lui L., Bai X. Synthesis of Cobalt-Aluminate Spinels via Glycine Chelated Precursors // J. Mater. Chem. Phys. 2006. V. 96. P. 361–370.
- Li W., Li J., Guo J. Synthesis and Characterization of Nano Crystalline CoAl₂O₄ Spinel Powder by Low Temperature Combustion // J. Eur. Ceram. Soc. 2003. V. 23. P. 2289–2295.
- Федотов М.А., Тарабан Е.А., Криворучко О.П., Буянов Р.А. Исследование гидролитической поликонденсации акваионов в смешанных растворах нитратов Аl³⁺ и Co²⁺ методом ЯМР разных ядер // Журн. неорган. химии. 1990. Т. 35. № 5. С. 1226–1230.
- Тарабан Е.А. Взаимодействие гидроксидов Al³⁺ и Co²⁺ при смешении в водной среде // Сибирский хим. журн. 1991. Вып. 1. С. 20–23.
- Bai C.S., Soled S., Dwight K., Wold A. Preparation and Characterization of Dispersed "Cobalt Oxide" Supported on γ-Al₂O₃ // J. Solid State Chem. 1991. V. 91. № 1. P. 148–152.
- 14. *Abdel-Salaman K.M., Girgis M.M., Fahim R.B.* Surface Texture of the Mixed Al–Co Oxide Spinel Phase // Surf. Thechnol. 1982. V. 17. № 4. P. 281–290.
- 15. Fogg A.M., Williams G.R., Chester R., O'Hare D.A. Novel Family of Layered Double Hydroxides – $[MAl_4(OH)_{12}](NO_3)_2 \cdot xH_2O$ (M = Co, Ni, Cu, Zn) // J. Mater. Chem. 2004. V. 14. P. 2369–2371.
- Williams G.R., Moorhouse S.J., Timothy J.P., Fogg A.M., Rees N.H., O'Hare D.A. New Insights into the Intercalation Chemistry of Al(OH)₃ // Dalton Trans. 2011. V. 40. P. 6012–6022.
- Криворучко О.П., Буянов Р.А., Парамзин С.М., Золотовский Б.П. Взаимодействие механохимически активированных гидроксидов Al³⁺ с кристаллическими оксидами двухвалентного металла // Кинетика и катализ. 1988. Т. 29. № 1. С. 252–253.
- Ragupathi C., Vijaya J.D., Narayanan S., Jesudoss S.K., Kennedy L.J. Highly Selective Oxidation of Benzyl Alcohol to Benzaldehyde with Hydrogen Peroxide by Cobalt Aluminate Catalysis: A Comparison of Conventional and Microwave Methods // Ceram. Int. 2015. V. 41. P. 2069–2080.
- Moraz-Lazaro J.P., Blanco O., Rodriguez-Betancourtt V.M., Reyes-Gomez J., Michel C.R. Enhanced CO₂-Sensing Response of Nanostructured Cobalt Alu-

minate Synthesized Using a Microwave-Assisted Colloidal Method // Sensor Actuators B: Chem. 2016. V. 226. P. 518–524.

- Veronesi P., Leonelli C., Bondioli F. Energy Efficiency in the Microwave-Assisted Solid-State Synthesis of Cobalt Aluminate Pigment // Technologies. 2017. V. 5. P. 42–54.
- Криворучко О.П., Жужгов А.В., Хабибулин Д.Ф., Танашев Ю.Ю., Болотов В.А., Ищенко А.В., Молина И.Ю., Пармон В.Н. Необычная объемная аморфизация гиббсита до состояния алюминий-кислородных комплексов атомарного размера, происходящая в границах исходных микрокристаллов при воздействии СВЧ излучения // ДАН. 2012. Т. 445. № 5. С. 553-558.
- Жужгов А.В., Паукштис Е.А., Криворучко О.П., Молина И.Ю., Ларина Т.В., Пармон В.Н. Особенности формирования Льюисовских центров при воздействии СВЧ излучения на гиббсит // Журн. физ. химии. 2013. № 9. С. 1496–1506.
- 23. Ingram-Jones V.J., Davies R.C.T., Southern J.C., Salvador S. Dehydroxylation Sequences of Gibbsite and Boehmite: Study of Differences Between Soak and Flash Calcinations and of Particle-Size Effects // J. Mater. Chem. 1996. V. 6. № 1. P. 73–79.
- 24. Болотов В.А., Черноусов Ю.Д., Удалов Е.И., Танашев Ю.Ю., Пармон В.Н. Особенности проведения высокотемпературных химических реакций под действием сверхвысокочастотного поля // Вестн. НГУ. Серия: Физика. 2009. Т. 54. Вып 2. С. 78–83.
- Gareth R., O'Hare W., O'Hare D. Towards understanding, Control and Application of Layered Double Hydroxide Chemistry // J. Mater. Chem. 2006. V. 16. P. 3065–3074.
- 26. Криворучко О.П., Ларина Т.В, Ануфриенко В.Ф., Молина И.Ю., Паукштис Е.А. Синтез, электронное состояние и условия стабилизации размеров частиц

нанодисперсного гидроксида [Co(OH)₂(H₃O)_δ⁺]^{δ+} // Неорган. материалы. 2009. Т. 45. № 12. С. 1451–1457.

- 27. Криворучко О.П., Гаврилов В.Ю., Молина И.Ю., Ларина Т.В. Распределение кобальтсодержащей компоненты в поровом пространстве HZSM-5 при постсинтетическом модифицировании цеолита гидроксосоединениями Co²⁺ // Кинетика и катализ. 2008. Т. 49. № 2. С. 300–306.
- 28. *Casado P.G., Rasines I.* The Series of Spinels $Co_{3-s}Al_s$ (0 < s < 2): Study of Co_2AlO_4 // J. Solid State Chem. 1984. V. 52. P. 187–190.